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Preface to the Second Edition

This book will raise your level of skill at computer programming, regardless of whether
you are presently a novice or expert. The field of programming languages is still in its
infancy, and dramatic advances will be made every decade or two until mankind has had
enough time to think about the problems and principles that go into this exciting area of
computing. The Unicon language described in this book is such an advance, incorporating
many elegant ideas not yet found in most contemporary languages.

Unicon is an object-oriented, goal-directed programming language based on the Icon
programming language. Unicon can be pronounced however you wish; we pronounce it
variably depending on mood, whim, or situation; the most frequent pronunciation rhymes
with “lexicon”.

For Icon programmers this work serves as a “companion book” that documents material
such as the Icon Program Library, a valuable resource that is underutilized. Don’t be
surprised by language changes: the book presents many new facilities that were added to
Icon to make Unicon and gives examples from new application areas to which Unicon is
well suited. For people new to Icon and Unicon, this book is an exciting guide to a powerful
language.

It is with sweet irony that we call this book the 2" Edition, since the first edition
was never formally published but instead existed solely as an online document, although
laser-printed hard copies could be requested. A lot has happened to Unicon since the first
edition of this book, which culminated in 2004. This “2°¢ Edition” catches readers up
with things like concurrent threads and vastly improved 3D graphics facilities. Along the
way, the games chapter and parts of the internet programming chapter got spun off into a
separate work, the so-called Manual of Puissant Skill at Game Programming.

Organization of This Book

This book consists of four parts. The first part, Chapters 1-8, presents the core of the
Unicon language, much of which comes from Icon. These early chapters start with simple
expressions, progress through data structures and string processing, and include advanced
programming topics and the input/output capabilities of Unicon’s portable system inter-
face. Part two, in Chapters 9-12, describes object-oriented development as a whole and
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viil PREFACE TO THE SECOND EDITION

presents Unicon’s object-oriented facilities in the context of object-oriented design. Object-
oriented programming in Unicon corresponds closely to object-oriented design diagrams in
the Unified Modeling Language, UML. Some of the most interesting parts of the book are
in part three; Chapters 13-18 provide example programs that use Unicon in a wide range
of application areas. Part four consists of essential reference material presented in several
Appendixes.
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Introduction

Software development requires thinking about several dimensions simultaneously. For large
programs, writing the actual computer instructions is not as difficult as figuring out the
details of what the computer is supposed to do. After analyzing what is needed, program
design brings together the data structures, algorithms, objects, and interactions that ac-
complish the required tasks. Despite the importance of analysis and design, programming
is still the central act of software development for several reasons. The weak form of the
Sapir-Whort hypothesis suggests that the programming language we use steers and guides
the way we think about software, so it affects our designs. Software designs are mathemat-
ical theorems, while programs are proofs that test those designs. As in other branches of
mathematics, the proofs reign supreme. In addition, a correct design can be foiled by an
inferior implementation.

This book is a guide and reference for an exciting programming language called Unicon
that has something to offer both computer scientists as well as casual programmers. You
will find explanations of fundamental principles, unique language idioms, and advanced
concepts and examples. Unicon exists within the broader context of software development,
so the book also covers software engineering fundamentals. Writing a correct, working
program is the central task of software engineering. This does not happen automatically
as a result of the software design process. Make no mistake: if you program very much,
the programming language you use is of vital importance. If it weren’t, we would still be
programming in machine language.

Prototyping and the Spiral Model of Development

A software prototype is a working subset of a software system. Prototypes help check
software designs and user interfaces, demonstrate key features to customers, or prove the
feasibility of a proposed solution. A prototype may generate customer feedback on missing
functionality, provide insight on how to improve the design, lead to a decision about whether
to go ahead with a project or not, or form a starting point for the algorithms and data
structures that will go into the final product. Prototyping is done early in the software
development process. It fits naturally into the spiral model of development proposed by
Barry Boehm (1988). Figure I-1 shows the spiral model; time is measured by the distance
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from the center. Analysis, design, coding, and evaluation are repeated to produce a better
product with each iteration. "Prototyping" is the act of coding during those iterations when
the software is not yet fully specified or the program does not yet remotely implement the
required functionality.

Evaluation Analuzis

Coding Design

Figure I-1 The Spiral Model of Software Development

Tight spirals are better than loose spirals. The more powerful the prototyping tools, the
less time and money spent in early iterations of development. This translates into either
faster time to market, or a higher quality product. Some prototypes are thrown away once
they have served the purpose of clarifying requirements or demonstrating some technique.
This is OK, but in the spiral model some prototypes are gradually enhanced until they
become the final production system.

Icon: a Very High Level Language for Applications

Icon is a programming language developed at the University of Arizona. Icon generalizes
its developers’ experience creating an earlier language, SNOBOL4. Icon embodies seminal
research ideas, but it is also more fun and easier to program than other languages. Most
very high-level languages revel in cryptic syntax, while Icon is not just more powerful, but
often more readable than its competitors. This gain in expressive power without losing
readability is an addicting result of Icon’s elegant design.

The current Arizona Icon, version 9.5, is described in The Icon Programming Language,
3rd edition by Ralph and Madge Griswold (1996). Its reference implementation is a virtual
machine interpreter. Icon evolved through many releases over two decades and is far more
capable than it was originally. It is apparently a finished work.

Enter Unicon: More Icon than Icon

The name “Unicon” refers to the descendant of Icon described in this book and distributed
from www.unicon.org. Unicon is Icon with portable, platform-independent access to hardware


www.unicon.org

and software features that have become ubiquitous in modern applications development,
such as objects, networks, and databases. Unicon is created from the same public domain
source code that Arizona Icon uses, so it has a high degree of compatibility. We were not
free to call it version 10 of the Icon language, since it was not produced or endorsed by the
Icon Project at the University of Arizona.

Just as the name Unicon frees the Icon Project of all responsibility for our efforts, it
frees us from the requirement of backward compatibility. While Unicon is almost entirely
backward compatible with Icon, dropping full compatibility allows us to clear out some
dead wood and more importantly, to make some improvements in the operators that will
benefit everyone at the expense of...no one but the compatibility police. This book covers
the features of Icon and Unicon together. A compatibility check list and description of the
differences between Icon and Unicon are given in Appendix D.

The Programming Languages Food Chain

It is interesting to compare Icon and Unicon with the competition. Mainstream program-
ming languages such as C, C+—, and Java, like the assembler languages that were main-
stream before them, are ideal tools for writing all sorts of programs, so long as vast amounts
of programmer time are available. Throwing more programmers at a big project does not
work well, and programmers are getting more expensive while computing resources continue
to become cheaper. These pressures inexorably lead to the use of higher-level languages
and the development of better design and development methods. Such human changes are
incredibly slow compared to technological changes, but they are visibly occurring never-
theless. Today, the most productive programmers are using extra CPU cycles and memory
to reduce the time it takes to develop useful programs.

There is a subcategory of mainstream languages, marketed as rapid application de-
velopment languages, whose stated goals seem to address this phenomenon. Languages
such as Visual Basic or PowerBuilder provide graphical interface builders and integrated
database connectivity, giving productivity increases in the domain of data entry and pre-
sentation. The value added in these products are in their programming environments, not
their languages. The integrated development environments and tools provided with these
languages are to be acclaimed and emulated, but they do not provide productivity gains
that are equally relevant to all application domains. They are only a partial solution to
the needs of complex applications.

Icon is designed to be easier and faster to program than mainstream languages. The
value it adds is in the expressive power of the language itself, in the category of very high
level languages that includes Lisp, APL, Smalltalk, REXX, Perl, Tcl, Python, and Ruby;
there are many others. Very high-level languages can be subdivided into scripting lan-
guages and applications languages. Scripting languages often glue programs together from
disparate sources. They are typically strong in areas such as multilingual interfacing and file
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system interactions, while suffering from weaker expression semantics, typing, scope rules,
and control structures than their applications-oriented cousins. Applications languages
typically originate within a particular application domain and support that domain with
special syntax, control structures, and data types. Since scripting is an application domain,
scripting languages are just one prominent subcategory of very high-level languages.

Icon is an applications language with roots in text processing and linguistics. Icon
programs tend to be more readable than similar programs written in other very high-level
languages, making Icon well-suited to the aims of literate programming. For example,
Icon was used to implement Norman Ramsey’s literate programming tool noweb (Ramsey,
1994). Literate programming is the practice of writing programs and their supporting
textual description together in a single document.

Unicon makes the core contributions of Icon useful for a broader range of applications.
This book’s many examples illustrate the range of tasks for which Unicon is well suited, and
these examples are the evidence in support of Unicon’s existence. Consider using Unicon
when one or more of the following conditions are true. The more conditions that are true,
the more you will benefit from Unicon.

e Programmer time must be minimized.

Maintainable, concise source code is desired.

The program includes complex data structures or experimental algorithms.

The program involves a mixture of text processing and analysis, custom graphics,
data manipulation, network or file system operations.

The program must run on several operating systems and have a nearly identical
graphical user interface with little or no source code differences.

Unicon is not the last word in programming. You probably should not use Unicon if your
program has one or more of the following requirements:

e The fastest possible performance is needed.
e The program has hard real-time constraints.

e The program must perform low-level or platform-specific interactions with the hard-
ware or operating system.

Programming languages play a key role in software development. The Unicon language is a
very high level object-oriented language with a unique combination of expressive power and
scalable rapid development. In this book, many examples from a wide range of application
areas demonstrate how to apply and combine Unicon’s language constructs to solve real-
world problems. It is time to move past the introductions. Prepare to be spoiled by this
language. You may have the same feelings that Europeans felt when they gave up using
Roman numerals and switched to the Hindu-Arabic number system. “This multiplication
stuff isn’t that hard anymore!”



Part 1

Core Unicon






Chapter 1

Programs and Expressions

This chapter presents many of the key features of Unicon, starting with those it has in
common with other popular languages. Detailed instructions show how to compile and run
programs. Soon the examples introduce important ways in which Unicon is different from
other languages. These differences are more than skin deep. If you dig deeply, you can find
dozens of details where Unicon provides just the right blend of simplicity, flexibility, and
power. After this chapter, you will know how to

e edit, compile, and execute Unicon programs
e use the basic types to perform calculations
e identify expressions that can fail, or produce multiple results

e control the flow of execution using conditionals, looping, and procedures

1.1 Your First Unicon Program

This section presents the nuts and bolts of writing and running an Unicon program, after
which you will be able to try the code examples or write your own programs. Before you
can run the examples here or in any subsequent chapter, you must install Unicon on your
system. (See Appendix F for details on downloading and installing Unicon from the Unicon
web site, http://unicon.org.) We are going to be very explicit here, and assume nothing
about your background. If you are an experienced programmer, you will want to skim this
section, and move on to the next section. If you are completely new to programming, have
no fear. Unicon is pretty easy to learn.

All programs consist of commands that use hardware to obtain or present information
to users, and perform calculations that transform information into a more useful form.
To program a computer you write a document containing instructions for the computer to
carry out. In Unicon a list of instructions is called a procedure, and a program is a collection
of one or more procedures. In larger programs, groups of related procedures are organized

7



8 CHAPTER 1. PROGRAMS AND EXPRESSIONS

into classes or packages; these features are presented in Part II of this book. Unicon
programs are text files that may be composed using any text editor. For the purposes
of demonstration this section describes how to use Ui, the program editor and integrated
development tool that comes with Unicon.

It is time to begin. Fire up Ui by typing "ui" from the command line, or launching the

"

menu item or icon labeled "Unicon," and type:

procedure main()
write("Hello, amigo!")
end

Your screen should look something like Figure 1-1. The large upper area of the window
is the editing region where you type your program code. The lower area of the window is
a status region in which the Ui program displays a message when a command completes
successfully, or when your program has an error. Until you explicitly name your file some-
thing else, a new file has the name noname.icn. The font Ui uses to display source code is
selectable from the Options menu.

] Unicon IDE =]
File View Confiy Edit Insert Compile Run Project Help
pas L el e I N B

Class Browser scratch
procedure main()

write("Hello, amiga!")
end

Ivessages: (Single File hode)

fino errors)

Figure 1-1: Writing an Unicon program using the Ui program.



1.1. YOUR FIRST UNICON PROGRAM 9

The list of instructions that form a procedure begins with the word procedure and ends
with the word end. Procedures have names. After writing a list of instructions in a
procedure you may refer to it by name without writing out the list again. The write()
instruction is just such a procedure, only it is already written for you; it is built in to the
language. When you issue a write() instruction, you tell the computer what to write. The
details a procedure uses in carrying out its instructions are given inside the parentheses
following that procedure’s name; in this case, "Hello, amigo!" is to be written. When you see
parentheses after a name in the middle of a list of instructions, it is an instruction to go
execute that procedure’s instructions. Inside the parentheses there may be zero, one, or
many values supplied to that procedure.

Besides writing your program, there are a lot of menu commands that you can use to
control the details of compiling and executing your program within Ui. For instance, if you
select Run—Run, Ui will do the following things for you.

1. Save the program in a file on disk. All Unicon programs end in .icn; you could name
it anything you wished, using the File—SaveAs command.

2. Compile the Unicon program from human-readable text to (virtual) machine lan-
guage. To do this step manually, you can select the Compile—Make executable
command.

3. Execute the program. This is the main purpose of the Run command. Ui performed
the other steps in order to make this operation possible.

If you type the hello.icn file correctly, the computer should chug and grind its teeth for
awhile, and

Hello, amigo!

should appear in a window on your screen. This ought to be pretty intuitive, since the
instructions included the line

write("Hello, amigo!")

in it. That’s how to write to the screen. It’s that simple.

The first procedure to be executed when a program runs is called main(). Every instruc-
tion listed in the procedure named main() is executed in order, from top to bottom, after
which the program terminates. Use the editor to add the following lines right after the line
write("Hello, amigo") in the previous program:

write("How are you?")
write(7 + 12)

The end result after making your changes should look like this:
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procedure main()
write("Hello, amigo!")
write("How are you?")
write(7 + 12)

end

Run the program again. This example shows you what a list of instructions looks like,
as well as how easy it is to tell the computer to do some arithmetic.

Note

It would be fine (but not very useful) to tell the computer to add 7 and 12 without
telling it to write the resulting value. On seeing the instruction

7+12

the computer would do the addition, throw the 19 away, and go on.
Add the following line, and run it:

write("7 + 12"

This illustrates what quotes are for. Quoted text is taken literally; without quotes, the
computer tries to simplify (do some arithmetic, or compute the value of what is written),
which might be difficult if the material in question is not an expression!

write(hey you)
makes no sense and is an error. Add this line, and run it:
write(7 + "12")

The 12 in quotes is taken literally as some text, but that text happens to be digits that
comprise a number, so adding it to another number makes perfect sense. The computer
will not have as much success if you ask it to add 7 to “amigo”. The computer views all
of this in terms of values. A walue is a unit of information, such as a number. Anything
enclosed in quotes is a single value. The procedure named write() prints values on your
screen. Operators such as + take values and combine them to produce other values, if it
is possible to do so. The values you give to + had better be numbers! If you try to add
something that doesn’t make sense, the program will stop running at that point, and print
an error message.

By now you must have the impression that writing things on your screen is pretty easy.
Reading the keyboard is just as easy, as illustrated by the following program:

procedure main()
write("Type a line ending with <ENTER>:")
write("The line you typed was" , read())
end
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Run the program to see what it does. The procedure named read() is used to get what
the user types. It is built in to the language. The read() instruction needs no directions
to do its business, so nothing is inside the parentheses. When the program is run, read()
grabs a line from the keyboard, turns it into a value, and produces that value for use in
the program, in this case for the enclosing write() instruction.

The write() instruction is happy to print out more than one value on a line, separated by
commas. When you run the program, the "the line you typed was" part does not get printed
until after you type the line for read() and that instruction completes. The write() instruction
must have all of its directions (the values inside the parentheses) before it can go about its
business.

Now let’s try some variations. Can you guess what the following line will print?

write("this line says ", "read()")

The read() procedure is never executed because it is quoted! Quotes say "take these
letters literally, not as an equation or instruction to evaluate." How about:

write("this line says , read()")

Here the quotes enclose one big value, which is printed, comma and all. The directions one
gives to a procedure are parameters; when you give a procedure more than one parameter,
separated by commas, you are giving it a parameter lisi. For example,

write("this value ", "and this one")
Compile and run the following strange-looking program. What do you think it does?

procedure main()
while write( " "== read() )
end

This program copies the lines you type until you type an empty line by pressing Enter

without typing any characters first. The " are used just as usual. They direct the program
to take whatever is quoted literally, and this time it means literally nothing - an empty line.
The operator "== stands for "not equals". It compares the value on its left to the value on
its right, and if they are not equal, it produces the value on the right side; if they are equal,
it fails - that is, the “not equals” operator produces no value. If you have programmed in
other languages, this may seem like a strange way to describe what is usually performed
with nice simple Boolean values True and False. For now, try to take this description
at face value; Unicon has no Boolean type or integer equivalent, it uses a more powerful
concept that we will examine more fully in the chapters that follow.

Thus, the whole expression " "==read() takes a line from the keyboard, and if it is not
empty, it produces that value for the enclosing write() instruction. When you type an empty
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line, the value read() produces is equal to "™, and "== produces no value for the enclosing
write() instruction, which similarly fails when given no value. The while instruction is a
"loop" that repeats the instruction that follows it until that instruction fails (in this case,
until there is no more input). There are other kinds of loops, as well as another way to use
while; they are all described later in this chapter.

So far we’'ve painted you a picture of the Unicon language in very broad strokes, and
informally introduced several relevant programming concepts along the way. These con-
cepts are presented more thoroughly and in their proper contexts in the next sections and
subsequent chapters. Hopefully you are already on your way to becoming an Icon pro-
grammer eztraordinaire. Now it is time to dive into many of the nuts and bolts that make
programming in Unicon a unique experience.

1.2 Command Line Options

Unicon comes with an IDE, but you can edit programs with any editor, and compile and
run them from your operating system’s command line. This section describes the Unicon
command line tools along with several useful options. The Unicon compiler executable is
named unicon, and to compile the program foo.icn you would type

unicon foo
To execute the resulting program, just type
foo

To compile and link a program consisting of several modules, you can type them all on
the command line, as in

unicon foo bar baz

but often you will want to compile them separately (using the -c command line option) and
link the resulting object files, called ucode files; their extension is .u

unicon -c foo
unicon -c bar
unicon -c baz
unicon foo.u bar.u baz.u

Some of the other useful command line options include:

e -oarg name the resulting output file arg

e -x args execute the program immediately after linking; this option goes after the
program filenames
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e -t turn on tracing
e -u produce a warning for undeclared variables

e -E  output preprocessed source code

-C  compile to C code and link

These options can be specified in the Ui program under the Compile menu’s Compile
Options command. Other options exist; consult your Unicon and Icon manual pages and
platform-specific help files and release information for more details.

1.3 Expressions and Types

Each procedure in a Unicon program is a sequence of expressions. Expressions are instruc-
tions for obtaining values of some type, such as a number or a word; some expressions also
cause side effects, such as sending data to a hardware device. Simple expressions just read
or write a value stored in memory. More interesting expressions specify a computation that
manipulates zero or more argument values to obtain result values by some combination of
operators, procedures, or control structures.

The simplest expressions are literals, such as 2 or "hello, world!". These expressions di-
rectly specify a value stored in memory. When the program runs, they do not do any
computation, but rather evaluate to themselves. Literals are combined with other values
to produce interesting results. Each literal has a corresponding type. This chapter focuses
on the atomic types. Atomic types represent individual, immutable values. The atomic
types in Unicon are integer and real (floating-point) numbers, string (a sequence of charac-
ters), and cset (a character set). Atomic types are distinguished by the fact that they have
literal values, specified directly in the program code and represented as data in the compiled
code. Values of other types such as lists are constructed during execution. Later chapters
describe structure types that organize collections of values, and system types for interacting
with the operating system via files, databases, windows, and network connections.

After literals, references to variables are the next simplest form of expression. Variables
are named memory locations that hold values for use in subsequent expressions. You refer
to a variable by its name, which must start with a letter or underscore and may contain
any number of letters, underscores, or numbers. Use names that make the meaning of the
program clear. The values stored in variables are manipulated by using variable names in
expressions like i+j. This expression results in a value that is the sum of the values in the
variables i and j, just like you would expect.

Some words may not be used as variable names because they have a special meaning in
the language. These reserved words include procedure, end, while, and so on. Other special
variables called keywords start with the ampersand character (&) and denote special values.
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For example, global variables are initialized to the null value represented by the keyword
&null. Other keywords include &date, &time, and so on. Complete lists of reserved words
and keywords are given in Appendix A.

Unlike many languages where you have to state up front (declare) all the variables you
are going to use and specify their data type, in Unicon variables do not have to be declared
at all, and any variable can hold any type of value. However, Unicon will not allow you to
mix incompatible types in an expression. Unicon is type safe, meaning that every operator
checks its argument values to make sure they are compatible, converts them if necessary,
and halts execution if they cannot be converted.

1.4 Numeric Computation

Unicon supports the usual arithmetic operators on data types integer and real. Integers
are signed whole numbers of arbitrary magnitude — Unicon is not limited to the range of
whole numbers provided by the underlying hardware. The real type is a signed floating
point decimal number whose size on any platform is the largest size supported by ma-
chine instructions, typically 64-bit double precision values. In addition to addition (+),
subtraction (-), multiplication (*) and division (/), there are operators for modulo (%) and
exponentiation (7). Arithmetic operators require numeric operands.

Note

Operations on integers produce integers; fractions are truncated, so 8/3 produces 2. If
either operand is a real, the other is converted to real and the result is real, so 8.0/3 is
2.66666...

As a general rule in Unicon, arguments to numeric operators and functions are auto-
matically converted to numbers if possible, and a run-time error occurs otherwise. The
built-in functions integer(x) and real(x) provide an explicit conversion mechanism that fails
if x cannot be converted to numeric value, allowing a program to check values without
resulting in a run-time error.

In addition to the operators, built-in functions support several common numeric op-
erations. The sqgrt(x) function produces the square root of x, and exp(x) raises e to the x
power. The value of pi (3.141...) is available in keyword &pi, the Golden Ratio (1.618...) is
available in &phi, and e (2.718...) is available in &e. The log(x) function produces the nat-
ural log of x. The common trigonometric functions, such as sin() and cos() take their angle
arguments in radian units. The min(x1, x2, ...) and max(x1, x2, ...) routines return minimum
and maximum values from any number of arguments. Appendix A gives a complete list of
built-in functions and operators.

Listing 1-1 shows a simple Unicon program that illustrates the use of variables in a
numeric computation. The line at the beginning is a comment for the human reader.
Comments begin with the # character and extend to the end of the line on which they
appear. The compiler ignores them.
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Listing 1-1 Mystery program

# What do | compute?
procedure main()
local i, j, old_r, r
i :=read()
j = read()
old_r :=r := min(i, j)
while r > 0 do {

odr:=r
if i >jthen
i=r=i%j
else
ji=r=j%i
}
write(old_r)

end

This example illustrates assignment; values are assigned to (or "stored in") variables
with the := operator. As you saw in the previous section, the function read() reads a line
from the input and returns its value. The modulo operator (%) is an important part of this
program: i % j is the remainder when i is divided by j.

While loops can use a reserved word do followed by an expression (often a compound
expression in curly braces). The expression following the do is executed once each time the
expression that controls the while succeeds. Inside the while loop, a conditional if-then-else
expression is used to select from two possible actions.

The names of the variables in this example are obscure, and there are no comments in
it other than the one at the top. Can you guess what this program does, without running
it? If you give up, try running it with a few pairs of positive numbers.

In addition to arithmetic operators, there are augmented assignment operators. To
increment the value in a variable by 2, these two statements are equivalent:

i +:=2
i=i+2

Augmented assignment works for most binary operators, not just arithmetic. The
expression i op:= expr means the same as i :=i op expr.

1.5 Strings and Csets

The non-numeric atomic types in Unicon are character sequences (strings) and character
sets (csets). Icon came from the domain of string processing, and from it Unicon inherits
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many sophisticated features for manipulating strings and performing pattern matching.
This section presents the simple and most common operations. More advanced operations
and examples using strings and csets are given in Chapter 4.

String literals are enclosed in double quotes, as in "this is a string", while cset literals
are enclosed in single quotes, as in 'aeiou’. Although strings and csets are composed of
characters, there is no character type; a string (or cset) consisting of a single character is
used instead.

Current implementations of Unicon use eight-bit characters, allowing strings and csets
to be composed from 256 unique characters. ASCII representation is used for the lower 128
characters, except on EBCDIC systems. The appearance of non-ASCII values is platform
dependent. Like integers, strings can be arbitrarily large, constrained only by the amount
of memory you have on your system.

Several operators take string arguments. The *s operator gives the length of string s.
The expression s1||s2 produces a string consisting of the characters in s1 followed by s2.
The subscript operator s[i] produces a one-letter substring of s at the ith position. Indices
are counted starting from position 1. If i is nonpositive, it is from the end of the string, for
example s[-2] is the second to the last character in the string.

Csets support set operators. cl++c2 produces a cset that is the union of ¢1 and c2.
The expression c1**c2 is the intersection, while c1--c2 is the difference. In addition, several
keywords are commonly used csets. The keywords &letters, &lcase, and &ucase denote the
alphabetic characters, lower case characters a-z, and upper case characters A-Z, respec-
tively, while &digits is the set from 0-9, &ascii is the lower 128 characters, and &cset is the
set of all (256, on most implementations) characters.

Many built-in functions operate on strings and csets. Some of the simple string functions
are reverse(x), which produces the reverse of a string (or list) x, and trim(s,c), which produces
a substring of s that does not end with any character in cset c.

Functions and operators that require string arguments convert numeric values to strings
automatically, and halt execution with a run-time error if given a value that cannot be
converted to a string.

1.6 Goal-directed Evaluation

So far, the examples of how expressions are evaluated have included nothing you wouldn’t
find in ordinary programming languages. It is time to push past the ordinary. In most
conventional languages, each expression always computes ezactly one result. If no valid
result is possible, a sentinel value such as -1, NULL, EOF (end-of-file) or INF (infinity) is
returned instead. This means that the program must check the return value for this con-
dition. For example, while reading integers from the input and performing some operation
on them you might do something like this:

while (i := read()) "= -1 do
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process(i)

This will work, of course, except when you really need to use -1 as a value! It is
somewhat cumbersome, however, even when a sentinel value is not a problem. Unicon
provides a much nicer way to write this type of code, developed originally in the Icon
language. In Unicon, expressions are goal-directed. This means that every expression when
evaluated has a goal of producing results for the surrounding expression. If an expression
succeeds in producing a result, the surrounding expression executes as intended, but if an
expression cannot produce a result, it is said to fail and the surrounding expression cannot
be performed and in turn fails.

Now take a look at that loop again. If it weren’t for the termination condition, you
would not need the intermediate variable i. If you would like to say:

process(read())

your wishes are answered by Unicon; you can indeed write your program like this. The
expression read() tries to produce a value by reading the input. When it is successful,
process() is called with the value; but when read() cannot get any more values, that is,
at the end of the file, it fails. This failure propagates to the surrounding expression and
process() is not called either. Here is the clincher: control expressions like if and while don’t
check for Boolean (true/false) values, they check for success! So our loop becomes

while process(read())

The do clause of a while loop is optional; in this case, the condition does everything we
need, and no do clause is necessary.
Consider the if statement that was used in the earlier arithmetic example:

if i >jthen ...

Comparison operators such as > succeed or fail depending on the values of the operands.
This leads to another question: if an expression like i < 3 succeeds, what value should it
produce? No "true" value is needed, because any result other than failure is interpreted as
"true." This allows the operator to return a useful value instead! The comparison operators
produce the value of their right operand when they succeed. You can write conditions like

if 3<i<7then ...

that appear routinely in math classes. Other programming languages only dream about
being this elegant. First, Unicon computes 3 <i. If that is true, it returns the value i, which
is now checked with 7. This expression in fact does exactly what you’d expect. It checks
to see that the value of i is between 3 and 7. (Also, notice that if the first comparison fails,
the second one will not be evaluated.)
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1.7 Fallible Expressions

Because some expressions in Unicon can fail to produce a result, you should learn to
recognize such expressions on sight. These fallible expressions control the flow of execution
through any piece of Unicon code you see. When failure is expected it is elegant. When
it is unexpected in your program code, it can be disastrous, causing incorrect output that
you may not notice or, if you are lucky, the program may terminate with a run-time error.

Some fallible expressions fail when they cannot perform the required computation; oth-
ers are predicates whose purpose is to fail if a condition is not satisfied. The subscript and
sectioning operators are examples of the first category. The expression x[i] is a subscript
operator that selects element i out of some string or structure x. It fails if the index i is out
of range. Similarly, the sectioning operator x[i:j] fails if either i or j are out of range.

The read() function is illustrative of a large number of built-in functions that can fail.
A call to read() fails at the end of a file. You can easily write procedures that behave
similarly, failing when they cannot perform the computation that is asked. Unfortunately,
for an arbitrary procedure call p(), you can’t tell if it is fallible without studying its source
code or reference documentation. The safest thing is to expect any procedure call is fallible
and check whether it failed, unless you know it is not fallible or its failure doesn’t matter.
Following this advice may avoid many errors and save you lots of time. In this book we
will be careful to point out fallible expressions when we introduce them.

The less than operator < is a typical predicate operator, one that either fails or produces
exactly one result. The unary predicates /x and \x test a single operand, succeeding and
producing the operand if it is null, or non-null, respectively. The following binary predicates
compare two operands. The next section presents some additional, more complex fallible

expressions.
< <= > >= = "= numeric comparison operators
<< <<= >> >>= == == lexical (alphabetic) comparison

=== === reference comparison

1.8 Generators

So far we have seen that an expression can produce no result (failure) or one result (success).
In general, an expression can produce any number of results: 0, 1, or many. Expressions
that can produce more than one result are called generators. Consider the task of searching
for a substring within a string:

find("lu", "Honolulu")

In most languages, this would return one of the substring matches, usually the first
position at which the substring is found. In Unicon, this expression is a generator, and
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can produce all the positions where the substring occurs. If the surrounding expression
only needs one value, as in the case of an if test or an assignment, only the first value of a
generator is produced. If a generator is part of a more complex expression, then the return
values are produced in sequence until the whole expression produces a value.

Let us look at this example:

3 < find("or", "horror")

The first value produced by find() is 2, which causes the < operation to fail. Execution
then resumes the call to find(), which produces a 5 as its next value, and the expression
succeeds. The value of the expression is the first position of the substring greater than 3.

The most obvious generator is the alternation operator |. The expression

expr1 | expr2

produces its left-hand side followed by its right-hand side, if needed by the surrounding
expression. This can perform many computations quite compactly. For example,

x = (35)

checks to see if the value of x is 3 or 5. More complex expressions follow logically:
(x]y)=(315)

checks to see if either x or y has the value 3 or 5. It is the Unicon equivalent of C’s
(x==3)[| (x==5) || (y ==3) || (y == )

In understanding Unicon code, it helps if you identify the generators, if there are any. In
addition to the alternation operator | and the function find(), there are a few other generators
in Icon’s built in repertoire of operators and functions. We mention them briefly here, so
you can be on the lookout for them when reading code examples.

The expression itoj is a generator that produces all the values between i and j. The
expression ito j by k works similarly, incrementing each result by k; i, j, and k must all be
integer or real numbers, and k must be non-zero. The expression itoj is equivalent to i
tojby 1. The unary ! operator is a generator that produces the elements of its argument.
This works on every type where it makes sense. Applied to a string, it produces all its
characters (in order). Sets, tables, lists, or records produce the members of the structure.

Generators get resumed for more results as needed in order for the surrounding ex-
pression to succeed, and this may propagate through many levels of nested enclosing ex-
pressions. However, special expressions called bounded expressions will never resume their
generator subexpressions. For example, the conditional expressions used in if and while are
never resumed if they succeed; if they produce a result the then-branch or the loop body
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is executed, and if that code fails, it does not cause generators in the conditional to be
resumed. Those bounded conditional expressions are re-evaluated starting from scratch if
execution comes their way again. Another popular bounded expression is the semi-colon
operator. The expression expr1 ; expr2 evaluates the two expressions in order, and bounds
the first expression, so you don’t have to worry about backtracking into it if the second
expression fails.

1.9 Iteration and Control Structures

You have already seen two control structures in Unicon: the if and the while loop, which
test for success. Unicon has several other control structures that vary in complexity and
usefulness. Unicon is expression-based, and all control structures are expressions that
can be used in surrounding expressions if desired. The big difference between control
structures and ordinary operators or procedures is that ordinary operators and procedures
don’t execute until their arguments have been evaluated and produced a result; they don’t
execute at all if an argument fails. In contrast, a control structure uses one of its arguments
to decide whether (or how many times) to evaluate its other arguments.

Since control structures are expressions, they may produce a result for a surrounding
expression. For example, the result of an if expression is the result of either its then part or
its else part, whichever one was selected. On the other hand, a loop executes until its test
fails, after which there is no meaningful result for it to produce; loops usually fail as far as
surrounding expressions are concerned.

The control structure every processes the entire sequence of values produced by a gen-
erator. The expression

every expri do expr2

evaluates expr2 for each result generated by expr1. This loop looks similar enough to a while
loop to confuse people at first. The difference is that a while loop re-evaluates expr1 from
scratch after each iteration of expr2, but every resumes expr1 for an additional result where
it left off the last time through the loop. Using a generator to control a while loop makes
no sense; the generator will restart each iteration, which may give you an infinite loop.
Similarly, not using a generator to control an every loop also makes no sense; if expr? is not
a generator the loop body executes at most one time.

The classic example of every is a loop that generates the number sequence from a to
expression, assigning the number to a variable that can be used in expr2. In many languages
these are called “for” loops. A for loop in Unicon is written like this:

every i := 110 10 do write(i)

Of course, every and to are not limited to this BASIC-style for loop. Generators are more
flexible; the for loop above looks clumsy when compared with the equivalent
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every write(1 to 10)

A generator operand to a non-generator forms a generator. The enclosing non-generator
(such as write()) is re-run each time the generator suspends and resumes.

Unicon’s every keyword generalizes the concept of iterators found in other languages.
Iterators are special control structures that walk through a collection of data. Instead of
being a special feature, in Unicon iterators are just one of many ways to utilize generators.
The sequence of results from an expression does not have to be stored in a structure to
iterate over them. The sequence of results does not even have to be finite; many generator
expressions produce an infinite sequence of results, as long as the surrounding expression
keeps asking them for more. Here is another example of how every expressions are more
flexible than for loops. The expression

every f(1 4916 | 25| 36)

executes the function f several times, passing the first few square numbers as parameters.
A shorter equivalent that uses the power operator (°) is every f((1 to 6)2). An example in
the next section shows how to generalize this to work with all the squares.

The if, while, and every expressions are Unicon’s primary control structures. Several
other control structures are available that may be more useful in certain situations. The
loop

until expr1 do expr2
is while’s evil twin, executing expr2 as long as expr? fails; on the other hand
repeat expr

is an infinite loop, executing expr over and over.

There are also variations on the if expression introduced earlier for conditional execution.
First, the else branch is optional, so you can have an if expression that does nothing if the
condition is not satisfied. Second, there is a special control structure introduced for the
common situation in which several alternatives might be selected using a long sequence of
if ... elseif ... else if ... expressions. The case expression replaces these chains of if expressions
with the syntax:

case expr of {
branchi: expri
branch2: expr2

default: expr;

}
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When a case expression executes, the expr is evaluated, and compared to each branch
value until one that matches exactly is found, as in the binary equality operator ===. Branch
expressions can be generators, in which case every result from the branch is compared with
expr. The default branch may be omitted in case expressions for which no action is to be
taken if no branch is satisfied.

When we introduced the repeat loop, you probably were wondering how to exit from the
loop, since most applications do not run forever. One answer would be to call one of the
built-in functions that terminate the entire program when it is time to get out of the loop.
The exit(), stop(), and runerr() functions all serve this valuable purpose; their differences are
described in Appendix A.

A less drastic way to get out of any loop is to use the break expression:

break expr

This expression exits the nearest enclosing loop; expr is evaluated outside the loop and
treated as the value produced by executing the loop. This value is rarely used by the
surrounding expression, but the mechanism is very useful, since it allows you to chain
any number of breaks together, to exit several levels of loops simultaneously. The break
expression has a cousin called next that does not get out of a loop, but instead skips the
rest of the current iteration of a loop and begins the next iteration of the loop.

1.10 Procedures

Procedures are a basic building block in most languages. Here is an example of an ordinary
procedure. This one computes a simple polynomial, ax? + bx + c.

procedure poly(x,a,b,c)
returna*x2+b*x+c
end

Parameters

Procedure parameters are passed by value except for structured data types, which are
passed by reference. This means that when you pass in a string, number, or cset value,
the procedure gets a copy of that value; any changes the procedure makes to its copy will
not be reflected in the calling procedure. On the other hand, structures that contain other
values, such as lists, tables, records, and sets are not copied. The procedure being called
gets a handle to the original value, and any changes it makes to the value will be visible to
the calling procedure. Structure types are described in the next chapter.

When you call a procedure with too many parameters, the extras are discarded. This
feature is valuable for prototyping but can be dangerous if you aren’t careful! Similarly,
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if you call a procedure with too few parameters, the remaining variables are assigned the
null value, &null. The null value is also passed as a parameter if you omit a parameter.

Now it is time to describe the unary operators \ and /. These operators test the expres-
sion against the null value. The expression /x succeeds and returns x if the value is the null
value. This can be used to assign default values to procedure arguments: Any arguments
that have a null value can be tested for and assigned a value. Here’s an example:

procedure succ(x, i)

fi=1
return X + i
end

If this procedure is called as succ(10), the missing second parameter, i, is assigned the
null value. The forward slash operator then tests i against the null value, which succeeds;
therefore the value 1 is assigned to i.

The backward slash checks if its argument is non-null. For example, this will write the
value of x if it has a non-null value:

write("The value of x is ", \x)

If x does in fact have the null value, then \x will fail, which will mean that the write()
procedure will not be called. If it helps you to not get these two mixed up, a slash pushes
its operand "up" for non-null, and "down" for a null value.

The procedure succ() shows one way to specify a default value for a parameter. The
built-in functions use such default values systematically to reduce the number of parameters
needed; consistent defaults for entire families of functions make them easy to remember.
Another key aspect of the built-in operations is implicit type conversion. Arguments to
built-in functions and operators are converted as needed.

Defaulting and type conversion are so common and so valuable in Unicon that they
have their own syntax. Parameter names may optionally be followed by a coercion function
(usually the name of a built in type) and/or a default value, separated by colons. These
constructs are especially useful in enforcing the public interfaces of library routines that
will be used by many people.

procedure succ(x:integer, i:integer:1)
end

This parameter declaration is a more concise equivalent of

procedure succ(x, i)

x := integer(x) | runerr(101, x)

/i :=1]i:=integer(i) | runerr(101, i)
end
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Variables and scopes

Variable names used as parameters are fundamentally different from procedure names. The
scope of parameters is limited to the body of a single procedure, while procedure names
are visible to the entire program. Parameters and procedures are special forms of two basic
kinds of variables in Unicon: local variables and global variables.

The scope of global variables, including procedure names, consists of the entire program.
Their value is stored in memory for the entire execution of the program. There are two
kinds of local variables; both introduce names that are defined only within a particular
procedure. Regular local variables are created when a procedure is called, and destroyed
when a procedure fails or returns a result; a separate copy of regular local variables is
created for each call. Static local variables are global variables whose names are visible
only within a particular procedure; a single location in memory is shared by all calls to the
procedure, and the last value assigned in one call is remembered in the next call.

Variables do not have to be declared, and by default they are local. To get a global
variable, you have to declare it outside any procedure with a declaration like this:

global MyGilobal

Such a declaration can be before, after, or in between procedures within a program
source file, but cannot be inside a procedure body. Of course, another way to declare a
global variable is to define a procedure; this creates a global variable initialized with the
appropriate procedure value containing the procedure’s instructions.

Regular and static local variables may be declared at the top of a procedure body, after
the parameters and before the code starts, as in the following example:

procedure foo()
local x, y
static z

end

Each declared local variable name may be followed by a := and an initializer expression
that specifies the variable’s initial value. Without an initializer, variables start with the
value &null. Although you do not have to declare local variables, large programs, library
code or multi-person projects should declare all local variables. If you don’t, and some
other part of the code introduces a global variable by the same name as your undeclared
local, your variable will be interpreted as a reference to the global. To help avoid this
problem, the -u command line option to the compiler causes undeclared local variables to
produce a compilation error message.

A procedure body can begin with an initial clause, which executes only the first time the
procedure is called. The initial clause is mainly used to initialize static variables in ways
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that aren’t handled by initializers. For example, the following procedure returns the next
number in the Fibonacci sequence each time it is called, using static variables to remember
previous results in the sequence between calls.

procedure fib()
static x,y
local z
initial {
x:=0
y =1
return 1

}

Z:=X+Yy

Xi=y

yi=2z

return z
end

Writing your own generators

When a procedure returns a value, the procedure and its regular local variables cease to
exist. But there are expressions that don’t disappear when they produce a value: genera-
tors! You can create your own generators by writing procedures that use suspend instead
of return. suspend is different from return in that it saves the point of execution within the
procedure; if another value is required by the calling expression, the generator continues
execution from where it previously left off.

Here is a procedure to generate all the squares. Instead of using multiplication, it
uses addition to demonstrate generators! The code uses the fact that if we keep adding
successive odd numbers, we get the squares.

procedure squares()

odds =1
sum =0
repeat {

suspend sum
sum +:= odds
odds +:=2

}
end

To perform a computation on the squares, we can use it in an every statement:

every munge(squares())
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Warning

This is an infinite loop! (Do you know why? Whether munge() succeeds or fails, every
will always resume squares() for another result to try; squares() generates an infinite result
sequence.)

The fail expression makes the procedure fail. Control goes to the calling procedure, re-
turning no value, and the procedure call ceases to exist; it cannot be resumed. A procedure
also fails implicitly when control flows off the end of the procedure’s body.

Here is a procedure that produces all the non-blank characters of a string, but bails out
if the character # is reached:

procedure nonblank(s)
every ¢ = ls do {
if c == "#" then fail
if c "==""then suspend c

}

end

Recursion

A recursive procedure is one that calls itself, directly or indirectly. There are many cases
where it is the most natural way of solving the problem. Consider the famous "Towers of
Hanoi" problem. Legend has it that when the universe was created, a group of monks in
a temple in some remote place were presented with a problem. There are three diamond
needles, and on one of them is a stack of 64 golden disks all of different sizes, placed in
order with the largest one at the bottom and the smallest on top. All the disks are to be
moved to a different needle under the conditions that only one disk may be moved at a
time, and a larger disk can never be placed on a smaller disk. When the monks finish this
task, the universe will come to an end.

How can you move the n smallest disks? If n is 1, just move it. Since it’s the smallest,
this will not violate the condition. If n is greater than 1, here’s what we can do: first,
move the n-1 upper disks to the intermediate needle, then transfer the nth disk, then move
the n-1 upper disks to the destination needle. This whole procedure does not violate the
requirements either (satisfy yourself that such is the case).

Now write the procedure hanoi(n) that computes this algorithm. The first part is simple:
if you have one disk, just move it.

procedure hanoi(n, needle1:1, needle2:2)
if n = 1 then write("Move disk from ", needle1, " to ", needle2)

Otherwise, perform a recursive call with n-1. First, to find the spare needle we have:

other := 6 - needlel - needle?2
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Now move the n-1 disks from needle1 to other, move the biggest disk, and then move
the n-1 again. The needles are passed as additional parameters into the recursive calls.
They are always two distinct values out of the set {1, 2, 3}.

hanoi(n-1, needle1, other)
write("Move disk from ", needle1, " to ", needle2)
hanoi(n-1, other, needle2)

That’s it! You’re done. Listing 1-2 contains the complete program for you to try:
Listing 1-2 Towers of Hanoi

procedure main()
write("How many disks are on the towers of Hanoi?")
hanoi(read())
end
procedure hanoi(n:integer, needle1:1, needle2:2)
local other
if n = 1 then write("Move disk from ", needle, "to ", needle2)
else {
other := 6 - needle1 - needle2
hanoi(n-1, needle1, other)
write("Move disk from ", needle1, " to ", needle2)
hanoi(n-1, other, needle2)

}

end

Turn on tracing see how this program works. To enable tracing, compile your program
with a -t option, or assign the keyword &trace a non-zero number giving the depth of calls
to trace. Setting &trace to -1 will turn on tracing to an infinite depth.

To move n disks, 2™ - 1 individual disk movements will be required. If the monks move
one disk a second, it will take 2% - 1 seconds, or about 60 trillion years. Wikipedia has
listed the age of the universe at around 13.75 billion years. It seems unlikely that we need
worry about the monks finishing their task!

Summary
In this chapter you have learned:

e Unicon is an expression-based language organized as a set of procedures starting from
a procedure called main().

e Unicon has four atomic types: arbitrary precision integers, real numbers, arbitrary
length strings of characters, and character sets.
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There is no Boolean concept in Unicon; instead, control is driven by whether an
expression succeeds in producing a result or fails to do so. This eliminates the need
for most sentinel values, shortening many expressions.

Generator expressions can produce multiple results as needed by the surrounding
expression in order for it to produce results.

Procedure parameters are passed by value for atomic types, and by reference for all
other data types. Unicon features extensive argument defaults and automatic type
coercion throughout its built-in function and operator repertoire.

Unicon has two scope levels: global and local. Undeclared variables are implicitly
defined to be local.



Chapter 2

Structures

The examples in the previous chapter employed data types whose values are immutable.
For example, all operations that manipulate numbers and strings compute new values,
rather than modify existing values. This chapter presents structured types that organize
and store collections of arbitrary (and possibly mixed) types of values. When you complete
this chapter, you will understand how to use these types.

e Tables associate their elements with key values for rapid lookup.

e Lists offer efficient access by position as well as by stack or queue operations.

Records store values using a fixed number of named fields.

Sets support operations such as union and intersection on groups of elements.

Using structures to represent trees, graphs, and matrices.

There are several structure types that describe different basic relationships between values.
The philosophy of structures in Unicon is to provide built-in operators and functions for
common organization and access patterns - the flexible "super glue" that is needed by nearly
all applications. Their functionality is similar to the C++ Standard Template Library or
generic classes in other languages, but Unicon’s structure types are much simpler to learn
and use, and are well supported by the expression evaluation mechanism described in the
previous chapter.

All structure types in Icon share many aspects in common, such as the fact that struc-
tures are mutable. The values inside them may change. In that respect, structures are
similar to a collection of variables that are bundled together. In many cases, Unicon’s
structure types are almost interchangeable! Operators like subscripts and built-in functions
such as insert() are defined consistently for many types. Code that relies on such operators
is polymorphic: it may be used with multiple structure types in an interchangeable way.

For both the structures described in this chapter and the strings described in the next
chapter, be aware that Unicon performs automatic storage management, also known as

29
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garbage collection. If you have used a language like C or C++-, you know that one of the
biggest headaches in writing programs in these languages is tracking down bugs caused
by memory allocation, especially dynamic heap memory allocation. Unicon transparently
takes care of those issues for you.

Another big source of bugs in languages like C and C-++ are pointers, values that
contain raw memory addresses. Used properly, pointers are powerful and efficient. The
problem is that they are easy to use incorrectly by accident; this is true for students and
practicing software engineers alike. It is easy in C to point at something that is off-limits,
or to trash some data through a pointer of the wrong type.

Unicon has no pointer types, but all structure values implicitly use pointer semantics.
A reference is a pointer for which type information is maintained and safety is strictly
enforced. All structure values are references to data that is allocated elsewhere, in a
memory region known as the heap. You can think of a reference as a safe pointer: the only
operations it supports are copying the pointer, or dereferencing it using an operation that
is defined for its type.

Assigning a structure to a variable, or passing it as a parameter, gives that variable
or parameter a copy of the reference to the structure but does not make a copy of the
structure. If you want a copy of a structure, you call the function copy(x), which makes a
“shallow” copy of a single table, list, record, or set. If that structure contains references to
other structures as its elements, those substructures are not copied by copy(). To copy a
“deep” structure (lists of lists, tables of records, etc.) you can use the procedure deepcopy()
that is given as an example later in this chapter.

2.1 Tables

Tables are unordered collections of values that are accessed using associated keys. They
are Unicon’s most versatile type. All of the other structure types can be viewed as special
cases of tables, optimized for performance on common operations. Most operations that
are defined for tables are defined for other structure types as well.

Subscripts are used for the primary operations of associating keys with values that are
inserted into the table, and then using keys to look up objects in the table. The table()
function creates a new empty table. For example, the lines

T :=table()
T["hello"] := "goodbye"

create a new table, and associate the key "hello" with the value "goodbye". The table() function
takes one optional argument: the default value to return when lookup fails. The default
value of the default value is &null, so after the above example, write(T["goodbye"]) would write
an empty line, since write() treats a null argument the same as an empty string, and write()
always writes a newline. Assigning a value to a key that is not in the table inserts a value
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into the table. This occurs in the second line of the example above, so write(T["hello"]) writes
out "goodbye".

Subscripts are the primary operation on tables, but there are several other useful oper-
ations. The insert(T, ky, Xy, Kz, Xp, ...) function adds new key-value pairs to T. The delete(T, k;,
ko, ...) function deletes values from T that correspond to the supplied keys. Icon’s unary *
operator produces the size of its argument; for a table, *T is the number of key-value pairs
in the table. Unary ! generates elements from a collection; for a table, IT generates the
values stored in the table. Unary ? is the random operator; for a table, ?T produces a
random value stored in the table. Both unary ! and ? produce values stored in a table,
not the keys used to lookup values.

Function member(T, k) succeeds if k is a key in T and fails otherwise. Function key(T)
generates the keys that have associated values. The following example prints word counts
for the input (assuming getword() generates words of interest):

wordcount := table(0)
every word := getword() do wordcount[word] +:= 1
every word := key(wordcount) do write(word, " ", wordcount[word])

The default value for the table is 0. When a new word is inserted, the default value
gets incremented and the new value (that is, 1) is stored with the new word. Tables grow
automatically as new elements are inserted.

Tables are closely related to the set data type (discussed later in this chapter). The
keys of a table are a set; the associated values accessed via the subscript operator are
sort, of a bonus data payload. In any case, tables behave in certain set-like ways; when
their elements are generated by the ! operator, they come out in a pseudo random order.
Like sets, and csets in the previous chapter, the operators T1++T2, T1**T2, and T1--T2 are
the union, intersection, and difference of the tables T1 and T2 based on their keys. These
operators construct new tables and do not modify their operands. In union and intersection,
when duplicate table keys occur in the two operands, the associated values from the left
operand are what goes in the new table that holds the result.

2.2 Lists

Lists are dynamically sized ordered collections of values. They are accessed by subscripts,
with indexes starting at 1. You can also insert or remove elements from the beginning,
middle, or end of the list. Lists take the place of arrays, stacks, queues, and deques found
in other languages and data structures textbooks.

There are three ways to explicitly construct a list. In the most generic form, a list is
created by calling the function list(), which takes optional parameters for the list’s initial
size and the initial value given to all elements of the list. The default size is 0 and the
default initial value is &null.
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The second form of list constructor is when you create a list by enclosing a comma-
separated sequence of 0 or more values in square brackets. For example

L :=["linux", 2.0, "unix"]

creates a list with three elements, a string, a real number, and another string.
A third form of list constructor, called comprehension, looks like the previous form,
except the square brackets contain adjacent colon characters and have an expression inside.

L :=[: expr ]

In a comprehension the constructed list’s initial values are obtained by fully evaluating
an expression and placing all of its results into the list, in order. The expression fails if
expr fails; if you wanted that to be an empty list you may need to append |[].

Lists are dynamic. Lists grow or shrink as a result of stack and queue operations. The
push() and pop() functions add and remove elements from the front of a list, while put() and
pull() add and remove elements at the end of the list. In addition, insert(L, i, x) inserts x at
position i, and delete(L, i) deletes the element at position i. The expression [] is another way
to create an empty list; it is equivalent to calling list() with no arguments. The previous list
could have been constructed one element at a time with the following code. put() accepts a
variable number of arquments.

L:=[]

put(L, "linux")
put(L, 2.0)
put(L, "unix")

Elements of the list can be obtained either through list manipulation functions or by
subscripting. Given the list L above, in the following code the first line writes "unix" while
the second line moves the first element to the end of the list.

write(L[3])
put(L, pop(L))

There is no restriction on the kinds of values that may be stored in a list. For example,
the elements of a list can themselves be lists. You can create lists like

L:=[[1,2,3],[4,5,6],[7, 8, 9]

and index them with multiple subscripts. L[2][3] is equivalent to L[2,3] and yields the value
6 in this example.

Lists also support several common operators. The operator *L produces the size of list
L. The operators IL and ?L generate the elements of L in sequence, and produce a single
random element of L, respectively. The following procedure uses the unary ! operator to
sum the values in list L, which must be numbers.
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procedure sum(L)
total := 0
every total +:= IL
return total

end

Comparing the two, lists are like tables with boring keys: the positive integers starting
from 1. Function member(L, k) succeeds if 0 < integer(k) <= *L, while key(L) is equivalent to the
expression 1to *L. List indexes are contiguous, unlike table keys, and so lists can support a
slice operator to produce a sublist, given a pair of indexes to mark the bounds. The L[]
expression produces a new list that contains a copy of the elements in L between positions
i and j. The L[i+:]] expression is equivalent to L[i:i+j]. List concatenation is another valuable
operator. The L1 ||| L2 expression produces a new list whose elements are a copy of the
elements in L1 followed by a copy of the elements in L2.

2.3 Records

A record is a fixed-sized, ordered collection of values whose elements are accessed using
user-defined named fields. A record is declared as a global name that introduces a new
type with a corresponding constructor procedure, as in the following example. The field
names are a comma-separated list of identifiers enclosed in parentheses.

record complex(re, im)

Record instances are created using a constructor procedure with the name of the record
type. The fields of an instance are accessed by name using dot notation or string subscript,
or by integer index subscript. You can use records as records, or as special tables or lists
with a constant size and fixed set of keys.

member(R,s) tests whether s is a field in R; key(R) generates R’s field names. Functions
like insert(), or push() are not supported on records, since they change the size of the structure
that they modify. Here is a demonstration of record operations.

a := complex(0, 0)

b := complex(1, -1)

if a.re = b.re then write("not likely")

if a["re"] = a[2] then write("a.re and a.im are equal")

Unicon provides a mechanism for constructing new record types on the fly, described in
Chapter 6, as well as the ability to declare classes, which are new data types that form the
building blocks for object-oriented programs, described starting in Chapter 9. Records are
closely related to classes and objects: they can be considered to be an optimized special
case of objects that have no methods.
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2.4 Sets

A set is an unordered collection of values with the uniqueness property: an element can
only be present in a set once. The function set(x...) creates a set containing its arguments.
For the sake of backward compatibility with Icon, list arguments to set() are not inserted;
instead, the list elements are inserted. As with other structures, the elements may be of
any type, and may be mixed. For example, the assignment

S := set("rock lobster", 'B’, 52)

creates a set with three members: a string, a cset, and an integer. The equivalent set is
produced by set(["rock lobster","B", 52]). To place a list in a set set constructor, wrap it in
another list, as in set([L]), or insert the list into the set after it is created. Because the set
constructor function initializes directly from a list argument, “set comprehension” follows
trivially from list comprehension. For example, set([: 2to 20 by 2 :]) creates a set containing
the even integers from two to twenty.

The functions member(), insert(), and delete() do what their names suggest. As for csets in
the previous chapter, S1++S2, S1**S2, and S1--S2 are the union, intersection, and difference
of sets S1 and S2. Set operators construct new sets and do not modify their operands.
Because a set can contain any value, it can contain a reference to itself. This is one of several
differences between Unicon sets, which are mutable structures, and mathematical sets.
Another difference is that Unicon sets have a finite number of elements, while mathematical
sets can be infinite in size.

As a short example, consider the following program, called unig, that filters duplicate
lines in its standard input as it writes to its standard output. Unlike the UNIX utility of
this name, our version does not require the duplicate lines to be adjacent.

procedure main()
S = set()
while line := read() do
if not member(S, line) then {
insert(S, line)
write(line)

}

end

Sets are closely related to the table data type. They are very similar to an optimized
special case of tables that map all keys to the value &null. Unlike tables, sets have no default
value and do not support the subscript operator.

2.5 Using Structures

Structures can hold other structures, allowing you to organize information in whatever way
best fits your application. Building complex structures such as a table of lists, or a list
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of records that contain sets, requires no special trickery or new syntax. Examples of how
such structures are accessed and traversed will get you started. Recursion is often involved
in operations on complex structures, so it plays a prominent role in the examples. The
concept of recursion was discussed in Chapter 1.

A Deep Copy

The built-in function copy(x) makes a one-level copy of structure values. For a multi-level
structure, you need to call copy() for each substructure if the new structure must not point
into the old structure. This is a natural task for a recursive function.

procedure deepcopy(x)

local y

case type(x) of {

"table"|"list"|"record": {
y 1= copy(x)
every k := key(x) do y[Kk] := deepcopy(x[K])
}

"set": {
y = set()
every insert(y, deepcopy(!x))

}

default: return x

}

returny
end

This version of deepcopy() works for arbitrarily deep tree structures, but the program
execution will crash if deepcopy() is called on a structure containing cycles. It also does not
copy directed acyclic graphs correctly. In both cases the problem is one of not noticing
when you have already copied a structure, and copying it again. The Icon Program Library
has a deep copy procedure that handles this problem, and we present the general technique
that is used to solve it in the next section.

Representing Trees and Graphs

Since there is no restriction on the types of values in a list, they can be other lists too.
Here is an example of how a tree may be implemented with records and lists:

record node(name, links)

barney := node("Barney", list())
betty := node("Betty", list())
bambam := node("Bam-Bam", [barney, betty])
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The structure created by these expressions is depicted in Figure 2-1. The list of links
at each node allows trees with an arbitrary number of children at the cost of extra memory
and indirection in the tree traversals. The same representation works for arbitrary graphs.

Figure 2-1: A Record Containing a List of Two Records

To find every node related to variable bambam, follow all the links reachable starting
from bambam. Here is a procedure that performs this task.

procedure print_relatives(n)
local i
static relatives
initial relatives := set()
every i :=n| In.links do {
if not member(relatives, i.name) then {
write(i.name)
insert(relatives, i.name)
print_relatives(i)
}
}

end
Calling print _relatives(bambam) will print

Bam-Bam
Barney
Betty

Static variables and the initial clause are explained in Chapter 1. Can you guess what
purpose static variable relatives serves? For a proper tree structure, it is not needed at all,
but for more general data structures such as directed graphs this static variable is very
important! One defect of this procedure is that there is no way to reset the static variable
and call print_relatives() starting from scratch. How would you remove this defect?
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The n-Queens Example

The 8-Queens problem is a classic backtracking problem. The goal is to place eight queens
on a chessboard so that none of the queens attack any other. Here is a solution to a more
general form of the problem, that of placing n queens on an n x n board. The solution we
present is by Steve Wampler, and it is in the Icon Program Library.

An array of size n stores the solutions, with each element representing a column. The
values in the array are integers specifying the row in each column that has the queen. (Since
the queens cannot attack each other, each column must contain exactly one queen.) The
problem size n and the array are declared global so that all procedures can see them; this
allows the program to avoid passing these variables in to every procedure call. Use globals
sparingly, and only where they are appropriate, as is the case here.

link options

global solution, n
procedure main(args)
local i, opts

The program starts by handling command-line arguments. In Unicon programs, main() is
called with a single parameter that is a list of strings whose elements are the command-line
arguments of the program.

The n-queens program recognizes only one thing on the command line: the option -n
followed by an integer specifies the size of board to use. Thus the command line queens -n 9
will generate solutions on a 9x9 board. The default value of nis 6. The options() procedure
is an Icon Program Library procedure described in Appendix B; it removes options from the
command line and places them in a table whose keys are option letters such as "n". Library
procedures such as options() are incorporated into a program using the link declaration, as in
the link options that begins the code fragment above. A link declaration adds the procedures,
global variables, and record types in the named module (in this case, procedure options()
came from a file options.icn) to the program.

opts := options(args,"n+")
n :=\opts['n"] | 6
if n <= 0 then stop("-n needs a positive numeric parameter")

The value n gives the size for the solution array and also appears in a banner:

solution := list(n) # a list of column solutions

write(n,"-Queens:")

every q(1) # start by placing queen in first column
end
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Now comes the meat of the program, the procedure g(c). It tries to place a queen in
column c and then calls itself recursively to place queens in the column to the right. The g(c)
procedure uses three arrays: rows, up, and down. They are declared to be static, meaning
that their values will be preserved between executions of the procedure, and all instances
of the procedure will share the same lists. Since each row must have exactly one queen,
the rows array helps to make sure any queen that is placed is not on a row that already
has a queen. The other two arrays handle the diagonals: up is an array (of size 2n-1) of
the upward slanting diagonals, and down is an array for the downward slanting diagonals.
Two queens in positions (r 1, ¢ 1) and (r_2, ¢_2) are on the same "up" diagonal if
n+r_ 1-c_1 = n+r_ 2-c_2 and they are on the same "down" diagonal if r 1+c 1-1 =
r_2+c_2-1. Figure 2-2 shows some of the “up” and “down” diagonals.

1 2 3 4 5 6 7 8
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Figure 2-2: Up and Down Diagonals in the n-Queens Problem

#
# g(c) - place a queen in column c.
#
procedure g(c)
local r
static up, down, rows
initial {
up := list(2*n-1,0)
down := list(2*n-1,0)
rows := list(n,0)

}
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The next expression in q() is an every loop that tries all possible values for the queen in
row c¢. The variable r steps through rows 1 to 8. For any row at which the program places
a queen, it must ensure that

1. rows]r] is zero, that is, no other column has a queen in row r,

2. up[n+r-c] is 0, that is, there is not already a queen in the "up" diagonal, and

3. down[r+c-1] is 0, that is, there is not already a queen in the down diagonal.

If these conditions are met, then it is OK to place a queen by assigning a 1 to all those
arrays in the appropriate position:

every 0 = rows[r := 1 to n] = up[n+r-c] = down[r+c-1] &
rows[r] <- up[n+r-c] <- down[r+c-1] <- 1 do {

For assignment, instead of := this expression uses the reversible assignment operator <-.
This assigns a value just like in conventional assignment, but it remembers the old value;
if it is ever resumed, it restores the old value and fails. This causes the appropriate entries
in the row, up, and down arrays will be reinitialized between iterations.

When the every loop found a good placement for this column, either the program is
done (if this was the last column) or else it is time to try to place a queen in the next row:

solution[c] :=r # record placement.
if ¢ = n then show()
else q(c + 1) # try to place next queen.

}

end

That’s it! The rest of the program just prints out any solutions that were found.

Printing the chess board is similar to other reports you might write that need to create
horizontal lines for tables. The repl() function is handy for such situations. The repl(s, i)
function returns i "replicas" of string s concatenated together. The show() function uses it
to create the chesshoard.

#
# show the solution on a chess board.
#
procedure show()
static count, line, border
initial {
count =0
line :=repl("| ",n) || "|"
border := repl("----",n) || "-"
}
write("solution: ", count+:=1, "\n ", border)
every line[4*(!solution - 1) + 3] <- "Q" do {
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write(" ", line, “\n ", border)

}

write()
end

2.6 Summary

Unicon’s structures are better than sliced bread. To be fair, this is because Icon’s inventors
really got things right. These structures are the foundations of complex algorithms and the
glue that builds sophisticated data models. They are every computer scientists’ buzzword-
compliant best friends: polymorphic, heterogeneous, implicitly referenced, cycle-capable,
dynamically represented, and automatically reclaimed. They provide a direct implemen-
tation of the common information associations used in object-oriented design. But most
important of all, they are extremely simple to learn and use.



Chapter 3

String Processing

In addition to its groundbreaking expression evaluation, by combining compelling string
processing features from its ancestors Icon and SNOBOL4, Unicon provides some of the
most flexible and readable built-in string processing facilities found in any language. If you
are used to string processing in a mainstream language, hold on to your hat: things are
about to get interesting.

In this chapter you will learn

e How to manipulate strings and sets of characters

e the string scanning control structure, used to match patterns directly in code

the pattern type, used to match patterns constructed as data

How to write custom pattern matching primitives, with backtracking

techniques for matching regular expressions and context free grammars

3.1 The String and Cset Types

All mainstream programming languages have a string type, but the details of Unicon’s
string type set it apart from other languages. And almost no other mainstream languages
feature a data type dedicated to character sets, which are quite useful.

3.1.1 String Indexes

You have already seen string literals delimited by double quotes, and the most common op-
erators that work on strings: the size of a string is given by the unary * operator, substrings
can be picked out with square-bracketed indexes, and two strings can be concatenated with
the || operator. It is time for a deeper explanation of the meaning of indexes as they are
used with strings and lists.

41
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Indexes in a string refer to the positions between characters. The positions are numbered
starting from 1. The index O refers to the position after the last character in the string,
and negative indices count from the right side of the string:

-13-12-11-10-% -§ -V -6 -5 -4 -3 -2 -1 10

hiell [l |of|,| wlolr|l|d]|!
1 2 2 4 5 & 7 8B 9 10 11 12 13 14

Figure 3-1: Positive and Negative String Indices

The expression s[i:j] refers to the substring of s that lies between positions i and j. If
either i or j is not a valid index into s, the expression fails. The expression s[k] is short for
s[k:k+1] and refers to a single character at position k. The expression s[k+:n] is the substring
of length n starting at position k. If s is the string "hello, world!" then the expressions

s[7] :=" puny "
s[13:18] := "earthlings"

change s into "hello, puny earthlings!", illustrating the ease with which insertions and substi-
tutions are made. The first assignment changes the string to "hello, puny world!", replacing a
single character with six characters and thereby increasing its length. The second assign-
ment operates on the modified string, replacing "world" with "earthlings".

Strings are values, just like numbers; if you copy a string and then work on the copy,
the original will be left unchanged:

s := "string1"
new s :=$s

new_s[7] :="2"

Now the value of new_s is "string2" but s is left unchanged.
As mentioned in Chapter 1, strings can be compared with string comparison operators
such as ==.

if line[1] == "#" then ...

If you find you are writing many such tests, the string processing you are doing may be
more cleanly handled using the string scanning facilities, described below. But first, here
is some more detail on the character set data type, which is used in many of the string
scanning functions.
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3.1.2 Character Sets

A cset is a set of characters. It has the usual properties of sets: order is not significant, and
a character can only occur once in a cset. A cset literal is represented with single quotes:

c :="aeiou’

Since characters can only occur once in a cset, duplicates in a cset literal are ignored;
for example, ’aaiiee’ is equivalent to 'aie’. Strings can be converted to csets and vice versa.
Since csets do not contain duplicates, when a string is converted to a cset, all the duplicates
are removed.

Therefore to see if a string is composed of all the vowels and no consonants:

if cset(s) == 'aeiou’ then ...
Or, to find the number of distinct characters in a string:
n = *cset(s)

The ! operator generates the members of a cset in sorted order; this is also useful in
some situations.

3.1.3 Character Escapes

Both strings and csets rely on the backslash as an escape character within string literals.
A backslash followed by an escape code of one or more characters specifies a non-printable
or control character. Escape codes may be specified by a numeric value given in hex or
octal format - for example, "x41". Alternatively, any control character may be specified
with an escape code consisting of the caret () followed by the alphabetic letter of the
control character. A cset containing control-C, control-D, and control-Z could be specified
as \"c\"d\"z’. For the most common character escapes, a single-letter code is defined, such
as "\t" for the tab character, or "n" for the newline. For all other characters, the character
following the backslash is the character; this is how quotes or backslashes are included in
literals. The escape codes are summarized in Table 3-1.

Table 3-1
Escape Codes and Characters

Code | Character Code | Character Code | Character Code | Character
\b | backspace \d | delete \e | escape \f | form feed
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\l line feed \n | newline \r | carriage return \t | tab
\v | vertical tab | \’ quote \" double quote \\ | backslash
\ooo | octal \xhh | hexadecimal | \"z | Control-z

3.2 String Scanning

Strings are ordered sequences of symbols. A string’s vital information is conveyed both in
its individual elements and in the number and order in which the symbols appear. There
is a fundamental duality between writing the code to analyze a string, and writing down
some data that describes or abstracts that string. The same duality is seen in Unicon’s
string scanning control structure described in this section, and the pattern data type used
in matching operators, which is described in this next section.

Unicon’s main building block for string analysis is a control structure called string
scanning. A scanning environment consists of a string subject and an integer position
within the subject at which scanning is to be performed. These values are held by the
keyword variables &subject and &pos. Scanning environments are created by an expression
of the form

s ? expr

The binary ? operator sets the subject to its left argument and initializes the position
to 1; then it executes the expression on the right side.

The expression usually has an interesting combination of various matching functions in
it. Matching functions change the position, and return the substring between the old and
new positions. For example: move(j) moves the position j places to the right and returns
the substring between the old and new position. This string will have exactly j characters
in it. When the position cannot move as directed, for example because there are less than
j characters to the right, move() fails. Here is a simple example:

text ? {
while move(1) do
write(move(1))

}

This code writes out every other character of the string in variable text.

Another function is tab(i), which sets the position &pos to its argument and returns the
substring that it passed over. So the expression tab(0) will return the substring from the
current position to the end of the string, and set the position to the end of the string.

Several string scanning functions examine a string and generate the interesting positions
in it. We have already seen find(), which looks for substrings. In addition to the other
parameters that define what the function looks for, these string functions end with three
optional parameters: a string to examine and two integers. These functions default their
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string parameter to &subject, the string being scanned. The two integer positions specify
where in the string the processing will be performed; they default to 1 and 0 (the entire
string), or &pos and 0 if the string defaulted to &subject. Here is a generator that produces
the words from the input:

procedure getword()
local wchar, line
wchar := &letters ++ &digits ++ '\’
while line := read() do
line ? while tab(upto(wchar)) do {
word := tab(many(wchar))
suspend word

}

end

Variable wchar is a cset of characters that are allowed in words, including apostrophe
(which is escaped) and hyphen characters. upto(c) returns the next position at which a
character from the cset ¢ occurs. The many(c) function returns the position after a sequence
of characters from c, if one or more of them occur at the current position. The expression
tab(upto(wchar)) advances the position to a character from wchar; then tab(many(wchar)) moves
the position to the end of the word and returns the word that is found. This is a generator,
so when it is resumed, it takes up execution from where it left off and continues to look for
words (reading the input as necessary).

Notice the first line: the cset wchar is the set union of the upper- and lowercase letters
(the value of the keyword &letters) and the digits (the keyword &digits). This cset union is
performed each time getword() is called, which is inefficient if getword() is called many times.
The procedure could instead calculate the value once and store it for all future calls to
getword().

Declaring the variable to be static will cause its value to persist across calls to the
procedure. Normal local variables are initialized to the null value each time a procedure is
entered. To do this, add these two lines to the beginning of the procedure:

static wchar
initial wchar := &letters ++ &digits ++ \’-’

The match(s) function takes a string argument and succeeds if s is found at the current
position in the subject. If it succeeds, it produces the position at the end of the matched
substring. This expression

if tab(match("-")) then sign := -1 else sign = 1

looks to see if there is a minus sign at the current position; if one is found, &pos is moved past
it and the variable sign is assigned a -1; otherwise, it gets a 1. The expression tab(match(s))
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occurs quite often in string scanning, so it is given a shortcut: =s. The section on pat-
tern matching later in this chapter will explain that this “unary equals” operator has an
additional, more powerful use.

The last two string scanning functions to round out Icon’s built-in repertoire are any(c)
and bal(c1,c2,c3). any(c) is similar to many(), but only tests a single character being scanned
to see if it is in cset c. The bal() function produces positions at which a character in ct
occurs, similar to upto(), with the added stipulation that the string up to those positions is
balanced with respect to characters in c2 and ¢3. A string is balanced if it has the same
number of characters from c2 as from ¢3 and there are at no point more c3 characters
present than c2 characters. The ¢1 argument defaults to &cset. Since c2 and ¢3 default to
'(and )", bal() defaults to find balanced parentheses.

The restriction that bal() only returns positions at which a character in ¢1 occurs is a
bit strange. Consider what you would need to do in order to write an expression that tells
whether a string s is balanced or not.

You might want to write it as s ? (bal() = *s+1) but bal() will never return that position.
Concatenating an extra character solves this problem:

procedure isbalanced(s)
return (s || " ") ? (bal() = *s+1)
end

If string s is very large, this solution is not cheap, since it creates a new copy of string
s. You might write a version of isbalanced() that doesn’t use the bal() function, and see if
you can make it run faster than this version. An example later in this chapter shows how
to use bal() in a more elegant manner.

File Completion

Consider the following gem, attributed to Jerry Nowlin and Bob Alexander. Suppose you
want to obtain the full name of a file, given only the first few letters of a filename and a
list of complete filenames. The following one line procedure does the trick:

procedure complete(prefix, filenames)
suspend match(prefix, p := lfilenames) & p
end

This procedure works fine for lists with just a few members and also for cases where
prefix is fairly large.
Backtracking

The matching functions we have seen so far, (tab() and move()), are actually generators.
That is, even though they only produce one value, they suspend instead of returning. If
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expression evaluation ever resumes one of these functions, they restore the old value of
&pos. This makes it easy to try alternative matches starting from the same position in the
string:

s ? (="0x" & tab(many(&digits ++ 'abcdefABCDEF))) |
tab(many(&digits))

This expression will match either a hexadecimal string in the format used by C or
a decimal integer. Suppose s contains the string "Oxy". The first part of the expression
succeeds and matches the "0x"; but then the expression tab(many(&digits ++ 'abcdef’)) fails;
this causes Unicon to resume the first tab(), which resets the position to the beginning of
the string and fails. Unicon then evaluates the expression tab(many(&digits)) which succeeds
(matching the string "0"); therefore the entire expression succeeds and leaves &pos at 2.

Warning

Be careful when using tab() or move() in a surrounding expression that can fail! The fact
that tab() and move() reset &pos upon expression failure causes confusion and bugs when it
happens accidentally.

Concordance Example

Listing 3-1 illustrates the above concepts and introduces a few more. Here is a program to
read a file, and generate a concordance that prints each word followed by a list of the lines
on which it occurs. Short words like "the" aren’t interesting, so the program only counts
words longer than three characters.

Listing 3-1 A simple concordance program

procedure main(args)
(*fargs = 1) | stop("Need a file!")
f ;= open(args[1]) | stop("Couldn’t open ", args[1])
wordlist := table()
lineno := 0

while line := map(read(f)) do {
lineno +:= 1
every word := getword(line) do
if *word > 3 then {

# if word isn’t in the table, set entry to empty list
/wordlist[word] := list()
put(wordlist[word], lineno)
}

}

L := sort(wordlist)
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every | ;= IL do {
writes(I[1], "\t")
linelist :=""
# Collect line numbers into a string
every linelist [|:= (N1[2] || ", ")
# trim the final ", "
write(linelist[1:-2])
}

end

procedure getword(s)
s ? while tab(upto(&letters)) do {
word = tab(many(&letters))
suspend word

}

end
If we run this program on this input:

Half a league, half a league,
Half a league onward,

All'in the valley of Death
Rode the six hundred.

the program writes this output:

death 3
half 1,2
hundred 4
league 1,1,2
onward 2
rode 4
valley 3

First, note that the main() procedure requires a command-line argument, the name of
a file to open. Also, we pass all the lines read through the function map(). This is a
function that takes three arguments, the first being the string to map; and the second and
third specifying how the string should be mapped on a character by character basis. The
defaults for the second and third arguments are the uppercase letters and the lowercase
letters, respectively; therefore, the call to map() converts the line just read in to all lowercase.

3.3 Pattern Matching

Pattern matching in Unicon is like string scanning on steroids. Patterns encode as data
what sort of strings to match, instead of writing string scanning code to perform the match
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directly. A pattern data type allows complex patterns to be composed from pieces. The
patterns can then be used in the middle of string scans to give that notation a boost, or
used on their own. Arguably, you don’t need patterns because anything that can be done
to strings, can be done using string scanning. But when the pattern solution is usually
shorter, more readable, and runs faster, why wouldn’t everyone use them?

Patterns are understood in terms of two different points in time, the point when the
pattern is constructed, and the times at which it is used to match a string. Most of the
programming work for patterns involves formulating the pattern construction, but most of
the computation occurs later on during the pattern matches. The next two subsections
describe ways to create many and various complex patterns, while the two notations for
using patterns are relatively simple and require little space. All of this only becomes clear
with numerous examples that will follow.

3.3.1 Regular Expressions

The literal values of the pattern type are regular expressions, enclosed in less than (<) and
greater than (>) symbols. The notation of regular expressions is very old and very famous
in computer science, and readers already familiar with them may wish to skim this section.

Within < and > symbols, the normal Unicon interpretation of operators does not
apply; instead a set of regular expression operators is used to express simple string patterns
concisely. The following are examples of regular expressions.

regular expression | is a pattern that...

<abc> matches abc

<alblc> matches a or b or ¢

<[a-c]> matches a or b or ¢

<ab?c> matches a followed optionally by b followed by ¢
<ab*c> matches a followed by 0 or more b’s followed by c
<a*b*c*> matches a’s followed by b’s followed by ¢’s

3.3.2 Pattern Composition

Regular expressions are awesome, but there are many patterns that they cannot express.
Unicon has many pattern functions and operators that construct new patterns, often from
existing pattern arguments. Sometimes, they simply make it convenient to store parts of
patterns in variables that can then be used at various places in larger patterns. Other
times, they make it possible to write patterns are not easily written as regular expressions.
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composer | constructs a pattern that...
p1 || p2 matches if pattern pl is followed by pattern p2
p1.|p2 matches if pattern pl or pattern p2 matches
p->v assigns s to v if an entire pattern match succeeds
p=>v assigns s to v if a pattern match makes it here
Y assigns the current position in the match to v
\% evaluates v at pattern match time
Abort() causes an entire pattern match to fail immediately
Any(c) matches a character in cset ¢
Arb() matches anything
Arbno(p) matches pattern p as few (zero or more) times as possible
Bal() matches the shortest non-null substring with balanced parentheses
Break(c) matches the substring until a character in cset ¢ occurs
Breakx(c) | matches the substring until a character in cset ¢ occurs
Fail() fails to match, triggering any alternative(s)
Fence() fails to match, preventing alternative(s)
Len(i) matches any i characters
NotAny(c) | matches any one character not in cset ¢
Nspan(c) | matches 0 or more characters in cset ¢, as many as possible
Pos(i) sets the cursor to position i
Rem() matches the remainder of the string
Span(c) matches 1 or more characters in cset ¢, as many as possible
Succeed() | causes the entire pattern match to succeed immediately
Tab(i) matches from the current position to position i, moving to that location
Rpos(i) sets the position i characters from the right end of the string
Rtab(i) matches from the current position to i characters from the right end.

This table summarizes a facility for which an entire chapter could be written. Besides
what extra information you find on these functions in this chapter and in Appendix A,
Unicon Technical Report 18 covers these constructors in more detail. The concepts gener-
ally are translated directly from SNOBOL4, so consulting SNOBOL4 books may also be
of use.

Most operands and arguments are required to be of type pattern, with the exception
of those marked as type integer (i) or cset (c¢), and those which are variables (v). If a
pattern is required, a cset may be supplied, with semantics equivalent to the pattern which
will match any member of the cset. Otherwise if the argument is not a pattern it will be
converted to a string; strings are converted to patterns that match the string.

Variable operands may be simple variables or references with a subscript or field op-
erator. The translator may not currently handle arbitrarily complex variable references
within patterns. The unevaluated expression (backquotes) operator does handle function
calls and simple method invocations in addition to variables.
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3.3.3 Pattern Match Operators

A pattern match is performed within a string scanning environment using the unary equals
operator, =p. If p is matched at the current position, =p produces the substring matched
and moves the position by that amount.

There is also a pattern match control structure, s ?? p, which creates a new string
scanning environment for s and looks for pattern p within s, working from left to right.

3.3.4 Scopes of Unevaluated Variables

Since a pattern can be passed as a parameter, variables used in patterns might get used
outside of the scope where the pattern was constructed, potentially anywhere in the pro-
gram. In SNOBOL4 this was not an issue mostly because all variables were global. In
Unicon variables are not global by default, and the variables used during pattern matching
are evaluated in the scope of the pattern match, not references to locals that existed back
during pattern construction time.

To make things more fun, it is impractical to apply the usual rules for implicit variable
declaration to variables that do not appear in a procedure body because they are referenced
in a pattern that was constructed elsewhere. If you use a variable in a pattern and pass
that pattern into a different scope, you must declare that variable explicitly, either as a
global or in the scope where it is used in a pattern match.

3.4 String Scanning and Pattern Matching Miscellany

Many topics related to string scanning and pattern matching do not easily fit into one of
the preceding sections, but are nevertheless important.

3.4.1 Grep

Grep, an acronym defined variously, is one of the oldest UNIX utilities, which searches files
for occurrences of a pattern defined by a regular expression.

Listing 3-2 A simple grep-like program

link regexp
procedure main(av)
local f, re, repl
every (f|re|repl) := pop(av)
f := open(f) | stop("can’t open file named: ", f)
while line := read(f) do
write(re_sub(line, re, repl))
end
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procedure re_sub(str, re, repl)
result :=""
str ? {
while j := ReFind(re) do {
result ||:= tab(j) || repl
tab(ReMatch(re))

}
result ||:= tab(0)

}

return result
end

To replace all occurrences of "read|write" with "IO operation" you could type
igrep mypaper.txt "read|write" "IO Operation”

Since the program has access to the pattern matching operation at a finer grain, more
complex operations are possible, this search-and-replace is just an example.

3.4.2 Grammars

Grammars are collections of rules that describe syntaz, the combinations of words allowed
in a language. Grammars are used heavily both in linguistics and in computer science.
Pattern matching using a grammar is often called parsing, and is one way to match pat-
terns more complex than regular expressions can handle. This section presents some simple
programming techniques for parsing context free grammars. Context free grammars uti-
lize a stack to recognize a fundamentally more complex category of patterns than regular
expressions can; they are defined below.

For linguists, this treatment is elementary, but introduces useful programming tech-
niques. If you are not interested in grammars, you can skip the rest of this chapter.

A context-free grammar or CFG is a set of rules or productions. Here is an example:

S->8S
1(S)
1 ()

This grammar has three productions. There are two kinds of symbols, non-terminals
like S that can be replaced by the string on the right side of a rule, and terminals like (
and ). An application of a production rule is called a derivation. One special non-terminal
is called the start symbol; a string is accepted by the grammar if there is a sequence of
derivations from the start symbol that leads to the string. By convention the start symbol
is the first non-terminal in the definition of the grammar. (This grammar only has one
non-terminal, and it is also the start symbol.)

This grammar matches all strings of balanced parentheses. The string (()(()())) can be
matched by this derivation:
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S ->(S) -> (SS) > (0S) -> (((S)) ->
> (0(0S)) -> (0(00))

Parsing

This section is a discussion of parsers written by hand in Unicon. It would not be right
to talk about parsing context free grammars without mentioning the standard tool, iyacc,
that the Unicon language translator itself is written in. Iyacc is an industrial strength
parser generator, derived from the open source "Berkeley yacc", that generates parsers as
.cn source files compatible with Icon and Unicon. Iyacc comes with Unicon distributions
and is documented in Unicon Technical Report 3 at http://unicon.org/utr/utr3.pdf.
Unicon can parse grammars in a natural way using matching functions. A production

A->BaD
ICEb

can be mapped to this matching function:

procedure A()
suspend (B() & ="a" & D()) | (C() & E() & ="b")
end

This procedure first tries to match a string matched by B, followed the character a, followed
by a string matched by D. If D fails, execution backtracks across the ="a" (resetting &pos)
and resume B(), which will attempt the next match.

If the sub-expression to the left of the alternation fails, then execution will try the sub-
expression on the right, C() & E() & ="b" until something matches - in which case A succeeds,
or nothing matches - which will cause it to fail.

Parsers for any CFG can be written in this way. However, this is an expensive way
to do it! Unicon’s expression evaluation will try all possible derivations trying to match a
string. This is not a good way to parse, especially if the grammar is amenable to lookahead
methods.

Doing It Better

Many grammars can be parsed more efficiently using well-known techniques - consult a
book on compilers for details. Here is one way of parsing a grammar using some of the
built-in functions. Consider this grammar for an arithmetic expression:

E>T|T+E
T>F|F*T
F->a|b|c|(E)
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Listing 3-3 is an Unicon program that recognizes strings produced by this grammar:
Listing 3-3 Expression parser

procedure main()
while line := read() do
if expr(line) == line then write("Success!")
else write("Failure.")

end
procedure expr(s)
s ?{
while t := tab(bal(’+’)) do {
term(t) | fail ; ="+"
}
term(tab(0)) | fail
}
return s
end
procedure term(s)
s ?{
while f := tab(bal(™’)) do {
factor(f) | fail ; ="*"
}
factor(tab(0)) | fail
}
return s
end

procedure factor(s)
s ? suspend ="a" | ="b" | ="c" | (="(" || expr(tab(bal(’)’))) || =")")
end

The interesting procedure here is bal(). With ’) as its first argument, bal() scans to
the closing parenthesis, skipping over any parentheses in nested subexpressions, which is
exactly what is needed here.

The procedure factor() is written according to the rule in the previous section. The
procedures expr() and term() have the same structure. The expr() procedure skips any subex-
pressions (with balanced parentheses) and looks for a +. We know that this substring is a
well-formed expression that is not a sum of terms, therefore, it must be a term. Similarly
term() looks for * and it knows that the expression does not contain any * operators at the
same nesting level; therefore it must be a factor.

Notice that the procedures return the strings that they matched. This allows us to
check if the whole line matched the grammar rather than just an initial substring. Also,
notice that factor() uses string concatenation instead of conjunction, so that it can return
the matched substring.
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Summary

Unicon’s string processing facilities are extensive. Simple operations are very easy, while
more complex string analysis has the support of a special control structure, string scan-
ning. String scanning is not as concise as regular expression pattern matching, but it is
fundamentally more general because the code and patterns are freely intermixed.
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Chapter 4

Advanced Language Features

The previous chapters described a wide range of built-in computational facilities that help
to make Unicon a great language. This chapter delves into interesting features that make
Unicon more than just the sum of its parts. This chapter demonstrates:

e Controlling expressions more precisely
e Using list structures and procedure parameter lists interchangeably

e Holding a generator expression in a value so that its results can be used in different
locations throughout the program

e Defining your own control structures
e Evaluating several generator expressions in parallel
e Permuting strings using sophisticated mappings

e Using a more efficient list representation

4.1 Limiting or Negating an Expression

Chapter 1 described generators and the expression mechanism without mentioning many
methods for using them, other than every loops. Suppose you wish to generate five elements
from a table. If the table has thousands of elements, then you may want to generate just
five elements precisely in a situation where generating all the table elements with IT is
infeasible. You could write an every loop that breaks out after five iterations, but this
solution isn’t easy to use within some more complex expressions. The binary backslash
operator expr \ i limits expr to at most i results. If expr has fewer results, the limitation
operator has no effect; once i results have been obtained, limitation causes the expression
to fail even if it could produce more results.

Unicon does not have a boolean type, so Chapter 1 downplayed the standard logical
operators. The alternation operator (|) resembles a short-circuit OR operator, since it
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generates its left operand and only evaluates its right operand if the left operand or the
surrounding expression fails. The conjunction operator (&) resembles a short-circuit AND
operator; it evaluates its left operand, and if that operand succeeds, the result of the
conjunction is the result of its right operand. The reserved word not rounds out the boolean-
like operators. If expr produces no results, then not expr will succeed (and produce a null
value); if expr produces any results, then the not expression fails. The not operator can
remedy certain forms of generator confusion. Compare the following two expressions:

if not (s == ("good"|"will"|"hunting")) then write("nope")
if (s "== ("good"|"will"|"hunting")) then write("uh huh")

The first expression uses not to ensure that string s is none of the three words. The
second expression always writes "uh huh", because any string s that you pick will be not
equal ("==) to at least one of the three strings in the alternation. The then part will always
execute, which is probably not what was intended.

Note

Negating an == operator is not the same as using a “== operator!

The conjunction operator expr; & expr, has an alternate syntax, a comma-separated list
of expressions in parentheses: (expr;, exprs). Any number of expressions may be present; the
whole expression succeeds if they all succeed. This looks similar to procedure call syntax
because it is similar: a procedure call mutually evaluates all the actual parameters before
the procedure is invoked. Invocation allows a string or integer in the “procedure” slot in
front of a parenthesized argument list. For a string, as in s(x), a procedure by the name
given in s is called; if s had the value "foo", then s(x) is the same as foo(x). For an integer
value i, after all arguments are evaluated, the value of the entire expression is the value of
the i"th argument.

4.2 List Structures and Parameter Lists

The functions write() and put() take any number of arguments; this flexibility is powerful
and convenient. You can write variable argument procedures of your own by ending the
last parameter in your procedure declaration with empty square brackets:

procedure myfunc(x, y, z[])

In this case, instead of throwing away all arguments after the third, the third parameter
and all parameters that follow are placed into a newly-constructed list. A call to the above
procedure with myfunc(1, 2, 3, 4, 5) causes z to have the value [3, 4, 5].

It is also useful to do the opposite and construct a list of dynamic (or user-supplied)
length, and then call a procedure with that list as its parameter list. The apply operator,
binary ! performs this feat. If you call write | L, then all the elements of L are written
contiguously on a single line (unless they contain newline characters).
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4.3 Co-expressions

A co-expression is an independent, encapsulated thread-like context, where the results of
an expression (hopefully a generator!) can be picked off one at a time. Suppose you are
writing a program that generates code, and you need something that will generate unique
variable names. This expression will generate names:

"name" || seq()

Function seq() produces a progressive sequence of integers, by default starting at 1, so
the whole expression generates "name1”, "name2", "name3", ... You can use this expression
anywhere in your code; but you may need it in several different places.

There are times when you need to separate the evaluation of an expression from its
location in the program. The normal way to do this would be a procedure. You can make
separate calls to a procedure from different locations in your program, but there is no easy
way to use the results from a single instance of a generator in multiple locations. You can
put all the results in a list (not a good idea for generators with infinite result sequences) or
rewrite the procedure to produce the sequence using separate calls, but this requires static
or global variables, and is awkward at best:

procedure nameseq()
static i
initial i := 0

return "name" || (i+:= 1)
end

Now, consider the code generating program again. It may need not one name sequence,
but two kinds of names: statement labels and temporary variables. It would be poor
engineering to write a different procedure for each such sequence. The nameseq() procedure
was already cumbersome for so simple a task, but generalizing it for multiple kinds of names
makes it really messy. By creating a pair of co-expressions, you can capture exactly what
is needed with a lot less code:

labelname := create ("_L" || seq())
varname := create("_V" || seq())

In both cases, create expr allocates and initializes an evaluation context plus the memory
needed to evaluate expression ezpr, but does not start to evaluate it. Since the co-expression
value may be used outside the procedure call where it is created, the evaluation context
includes a copy of the local variables and parameters used in the expression. When a co-
expression is activated, it produces the next value. A co-expression is activated by the @
operator. Each activation of labelname produces the next string in the sequence "_L0", " L1",
" L2". and so on. Similarly, each activation @varname produces the next in the sequence
" Vo', " V1", " V2" and so on.
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loop_name := @labelname
tempvar_name = @varname

After a co-expression has produced all its results, further evaluation with @ will fail.
The ~ operator produces a new co-expression with the same expression as its argument, but
"rewound" to the beginning.

~

c=2¢

4.4 User-Defined Control Structures

Control structures are language elements that determine in what order, and how many
times, expressions are executed. Co-expressions are used to implement new control struc-
tures when procedures that take co-expression parameters control the order and number
of times they are activated. Consider a control structure that selects values from the first
expression at positions specified by the second. This could be called as:

seqgsel([create fibonacci(), create primes()])

Assuming that you have a pair of generator procedures that produce the Fibonacci
numbers (1, 1, 2, 3, 5, 8, 13, 7) and the primes (2, 3, 5, 7, 11, 7), this expression produces
the numbers 1, 2, 5, 13, 89, .... Here is the implementation of segsel():

procedure seqsel(a)
(*a = 2) | stop("segsel requires a list of two arguments")
el :=a[1]; e2 :=a[2]
# position in the first stream we are looking at
index =1
repeat {
# Get the next index
(i:=@e2) | fail
# Keep getting values from the second expression until
# we get to the i'th one. If e1 cannot produce that
# many values, we fail.
every index to i do
(value := @e1) | fail
suspend value
index := i+1
}

end

Unicon provides a syntactic short-cut for this kind of usage:
proc([create e1, create e2, ..., create en))

can also be written with curly brackets, as

proc{el, e2, ..., en}
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4.5 Parallel Evaluation

Co-expressions can be used to evaluate expressions "in parallel”. This program writes a
table of ASCII characters with the hex, decimal, and octal equivalents:

procedure main()
dec := create(0 to 255)
hex_dig := "0123456789abcdef"
hex := create(lhex_dig || 'hex_dig)
oct ;= create((0to 3) || (Oto 7) || (0 to 7))
char := create image(!&cset)
while write(@dec, "\t", @oct, "\t", @hex, "\t", @char)

end

Co-expression dec produces the sequence 0, 1, 2, ... 255; hex the sequence "00", "01",
"03", ... "ff"; oct the sequence "001", "002", ... "377"; and char the sequence ..., " ", "I", ..., "A",
"2 mat ... "z" and so forth.

Every invocation of write() results in all the co-expressions being activated once, so they
are all run in lock-step, producing this table:

0 000 00 "\x00"
1 001 01 "\x01"
2 002 02 "\ x02"

45 055 2 "
46 056 2 "N
A7 057 2 /v
48 060 30 "0
49 061 31 "1
50 062 32 "2

90 132 5a  "Z"
91 133 5b [
92 134 Bc M\"
93 135 5d "
94 136 Se "o
95 137 5f "
96 140 60 "
97 141 61  "a'

255 377 ff "\ x A"
Parallel evaluation can also be used to assign to a set of variables:



62 CHAPTER 4. ADVANCED LANGUAGE FEATURES

ce := create !stat(f)
every (dev | ino | mode | Ink | uid | gid) := @ ce

Note

stat() returns file information. It is presented in the next chapter.
Co-expressions can be expensive. This is probably not a good way to assign a series of
values to a group of variables but it demonstrates an interesting technique.

4.6 Coroutines

In conventional invocation, procedures have an asymmetric relationship; when control is
transferred from the caller to the callee, the callee procedure starts execution at the top.
Coroutines have an equal relationship: when control is transferred from one coroutine to
another, execution starts from the point that execution was suspended. This process is
called resumption. The producer/consumer problem is a good example of procedures that
have an equal relationship. Figure 4-1 shows how the control flow between coroutines is
different from that of conventional procedures.

F1 P2 P1 P2
cﬁ;’ ﬁg,ﬁﬂje’
< /
=
W
Procedures Coroutines

Figure 4-1: The Difference Between Procedures and Coroutines
Can you tell what the next example computes from its integer command-line argument?

Listing 4-1
Producer and Consumer Coroutines
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procedure main(args)
C1 := create consumer(args[1])
C2 := create producer(C1)
@C2

end

procedure producer(ce)
X =1
repeat {
val .=x"2
ret ;= val @ ce | break
X +:=1
}
@ &main
end

procedure consumer(limit)
value ;= @ &source
repeat {
# process value
if value > limit then break
if value % 2 = 0 then write(value)
value := retval @ &source

}

end

When producer resumes consumer, it passes value; the consumer passes a return code
(retval) back. &source is the coexpression that activated the current co-expression.

Note

This example doesn’t mean the producer/consumer problem should always be done with
coroutines!

4.7 Permutations

We have seen one usage of map(), where it transformed mixed-case strings to all lowercase.
In that type of usage, the first string is the one that we are manipulating, and the other
two arguments tell it how the string is to be modified. Interesting results can be achieved
by treating the third argument as the string to manipulate. Consider this code:

s := "abcde"
write(map("01234", "43201", s))

What does this code example do? The transformation is: "4" should be mapped to "a",
"3" to "b", "2" to "c", "0" to "d", and "1" to "e". When this mapping is applied to "01234", we
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get "decba" - a permutation of the string s! It is exactly the permutation that is suggested
by the first two arguments of map(). To arrange this sort of permutation, all three strings
must be the same size, and there must be no repeated letters in the second string.

o 1 2 3 4

/
/ 4

0 1 2 3

Figure 4-2: Permuting a string with the map() function

Here is an example: In the USA, dates are represented with the month coming first, as
in 12/25/1998, but in many other places the day comes first: 25/12/1998. This conversion
is, of course, just a permutation; we can do this with a simple map:

map("Mm/Dd/XxYy", "Dd/Mm/XxYy", date)

Here is another example. Unicon has a built-in random facility, the ? operator. Applied
to a string or cset, it returns a random character from the argument; applied to a structure,
a random member of that structure; and applied to an integer, a random integer between 1
and that number. This is a very useful feature and allows us to write programs that shuffle
cards or run simulations of things like rolling dice.

By default in Unicon, the random sequence generated by ? is different for each run of
the program. This is one of the few areas where Unicon is deliberately different from Icon,
which uses the same seed each run by default. Icon’s semantics is good when debugging,
because we want the program to behave predictably while it is broken! However, in most
applications that use random numbers, such as games, different runs of the program should
create different numbers. The random number seed is keyword &random. It can be assigned
a value at the start of main() in order to get Icon-style repeatability. Here’s how to assign
it a number based on the current date and time. Unicon’s default semantics do something
similar.

&random := map("sSmMhH", "Hh:Mm:Ss", &clock) +
map("YyXxMmDd", "YyXx/Mm/Dd", &date)

The calls to map() remove punctuation characters from the fixed-format strings produced
by &clock and &date. The resulting strings of digits are converted to integers, added, and
stored as a seed in &random. Now every time the program is run, the random number
facility will be initialized with a different number.
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4.8 Simulation

A Galton Box demonstrates how balls falling through a lattice of pegs will end up dis-
tributed binomially. A simulation of a Galton box combines several of the techniques
described previously. Figure 4-3 is an illustration of the program’s screen.

| galton El=

=

Figure 4-3: A Galton Box Simulation

The simulation’s output window is a good example of Unicon’s high-level graphics facil-
ities. Graphics is a broad area, discussed in Chapter 7 of this book; the on-line references or
the Icon graphics book (Griswold, Jeffery, Townsend 1998) contain substantial additional
details. Graphics are part of the system interface. Some of the graphics functions used in
this example include:

e FillArc(x,y,width,height) fills an ellipse defined by a bounding rectangle. The shape is
filled by the current foreground color and/or fill pattern. The height defaults to be
the same as the width, producing a circle. Given additional arguments, FillArc() fills
parts of an ellipse similar to pieces of a pie in shape.

o WALtrib("attr") or WAttrib("attr=value"), the generic getter /setter for window attributes. In
this case the attributes fg (foreground color) and drawop (raster drawing operation)
are set to various colors and reversible output.

e Window("attr=value", ...) opens a window with characteristics specified by string at-
tribute values. The WDelay(t) function waits until t milliseconds have passed. The
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WDone() function waits for the user to dismiss the output window by pressing "q" and
then terminates the program and closes the window.

Listing 4-2 contains the code for a simplified version of the simulation. A couple elements
of the image above are omitted in order to make the example easy to follow. (Both this
program and the one that created the screen shot above are included on the book’s web
site, http://unicon.org/book/)

Listing 4-2 A Simple Galton Box Simulation

link graphics
global pegsize, height, width, pegsize2

procedure main(args)

local n, steps := 10
pegsize ;=10
pegsize2 := pegsize * 2
n := integer(args[1]) | 100
setup_window(steps)
every 1 to n do galton(steps)
WDone()

end

procedure setup_window(n)

local max, xpos, ypos, i, j
# Draw the n levels of pegs
# Pegboard size is 2n-1 square
# Expected max value of histogram is (n, n/2)/2"n
# ... approximate with something simpler?
max := n*n/pegsize
width := (2*n+1)*pegsize
height := width + n*n/2*pegsize
Window("size=" || width || "," || height, "fg=grayish-white")
WALtrib("fg=dark-grey")
everyi:=1tondo{
ypos :=i * pegsize2
Xpos := width/2 - (i - 1) * pegsize - pegsize/2
everyj:=1toido{
FillArc(xpos, ypos, pegsize, pegsize)
Xpos +:= pegsize2
}
}

# Set up drawing mode to draw the falling balls
WALtrib("fg=black")
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WAttrib("drawop=reverse")
end
# Do it!
procedure galton(n)
local xpos, ypos, oldx, oldy
Xpos = oldx := width/2 - pegsize/2
ypos := oldy := pegsize
# For every ball...
every 1tondo {
if 72 = 1 then xpos -:= pegsize
else xpos +:= pegsize
ypos +:= pegsize2
animate(oldx, oldy, xpos, ypos)
oldx := xpos; oldy := ypos
}
# Now the ball falls to the floor
animate(xpos, ypos, xpos, ypos + 40)
animate(xpos, ypos+40, xpos, ypos + 200)
# Record this ball
draw_ball(xpos)
end
procedure animate(xfrom, yfrom, xto, yto)
animate_actual(xfrom, yfrom, xto, yfrom, 4)
animate_actual(xto, yfrom, xto, yto, 10)
end
# Drawing op is already set to "reverse", and fg colour is black.
procedure animate_actual(xfrom, yfrom, xto, yto, steps)
local x := xfrom, y := yfrom, xstep, ystep, i, lastx, lasty
xstep := (xto - xfrom)/steps
ystep := (yto - yfrom)/steps
every i ;=1 to steps do {
lastx := x; lasty :=y
FillArc(x, y, pegsize, pegsize)
WhDelay(1)
FillArc(x, y, pegsize, pegsize)
X +:= Xstep; y +:= ystep
}
end
procedure draw_ball(x)
static ballcounts
initial ballcounts := table(0)
ballcounts[x] +:= 1
FillArc(x, height-ballcounts[x]*pegsize, pegsize, pegsize)
end
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4.9 Arrays

Unicon uses two different representations for a list: one of them, an array, is optimized
for fast access to the list-elements or for interfacing with another language that expects
a contiguous vector of values. The size of an array is fixed when it is first created and
consists entirely of integer elements (or entirely of reals). If any of the array elements is
assigned a value of a different type, or the size of the array changes (e.g. by using delete
or push etc.), the array is automatically converted into the other form — the more general
representation of a list.

The general list representation occupies approximately twice as much storage as an

array of the same size and type on most implementations of Unicon.

To create an array, call list(n, x), where x is an integer or real value and n> 0. If you want
to create a more general list, rather than an array (perhaps you know the list will change
its size in the future and you wish to avoid the cost of converting the array when it does)
then use list comprehension: i.e. instead of

| := list(20000, 0)
use
I:=[: (| 0)\ 20000 ]

list comprehension never produces an array.

Although the conversion from the array form to the more general representation is
automatic, when it is required, the conversion in the other direction is not. To convert a
general list into an array it may be supplied as the only parameter to the list function. If
the list meets the requirements (either all the elements are integers or all of them are reals)
the function will return a new array that consists of the values in the list. If the list does
not meet the requirements, the function returns the list parameter unchanged.

Summary

Unicon is particularly powerful when language features are combined. The ability to
combine features in interesting ways is the result of its novel expression semantics. Co-
expressions add substantial value to the concept of generators, although most programs
use them only sparingly. They fit well into a philosophy that says that simple things
should be easy to do ...and complex things should be easy to do as well.



Chapter 5

The System Interface

The system interface is Unicon’s connection to the outside world, defining input/output
interactions with the operating system. This chapter shows how to

Manipulate files, directories, and access permissions

Launch and interact with other programs

Handle abnormal events that would otherwise terminate your program

Write Internet client and server applications.

5.1 The Role of the System Interface

Unicon’s predecessor Icon is highly portable; it runs on everything from mainframes to
Unix machines to Amigas and Macs. This platform independence is both a virtue and a
limitation. Icon takes a greatest common denominator approach to the system interface.
Icon programs run with no source modifications across platforms, but with little access to
the underlying system. Icon historically could not be used easily for many tasks such as
system administration or client/server programming. Both the Icon graphics facilities, and
now the Unicon system interface, "raise the bar" of what portable facilities programmers
can expect to be provided by their programming language, at the cost of making it more
difficult to port the language to new platforms.

The interface described in this chapter relies on underlying standards including ANSI
C’s standard library, and the IEEE Portable Application Standards Committee’s POSIX
operating system standard (http://www.pasc.org). Unicon relies on standards, but is sim-
pler and higher level. Tt is also less platform-specific than the POSIX standard. The goal
was to define facilities that can be implemented to a great extent on all modern operating
systems. Non-POSIX Unicon implementations may provide a subset of the functionality
described in this chapter, but important facilities such as TCP/IP Internet communica-
tions are ubiquitous and warrant inclusion in the language definition. So far the complete
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Unicon system interface is implemented for Linux, Solaris, and Windows; the challenge to
port these facilities to all platforms on which they are relevant and useful now rests with
Unicon’s user community.

5.2 Files and Directories

The file type is used for any connection between a program and an external piece of hard-
ware. In reality, a file is a reference to resources allocated by the operating system for the
purpose of input or output. Different kinds of files support different operations, but most
files support the basic functions given in this section.

Files are commonly used to manipulate named repositories of data on a storage device.
The contents of files exist independent of the program that creates them, and persist after
that program finishes. To read data from a file or save data to a file, the functions read()
and write() are often used. These functions by default use special files denoted by the
keywords &input and &output, respectively. There is a third file keyword, &errout, that refers
to the location to which the program should write any error messages. Unless the files were
redirected, they refer to the keyboard and the display. If you pass read() or write() a value
of type file as an argument, the operation is performed on that file. The function open()
creates a value of type file:

f := open("myfile.txt", "w")
write(f, "This is my text file.")

The open() function takes two parameters: a file name and a mode. The default mode is "r"
for reading; the example above uses mode "w" for writing. Other modes denote other kinds
of system interfaces. They are described in later sections.

The read() function reads and returns a line of text, removing the line terminator(s).
Function write() similarly adds a line terminator after writing its arguments. Another way
to read lines is via the generate operator, unary !. The expression !f generates the lines of
file f, so every put(L, !f) puts the lines of f into list L.

On systems with multi-character line terminators, appending an extra letter to the
mode parameter of open() indicates whether newlines are to be translated (mode "t") or
untranslated (mode "u"). Text files should be translated, while binary files should not. The
default is to translate newlines to and from operating system format.

Besides read() and write(), which always process a single line of text, the functions reads(f,
i) and writes(f, s, ...) read (up to i characters) and write strings to a file. These functions are
not line-oriented and do no newline processing of their own, although they still observe the
translation mode on systems that use one.

When operations on a file are complete, close the file by calling close(f). The only
exceptions are the standard files, &input, &output, and &errout; since you didn’t open them,
don’t close them. For the rest, most operating systems have a limit on the number of files
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that they can have open at any one time, so not closing your files can cause your program
to fail in strange ways if you use a lot of files.

Directories

A directory is a special file that contains a collection of named files. Directories can
contain other directories to form a hierarchical structure. The chdir() function returns the
current working directory as an absolute path name. Called with a string argument, the
chdir(dirname) function sets the current working directory to dirname. The call open(dirname)
opens a directory to read its contents. Directories can only be opened for reading, not for
writing. Every read() from a directory returns the name of one file. Directory entries are
not guaranteed to be in any order. The expression every write(lopen(".")) writes the names of
the files in the current directory, one per line. It is not good practice to call an open() that
you don’t close().

The mkdir(s) function creates a directory. An optional second parameter specifies access
permissions for the directory; controlling file ownership and access is discussed below. Files
or directories can be renamed with rename(s1,s2). Renaming does not physically move the
file, so if s1 and s2 denote locations on different hardware devices or file systems then
rename() will fail, and you will need to "copy and then delete" the file. Individual files or
directories are removed with remove(s). Only empty directories may be removed. To remove
an entire directory including its contents:

procedure deldir(s)
f := open(s)
every remove( s || "/" || ("." == (".." "==If)))
close(f)
remove(s)
end

How would you change this function to delete subdirectories? You might be able to
devise a brute force approach using what you know, but what you really need is more
information about a file, such as whether it is a directory or not.

Obtaining file information

Metadata is information about the file itself, as opposed to information stored in the file.
Metadata includes the owner of the file, its size, user access rights, and so forth. This
information is produced by the stat() system call. Tts argument is the name of a file or (on
UNIX systems only) an open file. The stat() function returns a record with the information
about the file. Here is a subset of Is, a UNIX program that reads a directory and lists
information about its files. Keyword &errortext contains information about the most recent
error that resulted in an expression failure; it is written if opening the directory fails. This
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version of Is only works correctly if its arguments are the names of directories. How would
you modify it, using stat(), to take either ordinary file names or directory names as command
line arguments?

link printf
procedure main(args)
every name := largs do {
f := open(name) | stop(&errortext, name)

L := list()
while line := read(f) do
push(L, line)

every write(format(stat(n := Isort(L)), n))
}
end
procedure format(p, name)
S = sprintf("%-7d %-5d %s %-4d %-9d %-9d %-8d %s %s",
p.ino, p.blocks, p.mode, p.nlink, p.uid, p.gid, p.size,
ctime(p.mtime)[5:17], name)

if p.mode[1] == "I" then
s|li="->"| \(p.symlink)
return s
end

The record returned by stat() contains many fields. Not all file systems support all of
these fields. Two of the most important portable fields are size, the file size in bytes, and
mtime, the file’s last modified time, an integer that is converted into a human readable string
format by ctime(i). Another important field is mode, a string that indicates the file’s type
and access permissions. Its first letter (mode[1]) is "-" for normal files, "d" for directories,
and some file systems support additional types. The other characters of the mode string
are platform dependent. On UNIX there are nine letters to encode read, write, and execute
permissions for user, group, and world, in the format: "rwxrwxrwx". On a classic Windows
FAT file system, there is only "rwa" to indicate the status of hidden, read-only, and archive
bits (if it is set, the system bit is indicated in mode[1]).

Some file systems support duplicate directory entries called links that refer to the same
file. In the record returned by stat(), a link is indicated by a mode[1] value of "I". In addition,
field nlinks ("number of links") will be > 1 and/or field symlink may be the string filename
of which this file is an alias. Appendix E includes information on each platform’s support
for the mode field, as well as stat()’s other fields.

Controlling file ownership and access

The previous section shows how different platforms’ file systems vary in their support for
the concepts of file ownership and access. If the system supports ownership, the user and
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group that own a file are changed by calling chown(fname, user, group). The chown() function
only succeeds for certain users, such as the super user. User and group may be string
names, or integer user identity codes on some platforms.

File access rights are changed with chmod(fname, mode). The chmod() function only
succeeds for the owner of a given file. The mode is a nine-letter string similar to stat()’s
mode field, or an octal encoding of that information (see Appendix E).

Another piece of information about files is called the umask. This is a variable that
tells the system what access rights any newly created files or directories should have. The
function call umask("rwxr-xr-x") tells the system that newly created directories should have
a permission of "rwxr-xr-x" and files should have permissions of "rw-r--r--". The mkdir(s, mode)
function takes an optional mode parameter, which can override the umask for for newly
created directories. Ordinary files are never given execute permission by the system, it
must be set explicitly with chmod().

File locks

Files can be locked while a program is updating some information. If the contents of the file
are in an inconsistent state, other programs may be prevented from reading (or especially
writing) the file. Programs can cooperate by using file locks:

flock(filename, "x")

The first call to flock() creates a lock, and subsequent calls by other programs will block,
waiting till the writing program releases its lock. The flag "x" represents an ezclusive lock,
which should be used while writing; this means no other process can be granted a lock.
For reading, "s" should be used to create a shared lock so that other programs that are also
just reading can do so. In this way you can enforce the behavior that only one process
may open the file for writing, and all others will be locked out; but many processes can
concurrently open the file for reading.

5.3 Programs and Process Control

Unicon’s system interface is similar but higher level than the POSIX C interface. An
include file posix.icn defines constants used by some functions. Include files are special code,
consisting mainly of defined symbols, intended to be textually copied into other code files.
They are handled by the preprocessor, described in Appendix A. To include posix.icn in a
program, add this line at the top of your program:

$include "posix.icn"

When a system call fails, the integer keyword &errno indicates the error that occurred.
As seen earlier, a human-readable string is also available in &errortext. Error codes (such
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as EPERM, or EPIPE) are defined in posix.icn; &errno can be compared against constants like
ENOENT. In general, however, human readers will prefer to decipher &errortext.

In the discussion to follow, a program is the code, while a process is such a program
in execution. This distinction is not usually important, but for network applications it
matters, since the same program can run in multiple processes, and a process can change
the program that it is running.

Signals

A signal is an asynchronous message sent to a process either by the system (usually as a
result of an illegal operation like a floating point error) or by another process. A program
has two options to deal with a signal: it can allow the system to handle it in the default
manner (which may include termination of the process) or it can register a function, called
a signal handler, to be run when that signal is delivered.

Signals are trapped or ignored with the trap(s, p) function. Argument s is the string
name of the signal. The signal names vary by platform; see Appendix E. You can trap any
signal on any machine; if it is not defined it will be ignored. For example, Linux systems
don’t have a SIGLOST. Trapping that signal has no effect when a program runs on Linux.
The trap() function’s second argument is the procedure to call when the signal is received.
The previous signal handler is returned from trap() so it can be restored by a subsequent call
to trap(). The signal handler defaults to the default provided by the system. For instance,
SIGHUP is ignored by default but SIGFPE will cause the program to terminate.

Here is an example that handles a SIGFPE (floating point exception) by printing out a
message and then runs the system default handler:

global oldhandler

trap("SIGFPE", sig_ignore)
oldhandler := signal("SIGSEGV", handler)

# restore the old handler
trap("SIGSEGV", oldhandler)
end

procedure sig_ignore(s); end
procedure handler(s)
write(&errout, "Got signal ", s)
(\oldhandler)(s)
# propagate the signal
end
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Launching programs

Many applications execute other programs and read their results. In many cases, the best
way to do this is to call open() with mode "p" (pipe) to launch a command. In mode "p"
the string argument to open() is not a filename, it is an entire command string. Piped
commands opened for reading (mode "p" or "pr") let your program read the command’s
standard output, while piped commands open for writing (mode "pw") allow your program
to write to the command’s standard input.

The more general function system(x,f1,f2,f3,mode) runs an external command (argument
x) with several options. If x is a list, x[1] is the command to execute and the remaining
list elements are its command line arguments. If x is a string, it is parsed into arguments
separated by spaces. Arguments with spaces in them may be escaped using double quotes.
A program that calls system() normally waits for the launched program to complete before
continuing, and system() returns the integer status of the completed command. If s ends
in an ampersand (&) or the optional mode argument is 1 or "nowait", system() does not wait
for the command to complete, but instead launches the command in the background and
returns an integer process id. The system() function takes three optional file arguments that
specify redirected standard input, output, and error files for the launched program.

Using file redirection and pipes

One common scenario is for a program to run another program but with the input and
output redirected to files. On command-line systems like the Unix shells or the MS-DOS
command prompt, you may have used redirection:

prog < file1

File redirection characters and other platform-dependent operations are supported in the
command string passed to system(), as in the following system() call:

system("prog < file1")
Pipes to and from the current program are nicely handled by the open() function, but

sometimes the input of one program needs to be connected to the output of another pro-
gram. You may have seen uses like this:

prog1 | prog2
The pipe() function returns a pair of open files in a list, with the property that anything

written to the second file will appear on the first. Here’s how to hook up a pipe between
two programs:
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L := pipe() | stop("Couldn’t get pipe: ", &errortext)
system("prog1 &", , L[2])

system("prog2 &", L[1])

close(L[1])

close(L[2])

Process information

The integer process identity can be obtained with getpid(). The user id of the process can
be obtained with getuid() if the platform supports it. Calls to obtain additional information
such as group identity on some platforms are described in Appendix E.

A parent process may want to be notified when any of its children quit (or change
status). This status can be obtained with the function wait(). When a child process changes
state from “running” to either “exited” or “terminated” (and optionally “stopped”), wait()
returns a string of the form

pid:status:arg:core

The ":core" will only be present if the system created a core file for the process. The
status can be any of “exited”, “terminated” or “stopped”. The arg field is either: a) the exit
status of the program if it exited; or b) the signal name if it was terminated. Typically
wait() will be used in the handler for the SIGCHLD signal which is sent to a process when
any of its children changes state.

The arguments to wait() are the pid of the process to wait for and any options. The
default for pid is to wait for all children. The options may be either "n", meaning wait()
should not wait for children to block but should return immediately with any status that’s

available, or "u", meaning that any processes that stopped should also be reported. These
options may be combined by using "nu".

The select() system call

Some programs need to be able to read data from more than one source. For example,
a program may have to handle network traffic and also respond to the keyboard. The
problem with using read() is that if no input is available, the program will block and will
not be able to handle the other stream that may in fact have input waiting on it. To handle
this situation, you can use the function select(x1,x2,...i). The select() function tells the system
which files you are interested in reading from, and when input becomes available on any
of those sources, the program will be notified. The select() function takes files or lists of
files as its arguments, and returns a list of all files on which input is waiting. If an integer
argument is supplied, it is a timeout that gives the maximum milliseconds to wait before
input is available. If the timeout expires, an empty list is returned. If no timeout is given,
the program waits indefinitely for input on one of the files.
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while *(L := select(f1, f2, {3, timeout)) = 0 do
handle_timeout()
(&errno = 0) | stop("Select failed: ", &errortext)
every f:= 1L do {
# Dispatch reads pending on f

}

When using select() to process input from multiple files, you may need to pay some
attention to avoid blocking on any one of your files. For example the function read() waits
until an entire line has been typed and then returns the whole line. Consider this code,
which waits for input from either a file (or network connection) or a window designated by
keyword &window:

while L := select(f, &window) do
if IL === f then ¢ := read(f)

Just because select() has returned doesn’t mean an entire line is available; select() only
guarantees that at least one character is available. The command shell log application
in Chapter 14 shows the usage of select(). Another primary application area for select()
is network programming, described later in this chapter. For network connections, the
function reads(f, i) will return as soon as it has some input characters available, rather than
waiting for its maximum string size of i. But if no input is available, reads() blocks.

Non-blocking input and the ready() function

The function ready(f, i) is like reads(f, i) except that it is non-blocking, that is, it returns
immediately with up to i bytes if they are available, but it does not wait around. It is
ideal for use with select() and in situations where a server or client needs to interact with
multiple remote connections.

5.4 Networking

Unicon provides a very high-level interface to Internet communications. Applications with
custom communications use one of the major Internet applications protocols, TCP and
UDP. An higher level interface to several popular Internet protocols such as HI'TP and
POP is provided by means of Unicon’s messaging facilities.

TCP

A TCP connection is a lot like a phone call: to make a connection you need to know the
address of the other end, just like a phone number. For TCP, you need to know the name
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of the machine to connect to, and an address on that machine, called a port. A server
listens for connections to a port; a client sends requests to a port. Also, there are two
kinds of ports, called "Internet Domain" and "Unix Domain." The distinction is beyond
the scope of this book; we will just mention that Internet Domain ports are numbers, and
Unix Domain ports look like files. Also, a connection to a Unix domain port can only be
made from the same machine, so we will not consider the Unix domain further here.

A call to open() with mode "n" (network) requests a network connection. The first
argument to open() is the network address, a host:port pair for Internet domain connections,
and a filename for Unix domain sockets. If the address contains no host name and therefore
starts with ":", the socket is opened on the same machine. The value returned by open() is
a file that can be used in select() and related system functions, as well as normal reading
and writing.

A client uses mode "n" with open() to open a connection to a TCP server. Here is a
simple version of the Internet "finger" program:

procedure main(argv)

local fserv := getserv("finger") |
stop("Couldn’t get service: ", &errortext)

name := argv[1]

host :="™"

argv[1] ? {
name := tab(find("@")) & ="@" & host := tab(0)
}

if *host > 0 then write("[", host, "]")

f := open(host || ":" || fserv.port, "n") |
stop("Couldn’t open connection: ", &errortext)

write(f, name) | stop("Couldn’t write: ", &errortext)
while write(read(f))
end

Notice the use of getserv(). The posix_servent record it returns includes fields for the
name, aliases, port, and protocol used by the Internet service indicated in getserv()’s argu-
ment. The Internet protocols specify the ports to be used for various services; for instance,
email uses port 25. Instead of having to remember port numbers or hard-coding them in
our program, we can just use the name of the service and have getserv() translate that into
the port number and protocol we need to use.

To write a server, all we need to do is add "a" (accept) to the mode after the "n" in
open(). Here is a simple TCP server that listens on port 1888:

procedure main()
while f := open(":1888", "na") do {
system("myserverd -servicerequest &", f, f)



5.4. NETWORKING 79

close(f)

}
(&errno = 0) | stop("Open failed: ", &errortext)

end

The call open(":1888", "na") blocks until a client connects. The returned value is a file that
represents the network connection. This example server responds to requests by launching
a separate process to handle each request. The network connection is passed to myserverd
as its standard input and output, so that process had better be expecting a socket on its
standard I/O files, and handle it appropriately. This works on UNIX; on other platforms
a different approach is needed.

Launching a separate process to handle requests is standard operating procedure for
many Internet servers, but besides the portability concerns, it uses a lot of memory and
CPU time. Many servers can be implemented in a single process. Chapter 15 includes
an example of such a server. Mode "na" is less than ideal for one-process servers: it only
supports one connection at a time. When waiting for a new connection, the process is not
doing any computation, and when servicing a connection, the program is not listening for
any other connection requests. Unless each connection is of short duration, the server will
appear to be down, or appear to be unacceptably slow, to anyone trying to connect while
an existing request is being processed.

Determining IP numbers

Many programs need the IP number of the machine they are talking to. Given a network
connection f, image(f) will show the IP address and port of the client machine that is
connected (this is sometimes called the peername).

Some programs need to know their own IP number, but each machine can have several
IP numbers, one for each kind of physical network hardware in operation. To obtain a
list of local TP numbers, a program can read the output of /sbin/ifconfig (UNIX) or ipconfig
(Windows). To find the IP number used for a particular network connection n, on some
platforms you can call gethost(n), which returns a string with the IP number and port used
by the local machine for a given connection.

If you do determine your IP number in one of these ways, it is usually not the number
seen by the world, because most devices are connecting through some form of network
address translation. To see the number that the world sees, you have to connect to someone
else and ask them to tell you what [P number they see you at.

procedure main(argv)
n := open(argv[1],"n") |
stop("can’t connect to ", argv[1]|"missing host")
write("connected to: ", image(n)[6:-1])
write("using: ", gethost(n))
end
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Non-blocking network opens

Servers need to never block. The call open(":port","nl") creates a listener on the specified port,
without waiting around for someone to actually connect to it. The network file returned
from open() is not open for reading or writing, so it is not good for much...yet. About
the only thing you can do with such a file is include it (along with any other network
connections you have going) as an argument in a call to select(). If a listener matches a
current connection request, select() converts it into a regular network connection as per
mode "na".

In addition to non-blocking servers’ listener connections, in the real-world clients need a
way to do an almost non-blocking connection as well. TCP connections over long distances
take a highly variable amount of time, but most clients do not want to “freeze” for a couple
of minutes while the connection attempt times out. The network client versions of open()
allows an optional third parameter to supply it with a timeout value, in milliseconds.

UDP

UDP is another protocol used on the Internet. TCP is like a phone call: all messages you
send on the connection are guaranteed to arrive in the same order they were sent. UDP
on the other hand is more like the postal service, where messages are not guaranteed to
reach their destination and may not arrive in the same order they were sent in. Messages
sent via UDP are called datagrams. It’s a lot cheaper (faster) to send UDP messages than
TCP, though, especially if you are sending them across the Internet rather than to a local
machine. Sending a postcard is usually cheaper than a long distance phone call!

UDP datagrams can be sent either with an open()/writes() pair, or with send(). Typically
a server sends/receives on the same socket so it will use open() with read() and write(). A
client that only sends one or two datagrams uses send()/receive().

The following example provides a service called "rdate" that allows a program to ask a
remote host what time it has. The server waits for request datagrams and replies with the
date and time. The "u" flag added to the mode in the call to open() signifies that a UDP
connection should be used. The function receive() waits for a datagram to arrive, and then
it constructs a record having the address the message came from and the message in it.
The server uses the address to send the reply.

f ;= open(":1025", "nua")
while r := receive(f) do {
# Process the request in r.msg

send(r.addr, reply)
}

The record returned by receive() has two fields: the addr field contains the address of
the sender in "host:port" form, and the msg field contains the message.
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To write a UDP client, use mode "nu" Since UDP is not reliable, the receive() is guarded
with a select(); otherwise, the program might hang forever if the reply is lost. The timeout of
five seconds in the call to select() is arbitrary and might not be long enough on a congested
network or to access a very remote host. Notice the second argument to getserv(); it restricts

the search for Internet service information to a particular network protocol, in this case
UDP.

procedure main(args)
(*fargs = 1) | stop("Usage: rdate host")
host := args[1]
s := getserv("daytime", "udp")
f := open(host||":"||s.port, "nu") |
stop("Open failed: ", &errortext)
writes(f, " ")
if *select(f, 5000) = 0 then
stop("Connection timed out.")
r := receive(f)
write("Time on ", host, " is ", r.msg)
end

From these examples you can see that it is relatively easy to write programs that
use Internet communication. But TCP and UDP are very general, somewhat low-level
protocols; most programs employ a higher-level communication protocol, either by defining
their own, or using a standard protocol. If you need to define your own Internet protocol,
you can do it on top of TCP or UDP; if your program needs to use a standard Internet
protocol, you should check first to see if the protocol is built-in to the language as part of
the messaging facilities, described in the next section.

Secure Sockets

Unicon offers secure sockets to encrypt data when using the TCP/UDP protocols.
Example server code:

procedure main()
sock := open("localhost:6600", "nae", "key=server.key", "cert=server.crt", "ca=ca.crt") |
stop(&errortext)
select(sock) # wait for input
msg := ready(sock)
write("Message from client:", msg)
writes(sock, msg) # echo back the same message to the client
close(sock)
end

Example client code:
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procedure main()
sock := open("localhost:6600", "ne") | stop(&errortext)
writes(sock, "Hello SSL Socket")
select(sock) # wait for input
msg := ready(sock)
write("Message from server:", msg)
close(sock)
end

5.5 Messaging Facilities

Unicon’s messaging facilities provide higher level access to many popular Internet protocols.
A call to open() using mode "m" establishes a messaging connection. The filename argument
to a messaging connection is a URI (Uniform Resource Indicator) that specifies the protocol,
host machine, and resource to read or write. The protocols implemented thusfar are HTTP,
HTTPS, Finger, SMTP, and POP. Extra arguments to open() are used to send headers
defined by the protocol. For example, the call

open("mailto:unicon-group”, "m", "Reply To: jeffery@cs.uidaho.edu")

supplies a Reply To field as a third parameter to open() on an SMTP connection.
Header fields from the server’s response to a connection are read by subscripting the
message connection value with a string header name; an example is in the next section.

HTTP and HTTPS

HTTP is used to read or write to Web servers; the content read or written typically consists
of HTML text. The following program, httpget.icn, fetches a remote file specified by a URI on
the command line, and saves it as a local file. The Icon Program Library module basename
is used to extract the filename from the URI.

link basename

procedure main(argv)
f1 := open(argv[1],"m")
f2 := open(basename(argv[1]),"w")
while write(f2, read(f1))

end

This example retrieves the actual data for a successful HTTP request; for a failed
request the connection returns no data, appearing to be an empty file. Programs can check
the HTTP status code in order to determine the nature of the problem. Status codes and
other metadata from HTTP header lines are inspected by subscripting the connection with
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the desired header. For example, in the previous program, checking f1["Status-Code"] would
allow us to detect HT'TP errors, and f1["Location"] would allow us to find the new location
of the file, if the HT'TP server had informed us that the file had moved. You can retrieve
this status information on a remote file without retrieving the file itself. If you open a URI
with mode "ms" instead of "m", an HTTP request for header information is made, but no
data is retrieved.

HTTPS is HTTP communicated over a secure-socket encryption layer. The encryption
requires the use of encryption keys and certificates to validate the authenticity of the remote
site. Certificates are typically stored in a directory or a database of some kind. Mode "m-"
may be used in open() to skip the validation of the certificate provided by the remote site.

SMTP and POP

SMTP is used to send a mail message. Mail is delivered via an SMTP server machine
on which the user must have a valid account. These default to the current user on the
current host machine. Two environment variables UNICON SMTPSERVER and UNI-
CON _USERADDRESS can be set to override the default behavior.

POP is used to read mail messages. POP is the least file-like of these protocols. A POP
connection feels like a list of strings, each string containing an entire mail message, rather
than a simple sequence of bytes. Function read() and operator ! produce entire messages
which in general contain many newline characters. POP messages may be removed by
either delete() or pop(); messages are buffered in such a way that message removal on the
server occurs when the connection is explicitly and successfully closed.

Here’s a simple program that illustrates the use of messaging to get email from a POP
server. It gets messages from the server without deleting them and, for every message,
prints out who the message is from as well as the subject line.

procedure main(argv)
user := argv[1] | getenv("USER") | stop("no user")
passwd := argv[2] | getenv("PASSWD") | stop("no password")
server := argv[3] | getenv("MAILHOST") | "mailhost"
conn := open("pop://"||user||":"||passwd||"@"||server, "m") |
stop("couldn’t connect to the POP server ", server)
every msg := lconn do msg ?
while line := tab(find("\n")) do
if =("From: " | "Subject: ") then write(line)
close(conn)
end

You should improve the password handling in this program if you use it! Chapter 14
includes another example use of Unicon’s POP messaging facilities: a spam filter.
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5.6 Tasks

A task is an executing program within the Unicon virtual machine. A single task called
the root is created when the interpreter starts execution. Additional tasks are created
dynamically as needed.

The tasking facilities allow Unicon programs to load, execute, communicate with, and
control one another, all within a single instantiation of the Unicon interpreter.

Although Unicon programs can use the tasking facilities to load and execute any number
of other programs within the same interpreter space, the tasking facilities do not introduce
a concurrent programming construct nor do they include special support for multiprocessor
hardware. Their domain is that of high-level language support for programs that benefit
from or require a tighter coupling than that provided by inter-process communication; that
is, programs that access each other’s state extensively.

Co-expressions provide the tasking facilities’ program execution model, and co-
expression activation serves as the communication mechanism. The extensions are gen-
eral enough to be useful in a wide variety of contexts. For example, programs that use
the multi-tasking interface can communicate directly without resorting to external files or
pipes.

At the language level, the tasking facilities include several built-in functions and key-
words, but no new types, declarations, or control structures. Several existing functions
have been extended to offer additional support for the multi-tasking environment. Sepa-
rate memory allocation regions are established for each task.

Preliminary terminology

Before describing the task model, a few definitions are needed. These definitions pertain
to regions of memory referenced by programs during execution.

A name space is a mapping from a set of program source-code identifiers to a set of
associated memory locations [Abelson85]. Icon programs have a global name space shared
across the entire program and various name spaces associated with procedures. Procedures
each have a static name space consisting of memory locations shared by all invocations of the
procedure and local name spaces private to each individual invocation of the procedure.
When a co-expression is created, a new local name space is allocated for the currently
executing procedure, and the current values of the local variables are copied into the new
name space for subsequent use by the co-expression.

An Tcon program has an associated program state consisting of the memory associated
with global and static name spaces, keywords, and dynamic memory regions. Similarly, a
co-expression has an associated co-expression state consisting of an evaluation stack that
contains the memory used to implement one or more local name spaces. Co-expressions in
an Icon program share access to the program state and can use it to communicate.
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Tasks as extended co-expressions

A task consists of a main co-expression and zero or more child co-expressions that share
a program state consisting of the global and static name spaces, keywords, and dynamic
memory regions. At the source-language level, tasks are loaded, referenced, and activated
solely in terms of one of their member co-expressions; the task itself is implicit. Co-
expressions share access to the program state and can use it to communicate. Unicon
provides the task model as a mechanism for multi-tasking, but does not predefine the policy;
matters such as the scheduling algorithm used and whether multi-tasking is co-operative
or pre-emptive are programmable at the user level in terms of co-expression activations.

Task creation

A task can create other tasks. The function
load(s, L, f1, 12, 3, i1, i2, i3)

loads an icode file [Gris86| specified by the file name s, creates a task for it and returns a
co-expression corresponding to the invocation of the procedure main(L) in the loaded icode
file. L defaults to the empty list. Unlike conventional Icon command-line argument lists,
the argument list passed to load() can contain values of any type, such as procedures, lists,
and tables in the calling task.

The task being loaded is termed the child task, while the task calling load() is termed
the parent. The collection of all tasks forms a tree of parent-child relationships.

f1, f2, and f3 are file arguments to use as &input, &output, and &error in the loaded task;
&input, &output, and &error default to those of the loading task. i1, i2, and i3 are three integer
arguments that supply initial region sizes for the task’s block, string, and stack memory
areas, respectively. i1 and i2 default to 65000, while i3 defaults to 20000 (the defaults may
be changed by the environment variables BLKSIZE, STRSIZE, and MSTKSIZE).

Running other programs

A co-expression created by load() is activated like any other co-expression. When activated
with the @ operator, the child task begins executing its main procedure. Unless it suspends
or activates &source, the child task runs to completion, after which control is returned to
the parent. Chapter 5 presents an alternative means of executing a child with which the
parent retains control over the child as it executes.

This default behavior is illustrated by the program segload, which loads and executes
each of its arguments (string names of executable Unicon programs) in turn. Each of the
strings passed on the command line and extracted from the list using the element-generation
operator, !) is passed in turn to load(), which reads the code for each argument and creates
a task in which to execute the loaded program. The tasks are then executed one-by-one
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by the co-expression activation operator, @. There is nothing special about this example
except the semantics of the load() function and the independent execution environment
(separate global variables, heaps, and so forth), that load() provides to each task.

# segload.icn

procedure main(arguments)
every @load(!larguments)

end

For example, if three Icon programs whose executable files are named translate, assem-
ble, and link are to be run in succession, the command

segload translate assemble link

executes the three programs without reloading the interpreter for each program.

Data access

Although tasks have separate program states, they reside in the same address space and
can share data; values can be transmitted from task to task through main()’s argument
list, through co-expression activation, or by use of event monitoring facilities described in
Chapter 10. In the following pair of programs, the parent receives a list value from the
child and writes its elements out in reverse order.

# parent.icn
procedure main()
L := @ load("child")
while write(pull(L))
end

# child.icn

procedure main()
L:=T]
while put(L, read())
return L

end

Access Through Task Argument Lists

The following program takes its first argument to be an Icon program to load and execute
as a child, sorts its remaining arguments, and supplies them to the child program as its
command-line arguments (pop() and sort() are Icon built-in functions that extract the first
list element and sort elements, respectively):
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procedure main(arguments)
@load(pop(arguments), sort(arguments))
end

Argument lists allow more sophisticated data transfers; the segload example presented
earlier can be extended to transmit arbitrary structures between programs using argument
lists in the following manner. As in segload, each string naming an executable Icon program
is passed into load(), and the resulting task is activated to execute the program. In this case,
however, any result that is returned by one of the programs is assigned to local variable L
and passed to the next program in the list via the second argument to load().

# seqgload2.icn
procedure main(arguments)
every program := larguments do
L := @load(program, L)
end

The net effect of seqgload2.icn is similar to a UNIX pipe, with an important difference:
Arbitrary Icon values can be passed from program to program through the argument lists.
This capability is more interesting in substantial multipass tools such as compilers, where
full data structures can be passed along from tool to tool instead of writing out text
encodings of the structures to a file.

Inter-task Access Functions

Several built-in functions provide inter-task access to program data. These functions are
usable in any multi-task Unicon context, but are especially useful in program execution
monitoring, discussed in Chapter 9.

For example, the variable() function takes a co-expression value as an optional second
argument denoting the task from which to fetch the named variable. variable(s, C) is useful
for assigning to or reading from another task’s variables. In the following segload example,
the parent initializes each child’s Parent global variable (if there is one) to refer to the
parent’s &main co-expression. A child task can then use Parent to determine whether it is
being run standalone or under a parent task. The variable() function is useful in inspecting
values, especially at intermediate points during the monitored execution of a TP.

# seqgload3.icn
procedure main(arguments)
every arg := larguments do {
Task := load(arg)
variable("Parent", Task) := &main
@Task
}

end
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In addition to extending existing functions for monitoring, several new functions have
been added. The use of these monitoring functions are illustrated in many example monitors
in Unicon’s ipl/mprogs directory. Some of the intertask access functions are listed in Figure
5-1. In these functions, parameter C refers to a co-expression that may be from a task other
than the one being executed. Functions that generate values can produce more than one
result from a given call.

cofail(C) transmit failure to C.

fieldnames(r) generate fieldnames of record r.
globalnames(C)  generate the names of C’s global variables.
keyword(s, C) produces keyword s in C.

Keywords are special global variables that have

special semantics in certain language facilities.
localnames(C,i)  generates the names of C’s local variables,

i calls up from the current procedure call.
paramnames(C,i) generates the names of C’s parameters.
staticnames(C,i)  generates the names of C’s static variables.
structure(C) generates the values in C’s block region, or heap.

The heap holds structure types such as lists and tables.
variable(s,C,i) produces variable named s, interpreted i levels

up within C’s procedure stack.

Figure 5-1: Unicon interprogram access functions.

Shared icode libraries

Programs that are written to take advantage of the multi-tasking environment gain in space
efficiency and modularity. Code sharing is one natural way to achieve space efficiency in
a collection of programs. Since procedures are first-class data values in Icon, code sharing
can be implemented via data sharing. Programs executing in a single invocation of the
interpreter can share code easily if the code is not required to produce side effects on global
variables in the calling task’s program state. If side-effects to the calling task’s program
state are required, the shared code must generally be written with care to explicitly reference
the calling task’s state. Side effects in the client task can also be achieved through the
parameters passed in and results obtained by calling the shared procedure.

Loading shared code

Consider a collection of applications that make extensive use of procedures found in the
Icon program library (IPL) [Griswold90c|. If those applications are run using MT Icon, the
IPL routines need be loaded only once, after which they may be shared.
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In order to reference shared code from a loaded task, two additional considerations
must be satisfied: the shared code must be loaded, and the client tasks must be able to
dynamically link shared routines into their generated code.

Both of these problems can be solved entirely at the source level: In order to introduce
a shared Icon procedure into the name space, a global variable of the same name must
be declared. Managing the loading of shared libraries is itself a natural task to assign to
an Icon procedure that uses a table to map strings to the pointers to the procedures in
question.

Code sharing example

The following collection of three programs illustrate one schema that allows code sharing.
Other conventions can certainly be devised, and much of the sharing infrastructure pre-
sented here can be automatically generated. Program calc.icn consists of a shared library
procedure named calc() and a main procedure that exports a reference to calc() for sharing:

# calc.icn
procedure calc(args...)

# code for calc

# (may call other routines in calc.icn if there are any)
end

procedure main()
# initialization code, if any
return calc

end

Note that a module exporting shared procedures can also have global variables (possibly
initialized from other command-line arguments). Shared modules can export other values
besides procedures using the same mechanism.

The parent task that loads the various shared library clients implements a procedural
encapsulation (loadlib() in this example) of an Icon table to store references to shared rou-
tines. The parent passes this procedure to clients. Each client calls the procedure for each
shared routine. Routines that are already loaded are returned to requesting tasks after a
simple Icon table lookup. Whenever a routine is requested that has not been loaded, the
load() function is called and the shared library activated.

procedure main(arguments)
@Iload("client",put(arguments,loadlib))
end

procedure loadlib(s, C)
static sharedlib
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initial sharedlib := table()

sharedlib[s] := @load(s)

variable(s, C) := sharedlib[s]
end

A client of calc declares a global variable named calc, and assigns its value after inspect-
ing its argument list to find the shared library loader:

global loadlib
global calc
procedure main(arguments)
if /loadlib then stop("no shared libraries present")
loadlib("calc", &current)
# ... remainder of program may call shared calc
end

Sharing procedure collections

The primary deficiency of the previous example is that it requires one shared library pro-
cedure per Icon module, that is, separate compilation. In practice it is more convenient to
have a collection of related procedures in a given Icon compilation unit. Shared libraries
can employ such a mechanism by resorting to a simple database that maps procedure names
to load modules.

5.7 Summary

Unicon’s system facilities provide a high-level interface to the common features of modern
operating systems, such as directories and network connections. This interface is vital to
most programs, and it also presents the main portability challenges, since a Unicon design
goal is for applications to require no source code changes and no conditional code needed
to run on most operating systems. Of course some application domains such as system
administration are inevitably platform dependent.

There are two major areas of the system interface that are whole application domains
extensive enough to warrant an entire chapter of their own: databases and graphics.
Databases can be viewed as a hybrid of the file and directory system interface with some
of the data structures described in Chapter 2. Since many databases are implemented us-
ing a client/server architecture, the database interface also includes aspects of networking.
Databases are presented in the Chapter 6.

Graphics is another crucial component of the system interface, rich enough to warrant
special features built-in to the language, and deep enough to warrant an entire book. Like
databases, graphics can be viewed as an extension of the file data type described in this
chapter. Unicon’s powerful 2D and 3D graphics facilities are discussed in Chapter 7.



Chapter 6

Databases

Databases are technically part of the system interface described in the last chapter, but
they are an important application area in their own right. Different kinds of databases
are appropriate in different situations depending on how much information is to be stored
and what kinds of accesses to the information are supported. This chapter describes three
kinds of databases for which Unicon provides direct support, enabling you to:

e Read and write memory-based structures to data files.
e Use DBM databases as a persistent table data type.

e Manipulate SQL databases through the ODBC connection mechanism or the SQLite
plugin (discussed on page 525).

6.1 Language Support for Databases

Unicon provides transparent access to databases stored in local files and on remote servers.
The term transparent means that the built-in functions and operators used to access infor-
mation in a database are the same as those used to access information in the memory-based
structures presented in Chapter 2. To do this, connections to databases are represented by
new built-in types that are extensions of the file and table data types.

Some people might prefer a different syntax for databases from what is used for data
structures. A different syntax, such as one based purely on function calls, would be conso-
nant with the difference in performance the programmer can expect to see when accessing
data in files as opposed to memory-based data structures. However, the performance of
operators already depends on the type of the operands. Consider the expression x. If x is a
structure, its elements are generated from memory, but if x is a file, Ix reads and generates
lines from the file. The goal for Unicon is to make databases just as easy to learn and use
as the rest of the language, and to minimize the introduction of new concepts.

91
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The word “database” means different things to different people; for some, it is the short
form of “relational database.” This chapter uses the term database to refer to any method
of providing persistent structures that store information from one program run to the next.
The operators used to access a database determine whether one element at a time is read
or written, or whether many operations are buffered and sent to the database together.

6.2 Memory-based Databases

If the entire database fits in memory at once, you can achieve vast speed-ups by avoiding the
disk as much as possible. For example, all queries to read the database can be performed
from memory. The database may be modified in memory immediately, and updated on
the disk later on. Memory-based databases become increasingly feasible as main memories
grow larger. They are an excellent choice for many applications.

One way to implement a memory-based database is to build up your arbitrary structure
in memory, and then use the Icon Program Library module xcodes to write them out and
read them in. The xcodes procedures convert structures to a string format that can be
written to a file, and convert such strings back into the corresponding structure. The
following sequence saves the contents of structure db to a file named db.dat.

db := table()

db["Ralph"] := "800-USE-ICON"
db["Ray"] := "800-4UN-ICON"
dbf := open("db.dat","w")
xencode(db, dbf)

close(dbf)

The converse operation, reading in a structure from a file is also simple:

dbf := open("db.dat")
db := xdecode(dbf)
close(dbf)
write(db["Ralph"])

This approach works great for databases that do not need to be written to disk on
an on-going basis and for which the queries can readily be expressed as operations on
structure types. For example, a telephone rolodex application would be well-served by this
type of database. The data fits comfortably in memory, updates often occur in batches, and
simple queries (such as a student’s name) provide sufficient access to the data. The other
two kinds of databases in this chapter use traditional database technologies to efficiently
address situations where this type of database is inadequate.
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6.3 DBM Databases

A classic database solution on the UNIX platform is provided by the DBM family of library
functions. DBM stands for Data Base Manager, and the functions maintain an association
between keys and values on disk, which is very similar to the table data type. DBM
was eventually followed by compatible superset libraries called NDBM (New Data Base
Manager) and GDBM (GNU Data Base Manager). Unicon uses GDBM on all platforms.

DBM databases are accessed via the open() function using mode "d" to open a database
for reading and writing, or mode "dr" for read-only access. Once opened, DBM databases
resemble the table data type and are manipulated using table operations. For example, if d
is a DBM file, d[s] performs a database insert/update or lookup, depending on whether the
expression is assigned a new value, or dereferenced for its current value. Values can also
be inserted into the database with insert(d, k, v) and read from it with fetch(d, k). delete(d,
k) similarly deletes key k from the database. DBM databases are closed using the close()
function. The following example program takes a database and a key on the command line,
and writes out the value corresponding to that key.

procedure main(args)
d := open(args[1], "d") | stop("can’t open ", args[1])
write(d[args[2]])

end

If you are wondering why the call to open() isn’t followed by a call to close(), you are
right, it is proper to close files explicitly, although the system closes all files when the
program terminates. How would you generalize this program to accept a third command-
line argument, and insert the third argument (if it is present) into the database with the
key given by the second argument? You might easily wind up with something like this:

procedure main(args)
d := open(args[1], "d") | stop("can’t open ", args[1])
d[args[2]] := args[3]
write(d[args[2]])
close(d)
end

DBM databases are good for managing data sets with a simple organization, when the
size of the database requires that you update the database a record at a time, instead of
writing the entire data set. For example, if you wrote a Web browser, you might use a
DBM database to store the user’s set of bookmarks to Web pages of interest.

There is one basic limitation of DBM databases when compared with the table data
type that you should know about. DBM databases are string-based. The keys and values
you put in a DBM database get converted and written out as strings. This makes the
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semantics of DBM databases slightly different from tables. For example, a table can have
two separate keys for the integer 1 and the string "1", but a DBM database will treat both
keys as the string "1". This limitation on DBM databases also means that you cannot use
structure types such as lists as keys or values in the database. If the type is not convertible
to string, it won’t work. You can use the functions xencode() and xdecode(), described in
the previous section, to manually convert between strings and structures for storage in a
DBM database if you really need this capability.

6.4 SQL Databases

DBM is great for data that is organized around a single key, but it is inadequate for
complex databases. The industry standard choice for enterprise-level data organization is
the Structured Query Language (SQL). SQL is supported by every major database vendor.

Unlike DBM, a SQL database can contain multiple tables, and those tables are accessed
by walking through a set of results to a query, rather than by accessing individual elements
directly. SQL is designed for industrial-strength relational databases.

The SQL language

The SQL language was invented by IBM and based on relational database theory developed
by E.F. Codd. A database is a collection of tables, and each table is a collection of rows.
The rows in a table contain information of various types in a set of named columns. Rows
and columns are similar to records and fields, except that they are logical structures and do
not describe the physical form or layout of the data. There is an ANSI standard definition
of SQL, but many vendors provide extensions, and most vendors are also missing features
from the ANSI standard. Unicon allows you to send any string you want to the database
server, so you can write portable “vanilla SQL” or you can write vendor-specific SQL as
needed.

SQL was originally intended for text-based interactive sessions between humans and
their databases. Nowadays, SQL is primarily used “under the covers” by database applica-
tions that accommodate novice users with a graphical interface that does not require any
knowledge of SQL, while supporting a SQL “escape hatch” for advanced users who may
wish to do custom queries. Such an escape hatch is also a major potential security and
stability hole, so be cautious about allowing a user to type SQL commands themselves.

The duality of pre-cooked GUI-supported SQL versus arbitrary SQL strings for power
users is paralleled in the Unicon language by the fact that Unicon’s built-in database
operators and functions duplicate a subset of the capabilities of SQL. There are often two
ways to do things: using Unicon operations or using SQL statements.

SQL statements can be divided into several categories, the most prominent of which are
data definition and data manipulation. When using SQL within a Unicon program, you
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build up string values containing SQL statements. In the following examples, the SQL is
given unadorned by double quotes or other Unicon artifacts.
New tables are created with a CREATE TABLE statement, such as

create table addresses (name varchar(40), address varchar(40),
phone varchar(15))

Tables have a primary key that must be unique among rows in the table. By default
the primary key is the first one listed, so name is the primary key in table addresses above.

SQL’s data manipulation operations include SELECT, INSERT, UPDATE, and DELETE.
SELECT determines the data set being operated on, picking rows and columns that form
some projection of the original table. SELECT also allows you to combine information
from multiple tables using relational algebra operations. Most databases are long-lived
and evolve to include more columns of information over time. SQL’s ability to select and
operate on projections is an important feature, since code that works with a certain set of
columns continues to work after the database is modified to include additional columns.

INSERT, UPDATE, and DELETE all modify the table’s contents. INSERT adds new rows
to a table. For example:

insert into addresses (name, address, phone)

values ('Nick K’, ’1 Evil Empire’, ’(123)456-7890")
insert into addresses (name, address, phone)

values ('Vic T’, 23 Frozen Glade’, (900)888-8888’)

UPDATE and DELETE can modify or remove sets of rows that match a particular criterion,
as in

update addresses set address = '666 RTH, Issaquah’
where name = 'Nick K’
delete from addresses where name ="Vic T’

This section presented only a few aspects of the SQL language. For simple database
tasks you can in fact ignore SQL and use the Unicon facilities described in the rest of this
chapter. However, for more complex operations the best solution is to formulate some SQL
commands to solve the problem. A full discussion of SQL is beyond the scope of this book.
For more information on this topic you might want to read one of the following books:
Ramez Elmasri and Shamkant Navanthe’s Fundamentals of Database Systems, C.J. Date
and Hugh Darwen’s A Guide to the SQL Standard.

Database architectures and ODBC

SQL databases are accessed through an underlying Open DataBase Connectivity (ODBC)
transport mechanism. This mechanism allows the programmer to ignore the underly-
ing architecture. Hiding this complexity from application programmers is important.
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The database architecture may vary from a single process accessing a local database, to
client /server processes, to three or more tiers spanning multiple networks. Figure 6-1 il-
lustrates the role played by ODBC in providing Unicon with database access in one- and
two-tier configurations. While this chapter cannot present a complete guide to the construc-
tion of database systems, it provides concrete examples of writing Unicon client programs
that access typical database servers.

Unicon application |

Mnicon runtime system\

\ODBC Driver Manager \

| |
\ODBC Driver\ ‘ODBC Driver \

file /O network
T =
local DB —

Figure 6-1: Unicon and ODBC hide underlying architecture from applications

To use Unicon’s SQL facilities, you must have several software components in place.
First, you need a SQL database server that supports ODBC. You can buy a commer-
cial SQL server, or use a free server such as MySQL (www.mysgl.com) or PostgreSQL
(www.postgresgl.org).

Second, you need an account, password, and permissions on the SQL server in order to
connect to it. The details are server-dependent and outside the scope of this book.

Third, your client machine needs an ODBC driver manager, and an ODBC driver for
your SQL server; these must be configured properly. The driver manager is a component
that connects applications to various databases; ODBC drivers are dynamic link libraries
that database vendors supply to talk to their database. Figure 6-2 shows database configu-
ration for MySQL via the MyODBC GUI dialog box on Windows (left), and in a ~/odbc.ini
file on Linux (right). In both cases, configuration involves knowing the internet server name
or IP address, the port, and the database to connect to. For that triplet, you get to define
a name called a DSN or data source name, which is the name that Unicon will pass in to
open(). In the Windows dialog, this name is a text field explicitly named as a DSN, while
in the Linux odbc.ini file, it is at the top, inside the square brackets.

In both cases, there are a lot of additional options which are beyond the scope of this
book. On Windows, each ODBC driver may have its own custom dialogs for configuration,
while on Linux the odbc.ini file is more the property of the driver manager and is used to
configure all the various drivers. As a fair warning, the details required in the dialogs or
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the exact syntax of the odbc.ini and its required entries for a given driver change slightly
from time to time and are beyond the scope of this book. Consult current ODBC docu-
mentation for the driver manager on your platform and the specific database to which you
are connecting.

TD my=sgl Driver default configuration |

Thiz iz in public domain and comes with MO WARRANTY of any kind
Enter a database and options for connect

Windowes DSH name: Isa.rnpledsn

MpSHL host [name or 1P): Iunicon.sf.net

MpSaL database name: IlBSl

Uzer: ||
Paszward: I [phones]

Port (if not 3306]; I_ Driver = /usr/lib64/libmyodbc5.so

$0L command on connect: | Description = phone example
— Dptions that affects the behaviour of MyODEC Server = localhost

[T Don't optimize column width [~ Pad CHAR to full length Database = phOﬂGbOOk

[~ Return matching rows ™ Retum table names in SOLD escribeCal

[ Trace MyODEC W Use compressed protocal Port = 3306

™ Allow BIG results ™ lgnore space after function names

™ Don't prompt on connect ™ Force use of named pipes

™ Simulate ODBC 1.0 [~ Change BIGIMNT columns ta INT

™ lanore # in #.table ™ Mo catalog [exp)

™ Use manager cursors [exp) [ Fead options from C: iy, crf

™ Mo estended fetch (exp] [~ Safety [Check this if you have problems]

QK. I Cancel |

Figure 6-2: Configuring ODBC on Windows (left) and Linux (right)

Once you have the ODBC software set up, writing the Unicon client program to connect
to your database is straightforward.

Opening a SQL database

To connect to a SQL database, call open() with mode "o". This establishes a session with
a data source. The filename argument to open() is the data source name to which you are
connecting; it is associated with a particular ODBC driver, remote database server machine
or IP number, and port within the ODBC driver manager.

Mode "o" is followed by additional string arguments to open(). The first is an optional
default table name used in the various functions that take a table name. Applications
that send their own custom SQL strings via the sql() function may find that their SQL
strings always specify what table they are operating on, rendering this optional parameter
unnecessary. The next two arguments are the user name and password to use in connecting
to the specified data source. Here is an example that establishes connections to a database
(unicondb) as user scott with password tiger, with and without specifying an initial table
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mydbtable. Most applications will not need two open connections to their database, but
see below for an example that does.

db := open("unicondb”, "0", "mydbtable", "scott", "tiger")
db2 := open("unicondb”, "0", "scott", "tiger")

The open() function returns a value that supports many of the operations of both a
file and a table, or fails if the connection cannot be established. The underlying session
information is shared by multiple calls to open() the same database. In addition to the
network connection and SQL session information that is retained, each database file value
maintains a current selection consisting of a set of rows corresponding to the current query,
and a cursor position within that selection. When a database is first opened, the selection
consists of a null set containing no rows and no columns.

Querying and modifying a SQL database

Subsequent queries to the database can be made by calling sql(db, sqlcmd). The sql() function
sets the current selection within the database and places the cursor at the beginning of the
set of selected rows. For example, to obtain Vic T’s phone number you might say

sqgl(db, "select phone from addresses where name="Vic T'")

Vic’s phone number is included if you use the original select * query, but the more
specific your query, the less time and network bandwidth is wasted sending data that your
client application must filter out. You should do as much work on the server (in SQL) as
possible to make the client more efficient.

Since the function sql() transmits arbitrary SQL statements to the server, it can be used
for many operations besides changing the current selection. The sql() function returns a null
value when there is no return value from the operation, such as a create table statement. Its
return value can be of varying type for other kinds of queries, and it can fail, for example
if the SQL string is malformed or requests an impossible operation.

Traversing the selected rows

To walk through the rows of your current database selection, you call fetch(db). The value
returned is a row that has many of the operations of a record or a table, namely field access
and subscripting operators. For example, if fetch(db) returns a row containing columns
Name, Address, and Phone, you can write

row := fetch(db)
write(row.Name)
write(row["Address"])
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Called with one argument, fetch(db) advances the cursor one position. With two arguments,
fetch(db, col) produces a column by name from the current row, without advancing the
cursor. The preceding example could have been written

write(fetch(db,"Name"))
write(fetch(db,"Address"))

A SQL example application

A human resources database might include two tables. One table might maintain employee
information, such as names, identification numbers, and phone numbers, while another
table maintains entries about specific jobs held, including employee’s 1D, the pay rate, a
code indicating whether pay is hourly or salaried, and the job title. Note that the SQL is
embedded within a string literal.

sqgl(db, "create table employees (id varchar(11), name varchar(40),
phone varchar(15))")

sql(db, "create table jobs (id varchar(11), payrate integer, is_salaried char,
title varchar(40))")

Inserting rows into the database looks like
sql("insert into employees (id, name, phone) values(32, ‘Ray’, '274-2977’)")

Now, how can you print out the job title for any particular employee? If you have the
employee’s identification number, the task is easy, but let’s say you just have their name.
These are the kinds of jobs for which SQL was created. Information from the employees
table is effortlessly cross-referenced with the jobs table by the following SQL. The string
is long so it is split into two lines. A Unicon string literal spans multiple lines when the
closing double quotes has not been found and the line ends with an underscore character.

sql(db, "select name,title from employees,jobs _
where name="Ray’ and employees.id = jobs.id")
while write(fetch(db). Title)

SQL types and Unicon types

SQL has many data types, most of which correspond to Unicon types. CHAR and VARCHAR
correspond to Icon strings; INTEGER and SMALLINT correspond to integers; FLOAT and
REAL correspond to reals, and so on. The philosophy is to convert between Icon and SQL
seamlessly and with minimal changes to the data format, but you should be aware that
these are not exact matches. For example, it is possible to define a FLOAT with more
precision than an Icon real, and it is easy to produce an Icon string that is longer than the
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maximum allowed VARCHAR size on most SQL servers. Unicon programmers writing SQL
clients must be aware of the limitations of the SQL implementations they use.

Unicon has structure types for which there is no SQL equivalent. Values of these types
cannot be inserted into a SQL database unless you explicitly convert them to a SQL-
compatible type (usually a string) using a function such as xencode(). SQL also has types
not found in Unicon such as bit strings, timestamps, and BLOBS; they are represented by
strings, and strings are used to insert such values into SQL databases. Strings are also used
to represent out-of-range values when reading SQL columns into Unicon.

More SQL database functions

SQL databases are feature-rich enough to warrant a suite of functions in addition to those
they share with other kinds of files and databases. These functions are described in detail in
Appendix A, but some of them deserve special mention. The function dbtables(db) is useful
to obtain a listing of the data objects available within a particular database. Function
dbcolumns(db) provides detailed information about the current table that is useful in writing
general tools for viewing or modifying arbitrary SQL databases.

The functions dbproduct(db) and dbdriver(db) produce information about the DBMS on
which db resides, and the ODBC driver software used in the connection. The function
dblimits(db) produces the upper bounds for many DBMS system parameters, such as the
maximum number of columns allowed in a table. These functions return their results as a
record or list of records whose field names and descriptions are given in Appendix A.

6.5 Tips and Tricks for SQL Database Applications

In addition to the complexity of learning SQL itself, SQL database applications have a
characteristic flavor which may or may not seem natural to the Unicon programmer.

Operating on large files

Asking for 200MB of data in a remote SQL database is a good way to bring a computer to
its knees. Some SQL operations are slow due to an inefficient query on the remote server,
while others are slow because large amounts of data are transmitted over a limited network
connection. For a fixed amount of data, operation time will vary radically depending on
how it is organized; fewer, larger tuples are transmitted faster than many smaller tuples.

Use multiple connections to nest queries

It is common to use more than one table at once. Some times this is using SQL’s JOIN
operation, but sometimes it is not. If you try to nest a second query inside a first one, you
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will quickly find that on a given connection, only one SELECT and one row set is maintained
at a time. The second SELECT replaces the first, so for example:

db := open("mydsn", "o", ...)
sql(db, “SELECT ...”)
while r ;= fetch(db) do {
sql(db, “SELECT ...")
while r2 := fetch(db) do write(r2.foo)

}

does not work. Within your operating system and database server’s limits, the easy solution
is to open multiple connections to your database:

db1 := open("mydsn", "o", ...)
db2 := open("mydsn", "o", ...)
sql(db, “SELECT ...")
while r := fetch(db) do {
sqgl(db2, “SELECT ...")
while r2 := fetch(db2) do write(r2.foo)

}

Dynamic records

Rows are represented as a special kind of Unicon record whose fields are determined at
run-time from the names of selected columns. Record types introduced at runtime are
called dynamic records, and they are useful in other contexts besides databases.

The function constructor(rname, field, field, ...) produces a procedure that constructs
records named rname with the given fields. The field names can be arbitrary strings,
but only legal identifiers will be subsequently accessible via the field operator (.)

The db library

The declaration link db provides simplified SQL access routines for non-SQL programmers.
This library will not allow you to avoid learning SQL for long, but may ease the conversion
from Unicon structure values into SQL strings for transmission over the network. The most
useful of these procedures is dbupdate(), which sends a record (tuple) to the database. The
following example updates two columns within a row returned by fetch().

row := fetch(db)

row.Name := "Bill Snyder"
row["Address"] := "6900 Tropicana Blvd"
dbupdate(db, row)
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Of course, before a fetch can be performed, a row set must have been selected. The pro-
cedure dbselect(db, columns, filter, order) selects tuples containing columns from the database,
with optional filter(s) and ordering rule(s). Inserting and deleting rows is performed by
procedures dbinsert() and dbdelete(). The dbinsert() function takes two parameters for each
column being inserted, the column name and then the value.

Unwritable tuples

Many SQL selections are read-only. The relational combination of columns from different
tables is powerful, but the resulting selections are non-updatable. Another example of a
read-only query is a GROUP BY query, which is usually applied before an aggregate count.
Executing a SELECT * on a single table is updatable, but if you do something fancier, you
will have to know the semantics of SQL to tell whether the result may be modified.

6.6 Summary

Databases are a standard form of persistent storage for modern applications. The notation
for manipulating a database looks like a sequence of table and record operations, comprising
a combination of Unicon and SQL statements. Database facilities give programmers direct
access and control over the information flow to and from permanent storage.



Chapter 7
Graphics

Unicon provides a rich high level interface to 2D and 3D raster graphics, text fonts, col-
ors, and mouse input facilities provided by an underlying system, such as the X Window
System. Unicon’s graphics are portable across multiple platforms. The most important
characteristics of the graphics facilities are:

e Simplicity, ease of learning
e Windows are integrated with Unicon’s existing I/O functions

e Straightforward input event model

This chapter presents Unicon’s 2D and 3D graphics facilities. Some material on 2D graphics
comes from University of Arizona CS TR93-9. The 3D graphics sections come from Unicon
TR 9, whose original author is Naomi Martinez. The definitive reference for the 2D graphics
facilities is “Graphics Programming in Icon” by Griswold, Jeffery, and Townsend, and this
book is of value for writing 3D programs. Online references for the graphics facilities also
come with the software distributions.

Because different platforms have radically different capabilities, there is a trade-off
between simplicity, portability, and full access to the underlying machine. Unicon aims for
simplicity and ease of programming rather than full low-level access.

7.1 2D Graphics Basics

Unicon’s 2D facilities provide access to graphics displays without enforcing a particular
user interface look-and-feel. Events other than keystrokes and mouse events are handled
automatically by the runtime system. Chapter 17 describes the standard class library and
user interface builder for Unicon applications.

Graphic interfaces are event driven; an event reading loop is the control mechanism
driving the application. For example, if an application must be ready to redraw the con-
tents of its window at all times, it may not compute for long periods without checking
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for window events. This event driven paradigm used in the underlying implementation
is optional at the Unicon application level. Since Unicon windows handle many events
automatically and “take care of themselves”, applications follow the event driven paradigm
only when it is needed. Unicon’s extensive use of default values make simple graphics ap-
plications extremely easy to program, while providing flexibility where it is needed in more
sophisticated applications.

A window is a special file opened with mode "g", appearing on-screen as a rectangular
space for text and/or graphics. Windows support text I/O, much as one uses a text
terminal. A simple Unicon graphics program might look like this:

procedure main()

w = open("hello", "g")
write(w, "hello, world")
# do processing ... use w as if it were a terminal
close(w)
end

Windows are open for both reading and writing, and support the usual file operations
with the exceptions of seek() and where(). Unlike regular files, the type() of a window is
"window". Like other files, windows close automatically when the program terminates, so
the call to close() in the above example is optional.

Bit-mapped, or raster, graphics constitute a second programming model for windows.
There are no programming “modes” and code that uses graphics may be freely intermixed
with code that performs text operations. There are many graphics functions and library
procedures, detailed in Appendices A and B.

&window: the Default Window Argument The keyword &window is a default win-
dow for graphics. &window starts with a null value; only window values (and &null) may be
assigned to &window. &window is a default argument to most graphics functions and is used
implicitly by various operations. If a program uses &window, the argument can be omitted
from calls to functions such as EraseArea() and WAttrib(). The window argument is required
for calls to file functions such as write() and writes() since these functions default to &output,
not &window. The default window shortens the code for graphics-oriented programs and
makes it faster.

2D Graphics Coordinates The 2D graphics functions use an integer coordinate system
based on pixels (picture elements). Like the text coordinate system, 2D graphics coordi-
nates start in the upper-left corner of the screen. From that corner the positive x direction
lies to the right and the positive y direction moves down. Unlike text coordinates, the
graphics coordinate axes are zero-based, which is to say that the very top leftmost pixel is

(0,0) by default.
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Angles are real numbers given in radians, clockwise starting at the 3 o’clock position.
Many functions operate on rectangular regions specified by x, y, width, and height compo-
nents. Width and height may be negative to extend the rectangle left or up from x and y.
Screen output may be limited to a rectangle within the window called the clipping region.
The clipping region is set or unset using the function Clip().

Window Attributes A window’s state has many attributes with associated values. Some
values are defined by the system, while others are under program control, with reasonable
defaults. When opening a window, open() allows string arguments after the filename and
mode that specify initial values of attributes when the window is created. For example, to
say hello in italics on a blue background one may write:

procedure main()
w = open("hello", "g", "font=sans,italics", "bg=blue")
write(w, "hello, world")
# processing ...

end

After a window is created, its attributes are read and set using the function WAt-
trib(w,s1,s2,...). Arguments to WAttrib() that have an equals sign are assignments that set
the given value if possible; WAttrib() fails otherwise. open() only allows such attribute as-
signments. Some attributes can only be read by WAttrib() and not set.

String arguments to WAttrib() that have an attribute name but no value are queries which
return the attribute value. WAttrib() generates a string result for each argument; a query on
a single argument produces just the value of that attribute; for multiple arguments and in
the case of assignment, the result is the attr=val form attribute assignments take. Attributes
are also frequently set implicitly by the user’s manipulation of the window; for instance,
cursor or mouse location or window size.

Table 7-1 lists attributes that are maintained on a per-window basis. Attribute values
are string encodings. Usage refers to whether the attribute may be read, written or both.
RWO and WO attributes can be assigned only when the window is opened. Although all
attribute values are encoded as strings, they represent a range of window system features.
The attribute pointer refers to mouse pointer shapes that may be changed by the applica-
tion during different operations. The attribute pos refers to the position of the upper-left
corner of the window on the screen. Screen position is specified by a string containing x,y
coordinates, e.g. "pos=200,200".
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Table 7-1
Canvas Attributes

Name Type / Example Description Usage
size pixel pair Size of window RW
pos pixel pair Position of window on screen RW
canvas normal, hidden Canvas state RW
windowlabel | string Window label (title) RW
inputmask string select categories of input events | RW
pointer arrow, clock Pointer (mouse) shape RW

t
poTens pixel Pointer (mouse) location RW
polntery
display device / "my.cs.esu.edu:0" (X11) device window resides on | RWO
depth # of bits Display depth R
displaywidth, ) ) )

1 Displ R

displayheight prxe ispay size
image string Initial window contents WO

7.2 Graphics Contexts

Some attributes are associated with the window itself, while others are associated with the
graphics context, a set of resources used by operations that write to windows. This distinc-
tion is unimportant in simple applications but is useful in more sophisticated applications
that use multiple windows or draw many kinds of things in windows. A graphics context
has colors, patterns, line styles, and text fonts and sizes.

Although they are called graphics contexts, text operations use these attributes. Text
is written using the foreground and background colors and font defined in the graphics
context. Table 7-2 lists the attributes associated with a graphics context.

Table 7-2
Context Attributes

Name Type / Example Description : Default Usage
fg color / "red" Foreground color : black RW
bg color / "0,65535,0" Background color : white RW
font font name Text font : fixed RW
fheight, fwidth | integer Text font max char height and width | R
leading integer Vertical # pixels between text lines | RW
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Name Type / Example Description : Default Usage
ascent, descent | integer Font height above/below baseline R
drawop logical op / reverse Drawing operation: copy RW
tippled tip-
fillstyle Sllzp % OPAAUESHD™ | (1 aphic fill style : solid RW
p
pattern "4 #5A5A" Fill pattern RW
linestyle onoff, doubledash Drawing line style : solid RW
linewidth integer Drawing line width RW
li li
¢ipx, - CubY; integer Clip rectangle position and extent: 0 | RW
clipw, cliph
dx, dy integer Output coordinate translation : 0 R
image string / "flag.xpm" Initial window contents WO

Binding Windows and Graphics Contexts Together Graphics contexts can be
shared among windows, and multiple graphics contexts can be used on the same win-
dow. An Unicon window value is a binding of a canvas (an area that may be drawn upon)
and a graphics context. A call open(s,"g") creates both a canvas, and a context, and binds
them together, producing the binding as its return value.

Clone(w) creates a binding of the canvas and attributes of w with a new graphics context
that is manipulated independently. Clone() also accepts any number of string attributes
to apply to the new window value, as in open() and WAttrib(). After calling Clone(), two
or more Unicon window values write to the same canvas. The cursor location is stored
in the canvas, not the graphics context. Writing to the windows produces concatenated
(rather than overlapping) output. Closing one of the window values removes the canvas
from the screen but does not destroy its contents; the remaining binding references an
invisible pixmap. The canvas is destroyed after the last binding associated with it closes.
Use of Clone() can significantly enhance performance for applications that require frequent

graphics context manipulations.

Subwindows The function Clone() can also be used to create subwindows, which are

canvases that reside within other windows. Clone(w, "g", ...) opens a 2D subwindow within
w, and Clone(w, "gl", ...) opens a 3D subwindow within w. Applications must supply position
and size attributes when they create a subwindow. Input events to a subwindow are not
seen on the enclosing parent window and vice versa; both windows must be polled or

supplied to WActive() or select() in order to handle input.

Coordinate Translation In 2D, context attributes dx and dy perform output coordinate
translation. dx and dy take integer values and default to zero. These integers are added
into the coordinates of all output operations that use the context; input coordinates in &x
and &y are not translated.
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7.3 Events

User input such as keystrokes and mouse clicks are called events. Many events are handled
by Unicon automatically, including window redrawing and resizing, etc. Other events are
put on a queue in the order they occur, for processing by the Unicon program. When
reading from a window using file input functions such as reads(w, 1), only keyboard events
are produced; mouse and other events are dropped.

The primary input function for windows is Event(w), which produces the next event
for window w and removes it from the queue. If the event queue is empty, Event() waits
for an event. Keyboard events are returned as strings, while mouse events are returned
as integers. Special keys, such as function and arrow keys, are also returned as integers,
described below. Event() also removes the next two elements and assigns the keywords &x
and &y the pixel coordinates of the mouse at the time of the event. The values of &x, &y
remain available until a subsequent call to Event() again assigns to them. Event() sets the
keyword &interval to the number of milliseconds that have elapsed since the last event (or to
zero for the first event). Keywords &control, &shift, and &meta are set by Event() to return the
null value if those modifier keys were pressed at the time of the event; otherwise they fail.
For resize events, &interval is set to zero and modifier keywords fail. Keywords associated
with event processing on windows are summarized in Table 7-3:

Table 7-3
Window Input Event Keywords

Keyword Description
&x Mouse location, horizontal
&y Mouse location, vertical
&row Mouse location, text row
&col Mouse location, text column
&interval Time since last event, milliseconds
&control Succeeds of Control key pressed
&shift Succeeds if Shift key pressed
&meta Succeeds if Alt (meta) key pressed

Keyboard Events The regular keys that Unicon returns as one-letter strings correspond
approximately to the lower 128 characters of the ASCII character set. These characters
include the control keys, the escape key, and the delete key. Modern keyboards have many
additional keys, such as function keys, arrow keys, "page down", etc. Unicon produces
integer events for these special keys. A collection of symbol definitions for special keys is
available in the library include file keysyms.icn. The most common of these are Key Down,
Key_Up, Key_Left, Key_Right, Key Home, Key End, Key PgUp, Key_PgDn, Key_F1...Key F12, and
Key_Insert.
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Mouse Events Mouse events are returned from Event() as integers indicating the type

of event, the button involved, etc. Keywords allow the programmer to treat mouse events

symbolically. The event keywords are:

Window Input Event Codes

Table 7-4

Keyword Event
&lpress Mouse press left
&mpress Mouse press middle
&rpress Mouse press right
&lrelease Mouse release left
&mrelease Mouse release middle
&rrelease Mouse release right
&ldrag Mouse drag left
&mdrag Mouse drag middle
&rdrag Mouse drag right
&resize Window was resized

The following program uses mouse events to draw a box that follows the mouse pointer
around the screen when a mouse button is pressed. The attribute drawop=reverse allows
drawing operations to serve as their own inverse; see [Griswold98| for more about the drawop
attribute. Function FillRectangle() draws a filled rectangle on the window and is described
in the reference section. Each time through the loop the program erases the box at its old
location and redraws it at its new location; the first time through the loop there is no box
to erase so the first call to FillRectangle() is forced to fail by means of Unicon’s \ operator.

procedure main()
&window := open("hello", "g", "drawop=reverse")
repeat if Event() === (&ldrag | &mdrag | &rdrag) then {
# erase box at old position, then draw at new position
FillRectangle(\x, \y, 10, 10)
FillRectangle(x := &x, y := &y, 10, 10)
}

end

The program can inspect the window’s state using WAttrib(). Between the time the mouse
event occurs and the time it is produced by Event(), the mouse may have moved. In order
to get the current mouse location, use QueryPointer() (see below).

When more than one button is depressed as the drag occurs, drag events are reported
on the most recently pressed button. This behavior is invariant over all combinations of
presses and releases of all three buttons.
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Resize events are reported in the same format as mouse events. In addition to the event
code, &x, &y, &col and &row are assigned integers that indicate the window’s new width and
height in pixels and in text columns and rows, respectively. Resize events are produced
when the window manager (usually at the behest of the user) resizes the window; no event
is generated when an Unicon program resizes its window.

Key Release, Mouse Motion, and Window Closure Events The canvas attribute
inputmask allows programs to request three kinds of additional input events on windows.
These events pose enough performance or portability obstacles that they are not produced
by default. An "m"in the inputmask requests mouse motion events when no mouse button is
depressed; by default only drag events are reported. If the inputmask contains a "k", events
will be generated when keyboard keys are released. An inputmask attribute containing a
"c" requests an event when a window closure is externally triggered, as in the case when a
titlebar x button is pressed.

Event Queue Manipulation The event queue is an Unicon list that stores events until
the program processes them. When a user presses a key, clicks or drags a mouse, or resizes
a window, three values are placed on the event queue: the event itself, followed by two
integers containing associated event information.

Pending(w) produces the event queue for window w. If no events are pending, the list is
empty. The list returned by Pending() is attached to the window. Additional events may
be added to it at any time during program execution. It is an ordinary list and can be
manipulated using Unicon’s list functions and operators.

When several windows are open, the program may need to wait for activity on any of
the windows. Each pending list could be checked until a nonempty list is found, but such
a busy-waiting solution is wasteful of CPU time. The function Active() waits for window
activity, relinquishing the CPU until an event is pending on one of the open windows, and
then returns a window with a pending event. A window is said to starve if its pending
events are never serviced. Active() cycles through open windows on repeated calls in a way
that avoids window starvation.

7.4 Colors and Fonts

Unicon recognizes a set of string color names based loosely on a color naming system found
in [Berk82|. The color names are simple English phrases that specify hue, lightness, and
saturation values of the desired color. The syntax of colors is

[lightness] [saturation] [huelish]] hue

where lightness is one of: pale, light, medium, dark, or deep; saturation is one of weak,
moderate, strong, or vivid; and where hue is any of black, gray, grey, white, pink, violet, brown,
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red, orange, yellow, green, cyan, blue, purple, or magenta. A single space or hyphen separates
each word from its neighbor. When two hues are supplied (and the first hue has no ish
suffix), the resulting hue is halfway in between the two named hues. When a hue with an
ish suffix precedes a hue, the resulting hue is three-fourths of the way from the ish hue to
the main hue. When adding ish to a word ending in e, the e is dropped (for example, purple
becomes purplish); the ish form of red is reddish. Mixing radically different colors such
as yellow and purple does not usually produce the expected results. The default lightness
is medium and the default saturation is vivid. Note that human perception of color varies
significantly, as do the actual colors produced from these names on different monitors.

Color Coordinate Systems and Gamma Correction In addition to the standard
color names, platform-specific color names may be supported. Colors may also be specified
by strings encoding the red, green, and blue components of the desired color. Unicon
accepts the hex formats "#rgb" in which r, g, and b are 1 to 4 hex digits each. Red,
green, and blue may also be given in decimal format, separated by commas, using a linear
scale from 0 to 65535 ("0,0,0" is black; "65535,65535,65535" is white), although displays
typically offer far less precision and nonlinear colors. For example, "bg=32767,0,0" requests
a medium red background; if the display is incapable of such, it approximates it as closely
as possible from the available colors. "fg=0,65000,0" requests a vivid green foreground.

If colors appear darker than they should, the window system is not providing linear
colors. Unicon can be told to perform the correction by means of the gamma attribute; 1.0
is a default (no gamma correction), and experimenting with values between 2 and 3 usually
provides satisfactory results.

Fonts

Fonts are specified by a comma-separated string of up to four fields supplying the font’s
family name, followed by optional size or italic or bold designations in any order. The
fonts available vary widely from system to system. Four font family names available on
all Unicon systems include serif, sans, typewriter, and mono. These families map onto the
system’s closest approximation of Times, Helvetica, Courier, and a monospaced console
font. Font sizes are given in pixel height.

7.5 Images, Palettes, and Patterns

Drawlmage(x, y, s) draws a rectangular area using an image string. String s has the form
"width,palette,data". width is the width of the rectangle drawn, palette is a code that
defines the colors corresponding to data values, and the rest of the data supplies pixel
values. Predefined palettes and palette functions help to provide this capability. Image
and palette functions are described fully in [Griswold98].
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The context attribute fillstyle determines the pixels used by draw and fill functions like
FillPolygon(). If the fillstyle is not solid, a pattern in the filled area is drawn in the foreground
color; other pixels are drawn in the background color ("fillstyle=textured"). The function
Pattern(w,s) associates a pattern denoted by s with w’s context. String s is a built-in pattern
name, or a representation of bits that define the pattern. Pattern representations are of the
form "width #bits" where 1 <= width <= 32. The window system may limit the pattern’s
width and height to as little as 8.

The height of the pattern is defined by the number of rows in the bits component of the
pattern string. Bits consists of a series of numbers, each supplying one row of the pattern,
in hexadecimal format. Each digit defines four bits and each row is defined by the number
of digits required to supply width bits. For example, the call

Pattern("4,#5A5A")

defines a 4x4 pattern where each row is defined by one hex digit.

pme: a pixmap editor

A simple image editor called pme demonstrates event processing including mouse events.
pme displays both a small and a "magnified" display of the image being edited, allows the
user to set individual pixels, and allows the user to save the image; it is well-suited for
constructing and hand-editing small images such as icons and textures for use in larger 2D
or 3D scenes. pme consists of four procedures and employs several graphics functions. A
sample screen image of pme is presented in Figure 7-1. The "real" image is in the upper
left corner; underneath it is a mouse icon which shows what color is drawn by each of the
mouse buttons.

=

=

=
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1

Figure 7-1 pme editing a 32x32 image

pme starts by declaring and initializing several variables.

link dialog, file_dlg
global Imargin, colors, colorbinds
procedure main(argv)
locali:=1,], s, e, X, Y, width := 32, height := 32
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The image width and height can be specified on the command line with a -size option,
for example, pme -size 16,64.

if argv[1]=="-size" then {

i+:=1

argv[2] ? {
width := integer(tab(many(&digits))) | stop("bad -size")
="" | stop("bad -size")
height := integer(tab(0)) | stop("bad -size")
i+:=1
}

}

Following the size arguments, pme checks for a filename specifying the bitmap to edit.
If one is found, it is read into the regular scale image, and then the magnified scale image
is constructed by reading each pixel using the function Pixel(), and filling an 8x8 rectangle
with the corresponding color.

i=j:=0

every p = Pixel(0, 0, width, height) do {
Fa(p)
FillRectangle(j * 8 + Imargin + 5,1 * 8, 8, 8)
j+=1
ifj=widththen {i+:=1;j:=0}

}

After the images are loaded with their initial contents, if any, a grid is drawn on the
magnified image to delineate each individual pixel’s boundary. The user’s mouse actions
within these boxes change the colors of corresponding pixels in the image. An list of
three bindings to the window, each with an independently-set foreground color, is used to
represent the color settings of the mouse buttons.

colors := [Clone("fg=red"),Clone("fg=green"),Clone("fg=blue™)]

The main event processing loop of pme is simple: Each event is fetched with a call to
Event() and immediately passed into a case expression. The keystroke "q" exits the program;
the keystroke "s" saves the bitmap in a file by calling Writelmage(), asking for a file name if
one has not yet been supplied.

case e = Event() of {

"q"|"\e": return

"s"|"S": {
if /s | (e=="S") then s := getfilename()
write("saving image ", s, " size ", width,",", height)
Writelmage( s, 0, 0, width, height)

}
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Mouse events result in drawing a single pixel in both the magnified and regular scale
bitmaps using one of the colors depicted on the mouse icon.

&lpress | &ldrag | &mpress | &mdrag | &rpress | &rdrag : {
x = (&x - Imargin - 5) / 8
y:=&y/8
if (y < 0) | (y > height-1) | (x > width) then next
if x >= 0 then dot(x, y, (- - 1) % 3)

To change the color drawn by a mouse button, you click on it.

else { # x < logical 0. User clicked in mouse area
if & < 21 then getacolor(1, "left", height)
else if & < 31 then getacolor(2, "middle", height)
else getacolor(3, "right", height)
until Event() === (&mrelease | &lrelease| &rrelease)
}

}

Pixel drawing is handled by procedure dot(), whose third argument specifies which but-
ton, and therefore which color to draw. The dot is drawn using FillRectangle() in the mag-
nified window; in the regular scale window DrawPoint() suffices.

procedure dot(x, Y, )
if (x|y) < O then fail
FillRectangle(colors[c+1], x*8 + Imargin + 5, y*8, 8, 8)
DrawPoint(colors[c+1], X, y)
DrawRectangle(x*8 + Imargin + 5, y*8, 8, 8)
end

pme illustrates several aspects of the Unicon graphics facilities. Note the event-handling:
a case expression handles various keystrokes and mouse events with simpler control struc-
ture than in most languages’ GUI event processing.

Listing 7-1 pme: a Unicon bitmap editor

link dialog
link file_dlg
global Imargin, colors
procedure main(argv)
locali:=1,], s, e, Xx,y, width := 32, height := 32
if argv[1]=="-size" then {
i+:=1
argv[2] ? {
width := integer(tab(many(&digits))) | stop("bad -size")
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="" | stop("bad -size")
height := integer(tab(0)) | stop("bad -size")
i+:=1
}
}
Imargin := max(width, 65)
if s := argv[i] then {
&window := open("pme", "g", "image="||s) | stop("cannot open window")
width <:= WAttrib("width")
height <:= WAttrib("height")
Imargin := max(width, 65)
WAttrib("size="||(width*8+Imargin+5)||","||(height*8))

i=j:=0

every p = Pixel(0, 0, width, height) do {
Fa(p)
FillRectangle(j * 8 + Imargin + 5,1 * 8, 8, 8)
j+i=1
ifj=widththen{i+:=1;j:=0}
}

}

else {

&window := open("pme", "g", "size=" || (Imargin+width*8+5)||","||(height*8+5)) |

stop("cannot open window")

}
colors := [Clone("fg=red"),Clone("fg=green"),Clone("fg=blue")]
everyi:=1103do{

DrawArc(4+i*10, height+68, 7, 22)

FillArc(colors][i], 5+i*10, height+70, 5, 20)

}
DrawRectangle( 5, height+55, 45, 60, 25, height+50, 5, 5)
DrawCurve(27, height+50, 27, height+47, 15, height+39,

40, height+20, 25, height+5)

Fg("black")
every i := 0 to height-1 do

every j := 0 to width-1 do

DrawRectangle(j*8+Imargin+5, i*8, 8, 8)

DrawLine(0, height, width, height, width, 0)

repeat {
case e = Event() of {
"q"|"\e": return
"s"["S": {

if /s | (e=="S") then s := getfilename()
write("saving image ", s, " size ", width,",", height)
Writelmage( s, 0, 0, width, height)
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}
&lpress | &ldrag | &mpress | &mdrag | &rpress | &rdrag : {

X := (&x - Imargin - 5) / 8

y:=&y/8

if (y <0) | (y > height-1) | (x > width) then next

if x < 0 then {
if & < 21 then getacolor(1, "left", height)
else if &x < 31 then getacolor(2, "middle", height)
else getacolor(3, "right", height)

until Event() === (&mrelease | &lrelease| &rrelease)
}
else dot(x, y, (-e-1)%3)
}
}
}
end

procedure dot(x, y, €)
if (x|y) < 0 then fail
FillRectangle(colors[c+1], x*8 + Imargin + 5, y*8, 8, 8)
DrawPoint(colors[c+1], X, y)
DrawRectangle( x*8 + Imargin + 5, y*8, 8, 8)
end
procedure getacolor(n, s, height)
if ColorDialog(["Set "||s||" button color"],Fg(colors[n]))=="0Okay" then {
Fg(colors[n], dialog_value)
FillArc(colors[n], 5 + n * 10, height + 70, 5, 20)

}

end

procedure getfilename()
f := FileDialog()

f.show_modal()
return f.file.contents
end

7.6 3D Graphics

Three-dimensional graphics are provided in Unicon on platforms which support the industry
standard OpenGL libraries. Unicon provides the basic primitives, transformations, lighting,
and texturing elements of 3D computer graphics in a simplified fashion, providing a good
basis to rapidly construct 3D scenes. The Unicon 3D interface consists of sixteen new
functions and six functions that were extended from the 2D graphics facilities, compared
with OpenGL’s 250+ functions. While Unicon’s 3D interface vastly simplifies some aspects
of 3D programming compared with the OpenGL C interface, it does not currently provide
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access to several features of OpenGL including blending, fog, anti aliasing, display lists,
selection, and feedback.

This section explains in detail how to use Unicon’s 3D facilities, for programmers who
already have some idea of how 3D graphics work. A 3D window is opened using mode "gI"
and is very similar to a 2D window, so many ideas earlier in this chapter are needed for 3D
programming. 3D graphics use the 2D windowing functions and attributes and introduce
several new ones.

A primary difference between 2D and 3D is that graphics operations in 2D windows
use (x,y) integer pixel coordinates relative to the upper left corner of the window, while
3D windows use (x,y,z) real number coordinates in an abstract geometric world. A mobile
viewer’s position, and the direction they are looking, determine what is visible. Coordinates
of 3D objects go through a series of translations, scalings, and rotations to determine their
final location; these matrix transformations are used to compose aggregate objects from
their parts. In addition to the coordinate system difference, 3D scenes usually employ a
rich lighting model, and use materials and textures to draw objects more frequently than
a solid foreground color. For this reason, the fg attribute is extended in the 3D realm to
denote a foreground material, including color as well as how the object appears in different
types of lighting.

Opening windows for 3D graphics

To open a 3D graphics window, call the built in function open(), passing in the title of the
window to be opened and mode "gl".

W := open("win", "gl")
As in the 2D facilities, if a window is assigned to the keyword variable &window, it is a
default window for subsequent 3D function calls.

3D attributes

Features such as lighting, perspective, textures, and shading give a scene the illusion of
being three-dimensional. A Unicon programmer makes use of context attributes to control
these features. By assigning new values to various attributes, the programmer controls
many aspects of the scene. Attributes to control the coordinate system, field of view,
lighting and textures are included in the Unicon 3D graphics facilities.

Some of the most basic context attributes concern the coordinate system. In 3D graph-
ics, x-, y-, and z-coordinates determine where to place an object. The objects that are
visible on the screen depend on several things, the eye position, the eye direction, and the
orientation of the scene. If these items are not taken into account, the scene desired by the
user and the scene drawn may be two very different things.
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To think about these attributes, imagine a person walking around a 3D coordinate
system. What the person sees becomes the scene viewed on the screen. The eye position
specifies where the person is standing. Things close to the person appear larger and seem
closer than objects further away. The eye direction specifies where the person is looking. If
the person is looking toward the negative z-axis, only the objects situated on the negative
z-axis are viewed in the scene. Anything on the positive z-axis is behind the viewer. Finally,
the up direction can be described by what direction is up for the person.

The eye position is given by the attribute eyepos. By default this is set to be at the
origin or (0, 0, 0). The eye direction is given by the attribute eyedir. By default this is
set to be looking at the negative z-axis. The up direction can be specified by the attribute
eyeup and by default is (0, 1, 0). The attribute eye allows the user to specify eyepos, eyedir,
and eyeup with a single value. Changing any of these attributes causes the scene to redraw
itself with the new eye specifications.

Table 7.5 lists the added context attributes used on 3D windows.

Table 7-5
3D Attributes

Name Type / Example Description : Default Usage
buffer boolean / "on" Buffer mode : off RW
dim integer / 3 Dimension : 2 RW
eve Xyz nonuple Eye position,direction,up RW

"0,0,0,0,0,0,0,0,0" "0,0,0,0,0,-1,0,1,0"
eyedir xyz triple / "0,0,0" Eye direction/target : "0,0,-1" RW
eyepos Xyz triple / "0,0,0" Eye position : "0,0,0" RW
eyeup xyz triple / "0,0,0" | Eye up vector : "0,1,0" RW
meshmode string / "triangles" Polygon mesh mode : "polygon" RW
normals real array Normal vectors: n/a RW
rings integer Nlll(r)nber of rings in spheres/cylinders RW
selection boolean / "off" Selection RW
Number of slices in sph lind
dices integer | ;l;n er of slices in spheres, cylinders | .,
texcoord vector of reals Texture (u,v) coordinates RW
texture image Texture RW

3D drawing primitives

In 2D, programs draw points, lines, polygons, and circles. Functions that have been ex-
tended for 3D include DrawPoint(), DrawLine(), DrawSegment(), DrawPolygon(), and FillPolygon().
The 3D facilities introduce many new primitives, including cubes, spheres, tori, cylinders,
and disks. These are described in Table 7-6 below.
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Many scenes are drawn using a mixture of 2D, 3D and 4D objects. The context attribute
dim allows the program to switch between the different dimensions when specifying the
vertices an objects. A user can draw 2D, 3D, or 4D objects by assigning dim the values
of 2, 3, or 4. For primitives that take x, y, and z coordinates, specifying only x and y
coordinate is not sufficient. For this reason, "dim = 2" disallows the use of these primitives.
These functions are DrawSphere(), DrawTorus(), DrawCube(), and DrawCylinder(). By default
the value of dim is three.

Table 7-6
Types of 3D Primitives

Primitive | Function Parameters Picture

X, v, and z coordinates of the lower left
Cube DrawCube )
" 0 front corner, and the length of the sides.

X, v, and z coordinates of the center, the
height, the radius of the top, the radius of
Cylinde DrawCylinder ’ ’
yander y 0 the bottom. If one radius is smaller than

the other, a cone is formed.

X, v, and z coordinates of center, the ra-
dius of the inner circle, and the radius of

Disk DrawDisk
0 the outer circle. An additional two angle
values specify a partial disk.
Solid , X, y, and z coordinates of each vertex of
FillPolygon()
Polygon the polygon.
Line DrawLine() X, ¥, and z coordinates of each vertex.

BEOECIEN0
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Polygon DrawPolygon() X, ¥, and z coordinates of each vertex.

Point DrawPoint() X, y, and z coordinates of each point.

Segment DrawSegmenty() X, ¥, and z coordinates of each vertex.

X, y, and z coordinates of center and the

Sph DrawSphere .
phere phere() radius of the sphere.

X, y, and z coordinates of the center, an
Torus DrawTorus() o . . ’
inner radius and an outer radius.

HUEES

Coordinate transformations

Matrix multiplications are used to calculate transformations such as rotations on objects
and the field of view. Functions to perform several matrix operations in support of coordi-
nate transformation are available. The main transformation functions are Translate(dx,dy,dz),
Scale(mx,my,mz), and Rotate(a,x,y,z).

In many 3D graphics applications, transformations are composed as the pieces of an
object are drawn relative to one another. Transformations are saved and restored as objects
are traversed. Unicon uses the system’s matrix stacks to keep track of the current matrix
with a stack of matrices, where the top of the stack is the current matrix. Several functions
manipulate the matrix stack. The function PushMatrix() pushes a copy of the current matrix
onto the stack. By doing this the user can compose several different transformations. The
function IdentityMatrix() changes the current matrix to the identity matrix. To discard the
top matrix and to return to the previous matrix, the function PopMatrix() pops the top
matrix off the matrix stack.

There are different matrix stacks for the projection and model view. The projection
stack contains matrices that perform calculations on the field of view, based on the current
eye attributes. If these eye attributes are changed, previous manipulations of the projection
matrix stack are no longer valid. The maximum depth of the projection matrix stack is
two. Trying to push more than two matrices onto the projection matrix stack will gener-
ate a runtime error. The model view stack contains matrices to perform calculations on
objects within the scene. Transformations on the model view stack affect the subsequently
drawn objects. The maximum depth of this stack is 32; pushing more than 32 matrices
on the model view stack results in an error. Furthermore, only one matrix stack can be
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manipulated at any given time. The function MatrixMode() switches between the two matrix
stacks.

Lighting and materials

Lighting is important in making a graphics scene appear to be 3D. Adding lighting to
a scene can be complicated and the hardware support for lighting is at present a very
crude approximation. Light sources emit different types of light. Ambient light has been
scattered so much that is difficult to determine the source; backlighting in a room is an
example. Diffuse light comes from one direction and is central in defining what color the
object appears to be. Finally, specular light not only comes from one direction, but also
tends to bounce off the objects in the scene.

Applications control lighting using context attributes set using WAttrib(). For a 3D scene
in Unicon, eight lights are available. Attributes light0 - light7 control the eight lights. Each
light can be turned on or off and has a position and lighting value.A lighting value is a string
which contains one or more semi-colon separated lighting properties. A lighting property
is of the form

[diffuse|lambient|specular] color name

A new lighting value can be specified without turning the light on or off. The following
call turns light1 on and gives it diffuse yellow and ambient gold lighting properties.

WALtrib(w, "light1=0n, diffuse yellow; ambient gold")
The following expression sets light0 to the default values for the lighting properties.

WAttrib(w, "lightO=diffuse white; ambient black; _
specular white; position 0.0, 1.0, 0.0")

Interacting with the lights, the objects in a scene may have several material properties.
The material properties are ambient, diffuse, and specular, which are similar to the light
properties, plus emission, and shininess. If an object has an emission property, it emits
light of a specific color. Using combinations of these material properties one can give an
object the illusion of being made of plastic or metal.

In 2D, the foreground color is controlled using the context attribute fg and set with
Fg() or WAttrib(). In 3D, the attribute fg is extended to allow a semi-colon separated list of
material properties with the color that property should have. A programmer can specify a
material property as a simple color value or by providing comma-separated red, green, and
blue intensities as real numbers between 0.0 and 1.0. More general material properties are
of the form

[ diffuse | ambient | specular | emission ] color name
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or "shininess n", where n is some integer in the range 0 <= n <= 128.

The default material property type is diffuse, so the call Fg("red") is equivalent to
Fg("diffuse red"). For shininess, a value of 0 spreads specular light broadly across an ob-
ject and a value of 128 focuses specular light at a single point. The following line of code
changes the current material property to diffuse green and ambient orange.

WALttrib(w, "fg=diffuse green; ambient orange")
The default values of the material properties are given in the following example.

Fg(w, "diffuse light grey; ambient grey; specular black; emission black; _
shininess 50")

Using lights and materials in Unicon was simplified by extending the design of the 2D
graphics facilities. The fg attribute greatly reduces the number of lines of code needed for
a scene. Thanks to this design along with the extensive use of defaults, a programmer can
use lighting in a 3D graphics application without much effort.

7.7 Textures

Another important area of 3D graphics is textures. Adding textures to a scene can give a
scene a realistic feel. There are several aspects to using textures. A texture is a rectangular
image that is "glued" onto objects in a scene. The appearance of the textured objects in
the scene depends on several pieces of information supplied by the programmer. These
include the texture image and what parts of the texture image is mapped to what parts of
the object.

The attribute texmode enables or disables textures, which are disabled by default. WAt-
trib("texmode=on") enables textures. When textures are enabled and a texture image is given,
the texture is applied to the objects drawn in the scene.

Unicon provides several formats to specify a texture image. A texture can be a Unicon
window, an image file, or a string. String textures are encoded in one of the language
standard formats "width,pallet,data" or "width,#data" described in the 2D graphics facilities.
In the first case the pallet will determine what colors appear in the texture image. In
the second case, the foreground color and background color are used. The ability to use
another Unicon window as a texture provides great flexibility for texture images, allowing
programs to create texture images dynamically.

Textures must have a height of 2" pixels and width of 2™ pixels where n and m are
integers. If not, the texture dimensions are automatically scaled down to the closest power
of 2. Rescaling affects application performance and may cause visual artifacts, so it may
be wise to create textures with appropriate sizes in the first place. Examples of how to use
textures specified in the different forms are given below.
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A programmer specifies a texture either by calling WAttrib("texture=...") or using Texture(t).
These methods differ only in that a window cannot be used as a texture with WAttrib(), so
Texture() must be called when a window is used as a texture.

A program can specify how a texture is applied to a particular object by specifying
texture coordinates and vertices. Texture coordinates are x and y coordinates within the
texture; texture coordinate (0.0, 0.0) is the lower left corner of the texture image. Texture
coordinates are mapped to the vertices of an object in the scene. Together, the texture
coordinates and the vertices determine what the object looks like after textures have been
applied. Since texture coordinates are complex, defaults are provided. Assigning attribute
texcoord the value auto causes system default texture coordinates to be used. The defaults
are dependent on the type of primitive.

Non-default texture coordinates are given in several ways, such as
WALttrib("texcoord=s") where s is a comma separated string of real number values between
0.0 and 1.0. Each pair of values is taken as one texture coordinate; there must be an even
number of real values or the assignment of texture coordinates fails. One can assign texture
coordinates by calling Texcoord(x1,y1,...) where x and y are real number values between 0.0
and 1.0. Finally one can use Texcoord(L) where L is a list of real number texture coordinates.
The texture coordinates given by the programmer are used differently depending on the
type of primitive to be drawn. If the primitive is a point, line, line segment, polygon,
or filled polygon, then a texture coordinate given is assigned to each vertex. If there are
more texture coordinates than vertices, unused texture coordinates are ignored. If there are
more vertices than texture coordinates the application of a texture will fail. In order to use
non-default texture coordinates with cubes, tori, spheres, disks, and cylinders a program-
mer should approximate the desired mapping with filled polygons. These specifications are
given in Table 7-7.

Table 7-7
Texture coordinates and primitives

Effect of
o Default Texture Coordinates )
Primitive Texture Picture
(from [OpenGLOO| chapter 6) .

Coordinates

Cube The texture image is applied to each face of the None

cube.
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The y texture coordinate ranges linearly from
0.0 to 1.0. On spheres this is from

Sphere z— -radius to z=radius; on cylinders, from
z = 0 to z = height. The x texture coordinate None
ranges from 0.0 at the positive y-axis to 0.25 at
Cylinder | the positive x-axis, to 0.5 at the negative
y-axis to 0.75 at the negative x-axis back to 1.0
at the positive y-axis.
Filled
Polygon
Line A texture
The x and y texture coordinates are given by | coordinate
P1Xo+P2Yo+P3Zo+PaWo is  assigned
Polygon to a vertex.

Segment
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The x and y texture coordinates are given by
P1XoP2Yyot+P3ZotPaWo

Torus None

3D Examples

Changing Context Attributes The user can change attributes throughout a program.
Multiple attributes can be changed with one call to WAttrib(). The following line of code
changes the eye position to (0.0, 0.0, 5.0) and the eye direction to look at the positive
z-axis. An assignment to eyepos, eyedir, eyeup or eye redraws the screen; a given call to
WALtrib() will only redraw the scene once.

WAttrib("eyepos=0.0,0.0,5.0","eyedir=0.0,0.0,1.0")

The values of the attributes can also be read by using the function WAttrib(). The current
eye position could be stored in variable ep by the call:

ep := WALtrib("eyepos")

Drawing Primitives Here is an example that uses some of the drawing primitives.

Fg(w, "ambient yellow")

DrawDisk(w, 0.4, -0.5, -4.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.5, -5.0, 0.5, 1.0)
Fg(w, "diffuse white")

DrawDisk(w, 0.4, -0.5, -4.0, 0.0, 1.0, 0.0, 225.0,1.0, 0.5, -5.0, 0.5,1.0,0.0,125.0)
Fg(w, "ambient pink")

DrawCylinder(w, 0.0, 1.0, -5.0, 1.0, 0.5, 0.3)

Fg(w, "specular navy")

DrawDisk(w, -0.5, -0.5, -2.0, 0.5, 0.3)

Fg(w, "emission green")

DrawSphere(w, 0.5, 1.0, -3.0, 0.5)

WALtrib(w, "lightO=0n, diffuse white")
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Figure 7-2: 3D Drawing Primitives Made From Various Materials

The function Fg() specifies the material properties of subsequently drawn objects that
affect their color and appearance. In this example, a cube with a diffuse green material
is drawn with sides of length 0.7. Then a sphere with a diffuse purple and ambient blue
material is drawn with radius 0.5 and center (0.4, -0.5, -4.0). Next a diffuse yellow and
ambient grey torus with center (-1.0, 0.4, -4.0), an inner radius of 0.4, and an outer radius
of 0.5 is drawn. Finally a filled polygon with a diffuse red material property and three
vertices, (0.25, -0.25, -1.0), (1.0, 0.25, -4.0) and (1.3, -0.4, -3.0) is drawn.

Different Types of Lighting The next example shows the difference between the differ-
ent types of lighting that can be used in a scene. Each window is the same scene rendered
using different lighting. The upper right scene has an ambient blue-green light. The upper
left scene was drawn using a diffuse blue-green light. The lower right scene uses only a
specular blue-green light. The scene in the lower left uses all three types of lighting.

® .

Figure 7-3: Different Types of Lighting

w := open("ambient.icn","gl", "bg=black", "size=400,400")
WALtrib(w,"lightO=on, ambient blue-green","fg=specular white")
DrawCylinder(w, 0.0, -0.2, -3.5, 0.75, 0.5, 0.0)
DrawTorus(w,0.0, -0.2, -3.5, 0.3, 0.7)

DrawSphere(w,0.0, 0.59, -2.2, 0.3)

x := open("diffuse.icn","gl", "bg=black", "size=400,400")
WALtrib(x,"lightO=on, diffuse blue-green","fg=specular white")
DrawCylinder(x, 0.0, -0.2, -3.5, 0.75, 0.5, 0.0)
DrawTorus(x,0.0, -0.2, -3.5, 0.3, 0.7)

DrawSphere(x, 0.0, 0.59, -2.2, 0.3)

y := open("specular.icn","gl", "bg=black", "size=400,400")
WALtrib(y,"lightO=on,specular blue-green","fg=specular white")
DrawCylinder(y, 0.0, -0.2, -3.5, 0.75, 0.5, 0.0)

DrawTorus(y, 0.0, -0.2, -3.5, 0.3, 0.7)
DrawSphere(y, 0.0, 0.59, -2.2, 0.3)

z := open("all.icn","gl", "bg=black", "size=400,400")

WALtrib(z, "lightO=o0n, diffuse blue-green; _
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specular blue-green; ambient blue-green”,"fg=specular white")
DrawCylinder(z, 0.0, -0.2, -3.5, 0.75, 0.5, 0.0)
DrawTorus(z, 0.0, -0.2, -3.5, 0.3, 0.7)
DrawSphere(z, 0.0, 0.59, -2.2, 0.3)

Figure 7-4 shows the effects of emission color on an object.

Figure 7-4: Mixing Emission and Diffuse Material Properties

Fg(w, "emission blue; diffuse yellow")
DrawSphere(w, -1.5, 1.0, -5.0, 0.7)
Fg(w, "emission black")
DrawSphere(w, 0.0, 0.0, -5.0, 0.7)
Fg(w, "emission red")
DrawSphere(w, 1.5, -1.0, -5.0, 0.7)

In the above example, three yellow spheres are drawn. An emission color of blue makes
the sphere appear white with a blue ring. With a red emission color, the sphere remains
yellow, but now has an orange-red ring. The middle sphere shows the effect of having no
emission color. In order to obtain the diffuse yellow sphere in the center, the emission color
was changed to black, without changing the diffuse property.

Textures This section contains examples of the use of textures in a scene. The following
example uses a file as a texture. A .gif image of a map of the world is used to texture a
torus using the default texture coordinates.
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Figure 7-5: A Texture from a GIF Image is Mapped onto a Torus

WALtrib(w, "texmode=on", "texture=map.gif")
DrawTorus(w, 0.0, 0.0, -3.0, 0.3, 0.4)

Instead of using WAttrib(w, "texture=map.gif") to specify the .gif file, a call to Texture(w,
"map.gif') could be used to obtain the same result.

The next example uses an image string to specify a texture image. The string used for
this example is taken from Graphics Programming in Icon [Griswold98| page 156. This
string is used as a texture on a cube using the default texture coordinates.

Figure 7-6: A Texture Supplied via an Image String

WALtrib(w, "texmode=on")

sphere:= "16,9g16, FFFFB98788AEFFFF" ||
"FFD865554446AFFF FD856886544339FF E8579BA9643323AF"|
"A569DECA7433215E 7569CDB86433211A 5579AA9643222108"|
"4456776533221007 4444443332210007 4333333222100008"|
"533322221100000A 822222111000003D D41111100000019F"||
"FA200000000018EF FFA4000000028EFF FFFD9532248BFFFF"

Texture(w, sphere)

DrawCube(w, 0.0, 0.0, -3.0, 1.2)
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The next example shows the use of a Unicon window as a texture. An image of a lamp is
drawn on the first window in gl mode. This window is then used as a texture on a cylinder.
The same method can be used to embed 2D window contents in 3D scenes. Note that in
the following code the first window is opened with size 256 x 256. Texture images must
have height and width that are powers of 2, or the system must rescale them. The default
coordinates for cylinders are used.

Figure 7-7: A Texture Obtained from Another Window’s Contents

w = open("win1","gl","bg=light blue","size=256,256")
Fg(w, "emission pale grey")

PushMatrix(w)

Rotate(w, -5.0, 1.0, 0.0, 0.0)

DrawCylinder(w, 0.0, 0.575, -2.0, 0.15, 0.05, 0.17)
PopMatrix(w)

Fg(w, "diffuse grey; emission black")
PushMatrix(w)

Rotate(w, -5.0, 1.0, 0.0, 0.0)

DrawCylinder(w, 0.0, 0.0, -2.5, 0.7, 0.035, 0.035)
PopMatrix(w)

DrawTorus(w, 0.0, -0.22, -2.5, 0.03, 0.06)
DrawTorus(w, 0.0, 0.6, -2.5, 0.05, 0.03)

w2 = open("win2.icn","gl","bg=black","size=400,400")
WALtrib(w2, "texmode=on")

Texture(w2, w)

Fg(w2, "diffuse purple; ambient blue")
DrawCylinder(w2, 0.0, 0.0, -3.5, 1.2, 0.7, 0.7)

The next two examples illustrate the use of the default texture coordinates versus
texture coordinates specified by the programmer. In both examples, a bi-level image is
used as the texture image. The format for such a string is described in section 2.7. This
image is taken from Graphics Programming in Icon page 159. The first example uses the
default texture coordinates for a filled polygon, which in this case is just a square with sides
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of length one. In this case the default texture coordinates are as follows. The coordinate
(0.0, 0.0) of the texture image is mapped to the vertex (0.0, 0.0, -2.0) of the square, (0.0,
1.0) is mapped to (0.0, 1.0, -2.0), (1.0, 1.0) is mapped to (1.0, 1.0, -2.0), and (1.0, 0.0) is
mapped to (1.0, 0.0, -2.0).

Figure 7-8: Default Texture Coordinates

WALtrib(w,"fg=white","bg=Dblue","texmode=on","texture=4,#8CA9")
Fa(w, "diffuse purple; ambient blue")
FillPolygon(w, 0.0, 0.0, -2.0, 0.0, 1.0, -2.0, 1.0, 1.0, -2.0, 1.0, 0.0, -2.0)

This example uses the same texture image and the same object to be textured, but
instead uses the texture coordinates (0.0, 1.0), (1.0, 1.0), (1.0, 1.0), and (1.0, 0.0). So the
coordinate (0.0, 1.0) of the texture image is mapped to the vertex (0.0, 0.0, -2.0) of the
square, (1.0, 1.0) is mapped to (0.0, 1.0, -2.0),(1.0, 1.0) is mapped to (1.0, 1.0, -2.0), and
(1.0, 0.0) is mapped to (1.0, 0.0, -2.0).

Figure 7-9: Custom Texture Coordinates

WALtrib(w,"fg=white","bg=Dblue","texmode=on","texture=4,#8CA9",
"texcoord=0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0")
FillPolygon(w, 0.0, 0.0, -2.0, 0.0, 1.0, -2.0, 1.0, 1.0, -2.0, 1.0, 0.0, -2.0)

Instead of using WAttrib() with the attribute texcoord, the function Texcoord() could be
used. So the line

WAttrib(w,"texcoord=0.0, 1.0, 1.0, 1.0, 1.0, 1.0,1.0, 0.0")
could be replaced by

Texcoord(w, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0,1.0, 0.0)



7.7. TEXTURES 131

A Larger Textures Example The following more complicated example uses many fea-
tures of the Unicon 3D graphics facilities described in the previous sections. This example
also illustrates the effect of adding texture to a scene. The scene on the left is a scene
drawn without any texturing. The scene on the right contains texturing. The scene on the
right is a much more realistic scene than the one on the left.

All textures used in the textured scene, except for the unicorn, where captured using
a digital camera. These images were then converted into .gif files and scaled to width and
height of 2". Directly using an image file is one feature of the Unicon 3D graphics facilities
that makes adding textures simpler than using OpenGL.

Figure 7-10: Untextured and Textured Versions of the Same Scene

procedure main()
&window := open("textured.icn","gl","bg=black","size=700,700")

# Draw the floor of the room

WALtrib("texmode=on", "texture=carpet.gif")

FillPolygon(-7.0, -0.9, -14.0, -7.0, -7.0, -14.0,
7.0,-7.0,-14.0,7.0,-0.9, -14.0, 3.5, 0.8, -14.0)

# Draw the right and left walls

WALtrib("texture=wall1.gif", "texcoord=0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0")
FillPolygon(2.0, 4.0, -8.0, 8.3, 8.0, -16.0, 8.3, -1.2, -16.0, 2.0, 0.4, -8.0)
WALtrib("texture=wall2.gif")

FillPolygon(2.0, 4.0 ,-8.0, -9.0, 8.0, -16.0, -9.0,-1.2,-16.0, 2.0, 0.4, -8.0)

# Draw a picture
WALtrib("texture=poster.gif", "texcoord=0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0")
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FillPolygon(1.0, 1.2, -3.0, 1.0, 0.7, -3.0, 1.2, 0.5, -2.6, 1.2, 1.0, -2.6)

# Draw another picture

WALtrib("texture=unicorn.gif", "texcoord=1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0")
FillPolygon(0.8, 2.0, -9.0, -3.0, 1.6, -9.0, 3.0, 3.9,-9.0, 0.8, 4.0, -9.0)

# Draw the lamp

WALtrib("texmode=off")

PushMatrix()

Translate(0.7, 0.20, -0.5)

Fg("emission pale weak yellow")
PushMatrix()

Rotate(-5.0, 1.0, 0.0, 0.0)

Rotate( 5.0, 0.0, 0.0, 1.0)
DrawCylinder(-0.05, 0.570, -2.0, 0.15, 0.05, 0.17)
PopMatrix()

Fg("diffuse grey; emission black")
PushMatrix()

Rotate(-5.0, 1.0, 0.0, 0.0)

Rotate( 6.0, 0.0, 0.0, 1.0)
DrawCylinder(0.0, 0.0, -2.5, 0.7, 0.035, 0.035)
PopMatrix()

PushMatrix()

Rotate(6.0, 0.0, 0.0, 1.0)
DrawTorus(-0.02, -0.22, -2.5, 0.03, 0.05)
PopMatrix()

PopMatrix()

# Draw the table

WALtrib("texcoord=auto”, "texmode=on", "texture=table.gif")
PushMatrix()

Rotate(-10.0, 1.0, 0.0,0.0)

DrawCylinder(0.0, 0.2, -2.0, 0.1, 0.3, 0.3)

PopMatrix()

PushMatrix()

Translate(0.0, -0.09, -1.8)

Rotate(65.0, 1.0, 0.0, 0.0)

DrawDisk(0.0, 0.0, 0.0, 0.0, 0.29)

PopMatrix()

WALtrib("texmode=off", "fg=diffuse weak brown")
PushMatrix()

Rotate(-20.0, 1.0, 0.0,0.0)

DrawCylinder(0.0, 0.2, -2.2, 0.3, 0.1, 0.1)

PopMatrix()

while (e := Event()) "== "q" do write(image(e), ": ", &x, ",", &y)

end
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In order to apply textures to the scene, texturing must be turned on. Next, the texture
to be applied is specified. The floor of the scene is drawn using a filled polygon. The
default texture coordinates are used to apply the carpet texture to the floor of the room.
The tiled appearance on the floor is caused by the use of the default texture coordinates.
This can be avoided using user-supplied texture coordinates, as is done for the textures
that are applied to the walls and the pictures in the room.

The lamp does not have a texture, so it is necessary to turn off texturing before drawing
the lamp. Also for the lamp to be centered properly in the room, transformations are used.
Matrices are used to isolate the transformations of the lamp. Finally to draw the table
with a textured top and an untextured base, two cylinders and a disk are used. Texturing
is applied to a cylinder and the disk. Notice the call

WALttrib(w, "texcoord=auto")

This resets the texture coordinates to the defaults. Finally, texturing is turned off to draw
the base of the table.

Animation

Graphics animation is performance sensitive, and Unicon is slower than systems program-
ming languages such as C and C+—+. Nevertheless, it is possible to write 3D animations in
Unicon with acceptable frame rates.

3D animations redraw the entire scene each time an object moves or the user changes
point of view. An application can call EraseArea() followed by the appropriate graphics prim-
itives to redraw a scene, but the results often appear to flicker. It is better to let Unicon’s
runtime system do the redrawing. Unicon maintains a display list of graphics operations to
execute whenever the screen must be redrawn; these operations are effectively everything
since the last EraseArea(). The display list for a window can be obtained by calling Window-
Contents(). The elements of the list are Unicon records and lists containing the string names
and parameters of graphics primitives. For example, a call to DrawSphere(w,x,y,z,r) returns
(and adds to the display list) a record gl_sphere("DrawSphere",x,y,z,r). Instead of redrawing
the entire scene to move an object, you can modify its display list record and call Refresh().
The following code fragment illustrates animation by causing a ball to slide up and down.
In order to bounce, the program would need to incorporate physics.

sphere := DrawSphere(w, x, y, z, 1)
increment ;= 0.2
every i:=1to 100 do
every j:= 110 100 do {
sphere.y +:= increment
Refresh(w)

}
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This technique gives animation rates of hundreds of frames per second on midrange PC
hardware. Unicon supports smooth animation for a number of objects which varies widely
depending on the underlying graphics hardware and software.

Selective rendering and object selection

Many 3D applications model scenes with far more objects than are needed at any particular
instant. For example, a virtual building might have many rooms on multiple floors, but only
a small fraction is visible from any particular location. The 3D facilities remove objects that
are not visible, but doing so becomes too slow for large numbers of objects. An application
with a large scene will generally have to perform at least approximate visibility calculations
to achieve smooth animation. Such visibility calculations can be performed for each frame,
and if the visible objects change, the scene can be re-rendered by rebuilding the display list
from scratch. At this point Unicon’s speed can be an issue, as discussed in the previous
section.

The function WSection() comes to the rescue. It plays two vital roles. First, it allows
portions of the display list to be skipped during rendering, without having to rebuild the
display list. Second, it forms the basis for specifying portions of the display list that the
user may select (click on) when interacting with the scene. In both cases, calls to WSection()
come in pairs, first a call WSection(s) identifies a portion of the display list of interest, then
the sequence of 3D calls to render some object or portion of the scene, then a call to
WSection() defines the end of that section. Parameter s must be a unique string name or
identifier for the section.

The call to create a new section returns a record that contains a field named skip. Setting
skip to a non-null value causes the section to be omitted whenever the scene is redrawn.
Using WSection() for 3D user input is similar. A program calls WAttrib("pick=on") to turn
on 3D selection, after which keyword &pick generates the identifying names for all objects
intersected by the ray from the camera through the (x,y) screen location where the mouse
was located on the last call to Event().

7.8 Summary

Graphics are ubiquitous in modern applications. Unicon provides 2D and 3D graphics
capabilities that are easy to use, portable building blocks for many programs. The 2D
facilities are mature; the 3D interface is new and will evolve. Many elements of the 2D
graphics system are used in the 3D graphics interface. Further integration of the 2D and
3D graphics systems is likely in the future.
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Threads

Threads are building blocks for concurrent (also known as parallel) execution. In a concur-
rent program, the instructions specify multiple things to compute at the same time, during
some or most of the program run. On a classic single-processor system these computations
will only happen one at a time, but on most modern multiprocessor and multicore systems,
the hardware is designed to do several computations at once, and if your program does not
ask for as much, it is underutilizing (sometimes severely) the platform.

This chapter describes concurrency in Unicon. It is based on Unicon Technical Report
14; UTR14 on the unicon.org site may amend or supercede this chapter with added features
in the future. Threads are an extension of the co-expression type described in Chapter 4
and the system interface described in Chapter 5. Consulting those chapters may be helpful
in studying this one.

Concurrent programming introduces techniques, concepts, and difficulties that do not
exist in sequential programs. In some situations concurrent programming is a natural way
to write programs, such as a server where threads serve different clients. In other situations,
concurrent programming improves performance. Long-running programs can run faster by
having several threads running cooperatively on several CPU cores, or programs that do a
lot of slow I/O operations can allow other non-blocked threads to proceed and utilize the
CPU. However, for programs that have a lot of dependencies and are sequential in nature,
the complexities of parallelizing them can outweigh the benefits.

This chapter is not a comprehensive concurrent programming guide. It assumes that
the reader has some basic knowledge about threads, their programming techniques, and
problems, such as synchronization and race conditions. Readers who are unfamiliar with
concurrency can refer to a myriad of resources such as [Andr83| or [Bute97] for an overview.
Since Unicon’s concurrency facilities are implemented on top of POSIX threads (pthreads),
many of the concepts from pthreads programming apply, often with more concise, or higher-
level ways of writing things.
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8.1 Threads and Co-Expressions

Co-expressions are independent, explicitly sequential execution contexts. Only one co-
expression is active at any given moment. When a co-expression is activated, the calling co-
expression blocks until the child co-expression returns the execution to it or fails. Threads,
on the other hand, can run simultaneously and independently. Threads in Unicon are like
special co-expressions that are marked to run asynchronously.

In a concurrent program with two or more threads, each thread has its own program
counter, stack pointer, and other CPU registers. However, all of the threads in a program
share the address space, open files, and many other pieces of process-wide information.
This enables very fast communication and cooperation between threads, which leads to
less blocking, faster execution and more efficient use of resources.

Unicon programs start execution in the main() procedure. In a multi-thread program-
ming environment, the procedure main() is the entry point for a special thread referred to as
the main thread. This main thread is created by the operating system when the program
begins execution. The main thread can create new threads, which can create even more
threads. Each thread has an entry point, where it begins executing. Usually this is a
procedure but it can be any Unicon expression, as is the case for co-expressions. When a
thread first starts running in the entry point, it goes on its own execution path, separate
from the thread that created it, which continues to run. A thread never returns. When
it ends, it simply terminates; other threads continue to run. An important exception is
the main thread; if the main thread ends, the whole program ends. If there are any other
threads running, all of them will be terminated.

Since the emergence of the first computer, processors have been increasing in computa-
tional power. CPU speeds grew faster than almost all of the other units in the computer,
especially the I/O units. This causes programs, especially those which are I/O bound, to
spend most of their execution time blocked, waiting for I/O to complete. On systems with
multitasking support, several programs run at the same time. When one program blocks
for 1/O for example, another program is scheduled to run, allowing a better utilization of
the system resources. Multitasking offered a way to increase the overall system throughput
and boosted the utilization of the increasingly powerful processors. However, multitasking
could not help make a process run faster, even on multiprocessor systems.

8.2 First Look at Unicon Threads

Unicon threads facilities give the programmer flexibility in choosing the programming styles
that suit the problem at hand. In many situations the same problem can be solved in
different ways, using implicit features or explicit ones. The following sections cover the
functions and features provided by the thread facilities in Unicon.
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Thread creation

Threads can be created in two ways in Unicon, using the thread reserved word or using
the function spawn(). The difference between the two is the separation between creating a
thread and running it. The thread reserved word creates a thread and starts its execution.
The function spawn() however, takes a previously created co-expression and turns it into a
thread. In many cases the thread reserved word allows more concise code. spawn() on the
other hand is useful in situations where several threads need to be created and initialized
before running them. spawn() also takes optional parameters to control some aspects of the
newly-created thread. The following code creates and runs a hello world thread:

thread write("Hello World!")

This is equivalent to
spawn( create write("Hello World!"))
or to

co := create write("Hello World!")
spawn(co)

Both thread and spawn() return a reference to the new thread. The following program creates
10 threads:

procedure main()
every i := 110 do thread write("Hello world! | am thread: ", i)
write("main: done")

end

In this example, the main thread continues to execute normally after firing 10 threads.
Because of the non-deterministic nature of threads, there is no guarantee which thread gets
to print out its “hello world” message first, or in what order the messages are printed out,
including the message from the main thread "main: done". All of the possible permutations
are valid. No assumptions can be made about which thread will continue running or finish
first. It depends on the host OS CPU process/thread scheduler. The order is unpredictable.

Furthermore, the main thread might finish and terminate the program before some or
all of the threads get executed or print out messages. To avoid such situations, the main
thread needs to wait for other threads to finish before exiting the program. This is can
be achieved by using the function wait(), which blocks the calling thread until the target
thread is done. The above program can be rewritten as follows:

procedure main()
L:=[]
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every i ;= 110 do put(L, thread write("Hello world! | am thread: ", i))
every wait(IL)
write("main: done")

end

wait(IL) tells the main the thread to wait for every thread to finish, causing the message
"main: done" to be the last thing printed out before the program ends. wait() is useful in cases
where threads need to synchronize so that one thread blocks until another finishes. wait()
provides a very basic synchronization technique, but most concurrent programming tasks
need more synchronization than waiting for a thread to finish. Advanced synchronization
mechanisms are discussed below.

Thread evaluation context

Similar to co-expressions, threads have their own stack, starting from a snapshot of pa-
rameters and local variables at creation time. This allows co-expressions and threads to
be used outside the scope where they are created. It also allows a thread to start by using
the variable values at the time of its creation, rather than when running it in the case of
spawn(). An important side effect of this process is avoiding race conditions, because each
thread gets a copy of the variables instead of having all the threads competing over the
same shared variables. Race conditions and thread-safe data will be covered in depth in
the following sections. The following example and its output demonstrate the idea of an
evaluation context:

procedure main()
local x:= 10, y:=20, z:=0
write( "Main thread: x=", x, ", y=",y, ", z=", 2)
thread (x:=100) & write("Thread 1: x=", x)
thread (y:=200) & write("Thread 2: y=", y)
thread (z:=x+y) & write("Thread 3: z=", 2)
delay(1000)
write( "Main thread: x=", x, ", y=", vy, ", z=",2)
end

The output is:

Main thread: x=10, y=20, z=0
Thread 3: z=30

Thread 1: x=100

Thread 2: y=200

Main thread: x=10, y=20, z=0
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The delay(1000) should give the threads enough time to finish before the main program
finishes. This should not be left to chance: wait() will block until the threads finish, instead
of a 1 sec delay.

The output shows that the changes to the variables are per-thread, and not visible in
the main thread or in the other threads. The copies of local variables in different threads
can be thought of as passing parameters by value to a procedure. This is true for local
variables of immutable data types; on the other hand, global variables and mutable types,
such as lists, are shared. Any change in the structure of such types is visible across all
threads. Contrast the following example with the one above:

procedure main()
local L
L :=[20, 10, 0]
write( "Main thread: L[1]=", L[1], ", L[2]=", L[2], ", L[3]=", L[3])
thread (L[1]:=100) & write("Thread 1: L[1]=", L[1])
thread (L[2]:=200) & write("Thread 2: L[2]=", L[2])
thread (L[3]:=L[1]+L[2]) & write("Thread 3: L[3]=", L[3])
delay(1000)
write( "Main thread: L[1] =", L[1], ", L[2]=", L[2], ", L[3]=",L[3])
end

with output

Main thread: L[1]=20, L[2]=10, L[3]=0
Thread 2: L[2]=200

Thread 3: L[3]=300

Thread 1: L[1]=100

Main thread: L[1] =100, L[2]=200, L[3]=300

Instead of using 3 variables x, y, and z, a list of size 3 is used. x from the previous example
maps to L[1], y to L[2], and z to L[3]. The program does the same thing as before, but any
change to the content of L is visible in other threads. Unlike the output in the first case,
where the values of x, y, and z remained the same in the main thread, this output shows
that the changes to the list elements in the other threads were visible in the main thread.

Passing arguments to threads

When creating a new thread for a procedure, the parameters that are passed to the pro-
cedure at creation time can be thought of as a one-time one-way communication between
the creator thread and the new thread. This is very useful in initializing the new thread
or passing any data that the thread is supposed to work on. The following program has
3 threads in addition to the main thread. The main thread passes a list to each “worker”
thread, and each worker sums the list and prints the sum to the screen:
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procedure main()

L1:=[1,2, 3]
L2 = [4, 5, 6]
L3 :=[7, 7, 9]

t1 := thread sumlist(1, L1)
t2 := thread sumlist(2, L2)
t3 := thread sumlist(3, L3)
every wait(t1[t2|t3)

end

procedure sumlist(id, L)

s:=0

every s +:= 1L

write(" Thread id=", id, ", result=", s)
end

The output is

Thread id=2, result=15
Thread id=1, result=6
Thread id=3, result=23

Since the lists are independent, there is no possibility of a race condition. The example
shows that the second thread was the first to finish and print its result. If the problem
solution requires sharing data or guaranteeing that one thread should finish before another,
then a synchronization mechanism should be used. These topics are discussed in the next
two sections.

8.3 Thread Safety

Threads cooperate with each other to get the job done; they can send information back
and forth, as described later in the section on thread communication. Other than such
intentional communication, when programming multiple threads it is important that each
thread perform its required computation without interfering with the other threads and
vice versa. Thread safety is the property of multi-threaded code that ensures that threads
do not alter each other’s computations unintentionally. The opposite is any operation,
including data structure traversal, where threads may affect each other’s correct operation,
leading to data corruption or incorrect results. Such operations are called thread-unsafe.

An example of thread-unsafe code can be found in the Icon Program Library wrap.icn
module:
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procedure wrap(s,i)

local t
static line
initial line := ™"
Is="";/i=0
if *(t :=line || s) > ithen
return " ~== (s :=: line)

line .=t

end

If two threads were trying to use wrap() at the same time, they would overwrite each
others’ values for the static variable line. To avoid this, one might require the caller to
provide a means of storing its own line information in a third parameter. Since Unicon
does not provide reference parameters, this might be passed, for example, as a record field.

record lineinfo(line)
procedure wrap(s,i,li)

local t
if /li then stop("wrap(): missing third parameter”)
/(li.line) :=""
/s="";/i:=0
if *(t :=li.line || s) > ithen
return " ~== (s :=: li.line)
li.line :=t
end

This example works and is thread-safe. Tts chief flaw is that the programmer who wants
to call wrap() now has a more complicated API to learn, and existing code that calls the old
wrap() would have to be modified to use the thread-safe version. Millions of C programmers
have suffered through this for years. A more extreme solution that makes the existing API
thread-safe is given below. To understand it, read the section on thread-synchronization
below, particularly the subsection on thread-safe data structures. The static variable line
is replaced with a table protected by a mutex; this table is indexed by the current thread
&current every time it is used inside of wrap(). As an exercise for the reader, compare the
performance of this approach with the previous approach that used an extra parameter.

procedure wrap(s,i)
static line
local t
initial line := mutex(table())
/(line[&current]) :=""
/s="";/i=0
if *(t := line[&current] || s) > i then
return " ~== (s :=: line[&current])
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line[&current] =t
end

From such an example, one can infer some general principles for writing thread-safe
code. Each thread’s data must be completely independent of all other threads. Each
thread gets its own stack, so local variables and parameters are thread-safe for free. Global
variables, including statics, are totally the bane of multi-threaded programming, so to
achieve thread-safety you may have to avoid or rewrite any procedures or class libraries
that use globals or statics. For example, if part of a procedure’s results were assigned to a
global for the caller to use, you might need to rewrite it to return (or generate) such results
instead of working through a global.

A more subtle issue arises when referencing mutable structures such as lists, tables, or
objects. Although each thread gets its own heap for allocation purposes, if another thread
has a reference to such a structure, operations that alter the structure made by either
thread, are unsafe. For some computations, you might avoid such a problem by making a
separate copy of the structure for each thread to use independently, but when threads need
to share a structure, the list or table or whatever constitutes part of their communication
mechanism. In that case, thread-unsafe code or data structures can be made thread-safe
via a synchronization mechanism to achieve correct behavior and results. Such mechanisms
are presented in the next section.

8.4 Thread Synchronization

Thread synchronization can be done in many different ways. Some problems require more
synchronization than others. Some may require advanced synchronization mechanisms and
rely on the language support to achieve full control over the execution of threads and
protect shared data. This section covers many synchronization techniques in Unicon, used
primarily to avoid the problem of race conditions in multi-threaded code.

The non-deterministic behavior of threads

Programming with threads introduces a whole new set of concepts and challenges that non-
threaded programs do not have to deal with. In most multi-threaded programs, threads
need to communicate through shared data. Because threads run in a non-deterministic
order, they access and update shared data in a non-deterministic fashion. Consider the
following popular example where two threads, T and 75, try to increment a shared variable
x whose initial value is 0.

T T
X = x+1 X = x+1
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While x:=x+1 may not look like it could cause a problem, in reality it does because it is
not atomic. In many computer systems, it can be broken down into three operations: fetch
the value of x, add 1 to it, and store the new value back in x. These three operations might
occur at different times in different threads. Thread 75 for example might fetch x, followed
by 17 also fetching it, but before T5 stores back the new value of x, leaving T} working on
the old value of x. T} should not be allowed to read the value of x while another thread,
such as T, is updating it. Consider the following scenarios, starting with x:=0:

Scenario 1 Scenario 2

T, T T T,

fetch x (0) fetch x (0) fetch x (0)

increment x (1) increment x (1) increment x (1)

store x (1) store x (1) store x (1)
fetch x (1)
increment x (2)
store x (2)

The final value of x is 1. The final value of x is 2.

In scenario 1 the final value of x is 1, even though there are two increments done by
the two threads. In scenario 2 however the final value is 2. This outcome is not necessarily
a problem, or a bug that must be fixed. Non-deterministic execution is a part of multi-
threaded programming that many programs can live with. For example, if one or more
threads depend on a counter to update the screen every 100 increments or so, but this
number does not need to be exactly 100, then the threads can increment the counter without
worrying about races and about synchronizing access to the shared counter. If deterministic
execution must be guaranteed, programmers have to take extra steps to ensure a specific
order and predictable results. That is where thread synchronization comes into play.

User-defined synchronization

For some simple situations, synchronization can be achieved without relying on special
primitives provided by the language. For example, if one thread is waiting for another to
finish a task, a shared flag variable can be used. In the following example, the main thread
might finish before the child thread:

procedure main()
thread write("l am a thread: Hello world!")
end

As seen in the previous section, this can be handled using wait() or delay(). The wait()
function is the best solution for this situation. delay() also works but there are two problems
associated with it: it forces the program to wait a lot longer than necessary, and second,
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if the delay time is not long enough, depending on the system, the main thread might still
finish before the child thread. Actually even with a long delay, there is no guarantee the
child thread will finish first. In a real application, delay() would be a poor choice. Finally,
here is an alternative solution that does not use wait():

global done

procedure main()
thread (write("l am a thread: Hello world!") & done := "true")
until \done

end

In this case, the loop until \done ensures that the main thread keeps spinning until the
child thread set the variable done to a non-null value. It avoids the problems with using
delay(), at the expense of fully occupying one CPU in a spin-lock. Note that declaring done
to be global is key. If done were local, the main thread would spin indefinitely because any
change to done in the child thread would be invisible in the main thread.

If none of these approaches seems acceptable, that is a good sign. Use techniques from
the following sections to avoid such inefficient synchronization.

Language support for synchronization

Using function wait() or global variables to synchronize threads might be sufficient in some
situations, but most problems require the more efficient synchronization made possible by
mutexes and condition variables.

Critical regions and mutexes A mutez (from mutual exclusion) is a synchronization
construct used to protect shared data and serialize threads in critical regions, sequences of
instructions in which only one thread may execute at a time or an error will occur. In the
example discussed at the beginning of this chapter, two threads compete to increment the
variable x. The end result might not be what the programmer intended. In such cases a
mutex may be used to protect access to the variable x.

A mutex object is created using the mutex() function. The returned object can be
locked /unlocked via the functions lock() and unlock() to serialize execution in a critical region.
The following example demonstrates the use of a mutex to protect increments to the global
variable x:

global x
procedure main()
mtx_x := mutex()
x:=0
t1 :=thread inc_x(mtx_x)
t2 := thread inc_x(mtx_x)
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every wait(t1 | 12)
write("x=", x)
end

procedure inc_x(region)
lock(region)

X=X+ 1
unlock(region)
end

It is important to note that the mutex object has to be initialized only once and can
then be shared between all threads (here t1 and t2) accessing the critical region (x := x
+ 1). lock(region) marks the beginning of the critical region protected by the mutex, and
unlock(region) marks its end. When a thread calls lock(region), it tries to acquire the mutex
region. If region is not “owned” by any other thread, lock(region) succeeds, the thread becomes
the owner of the mutex region, and then enters the critical region. Otherwise the thread
blocks until the current owner of the mutex leaves the critical region by calling unlock(region).
Since there are two threads and x := x+1 is protected by a mutex, the output of the program
is guaranteed to be x=2, unlike the case where a mutex is not used, and where x=1 or x=2
are possible outputs.

The more critical-regions/mutexes a concurrent program has, the slower it runs. The
length of the critical region also affects the performance. The longer the critical region,
the more time it takes a thread to traverse it and release the mutex, which increases the
probability that other threads become blocked waiting to acquire the mutex and enter the
critical region. Locking a mutex and forgetting to unlock it is very likely to lead to a
deadlock, a common problem in concurrent programming, where all threads block waiting
for each other, and for resources to become available. Because all threads are blocked,
resources will not be freed, and the block persists indefinitely.

Unicon provides a special syntax for critical regions equivalent to a lock()/unlock() pair,
that aims mainly to guarantee that a mutex is released at the end of a critical region,
besides enhancing the readability of the program. Here is the syntax:

critical mtx: expr
This is equivalent to:

lock(mtx)

expr

unlock(mtx)

Given a global variable named region that has been initialized as a mutex, the code to
increment x in the previous example can be written as:
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critical region: x := x + 1

The critical region syntax only unlocks the mutex if it executes to the end. If there
is a return or break in the region’s body, it is the programmer’s responsibility to explicitly
unlock the mutex. For example:

critical region: {
if x > 100 then { unlock(region); return }
X=x+1

}

In some situations, a thread might have several tasks to finish and may not want to
block waiting for a mutex that is locked by another thread. For example, if a thread is
creating items that can be inserted in one of several shared queues, the thread can insert
every new item in the first queue that it acquires. trylock() is an alternative non-blocking
function for locking.n If the thread cannot acquire the mutex immediately, the function
fails. The most suitable way to use trylock() is to combine it with an if statement, where the
then body unlocks the mutex after finishing the work on the protected object, as follows:

if trylock(mtx) then {
expr
unlock(mtx)

}

Both lock() and trylock() return a reference to the mutex or the object they acquired
(upon succeeding in case of trylock()). This makes it very convenient to write code like the
following, assuming L1 and L2 are lists that are both marked as shared:

item := newitem()

if L := trylock(L1 | L2) then {
put(L, item)
unlock(L)
}

Note that trylock() may fail to lock any of the lists, leaving item unprocessed. Depending
on what the code needs to do, if it is required to guarantee that it does not proceed before
one of the locks to L1 or L2 succeeds, then it can be written as follows:

item := newitem()

until L := trylock(L1 | L2)
put(L, item)

unlock(L)
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Initial clause A procedure in a Unicon program can have an initialization clause at its
top. This gets executed only once the first time the procedure is entered. The initial clause
provides a very convenient way to place local static variables and their initialization in
the same procedure, instead of relying on global variables and having to initialize them
somewhere else. A procedure that produces a sequence of numbers one at each call can be
written as:

procedure seq()
static i
initial i := 0
i=i+1
return i

end

Initial clauses are thread-safe. They can be thought of as a built-in critical region that
is run only once. No thread is allowed to enter the procedure if there is a thread still
executing in the initial block. This can be useful in a concurrent environment to do critical
initialization, such as creating a new mutex object instead of declaring a mutex variable
to be global and initializing it somewhere else, or passing it from one function to another
where it will be actually used. A concurrent version of seq() would look like this:

procedure seq()
local n
static i, region
initial { i := 0; region := mutex() }
critical region: n =i := i+1
return n

end

With the use of the initial clause, seq() is self-contained and thread-safe. Note the use of
the local variable n to temporarily hold the value of the counter i while still in the critical
region. That is because once the thread leaves the critical region, there is no guarantee that
the value of i would remain the same before it is returned. Using the variable n guarantees
that the value returned is correct, even if the value of i is changed by another thread.

Thread-safe data structures In Unicon, mutexes are not just independent objects as
described above, they are also attributes of other objects, namely attributes of the mutable
data types. Any data structure in Unicon that can be used in a thread-unsafe manner can
be protected by turning on its mutex attribute. Instead of declaring a separate mutex and
locking and unlocking it, the structure can just be marked as “needs a mutex/protection”
and the language does an implicit locking/unlocking, protecting the operations that might
affect the integrity of the structure. For example, if several threads are pushing and popping
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elements into and out of a list, these are thread-unsafe operations that require protection.
The value of implicit mutexes is made clear after considering the alternative. The following
producer-consumer example uses a list to send and receive data, and protects it using an
explicit mutex:

procedure main()
L:=[]
mtx := mutex()
p = thread produce(L, mtx)
¢ := thread consume(L, mtx)
every wait(p | €)

end

procedure produce(L, region)
every i:=110do

critical region: put(L, i)
end
procedure consume(L, region)

i:=0

whilei <10 do

critical region: if x := get(L) then i +:= 1 & write(x)

end

Using a thread-safe list results in fewer lines of code, and in a more efficient program
doing less locking and unlocking at the language level, or even not doing explicit locking
at all. For example, the above program may be rewritten as:

procedure main()
L := mutex([ ])
p :=thread produce(L)
¢ := thread consume(L)
every wait(p | ¢)

end

procedure produce(L)

every put(L, !110)
end
procedure consume(L)

i:=0

while i <10 do

if X := get(L) then i +:= 1 & write(x)

end

The produce() and consume() procedures do not do any locking, making concurrent pro-
gramming in such a case just as easy as writing a sequential program. It is only necessary
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to notify the language at the beginning that the data structure is shared, by passing it to
the mutex() function. This function takes a second optional parameter denoting an existing
mutex object or an object that is already marked as shared (has a mutex attribute). Instead
of creating a new mutex object for the data structure, the existing mutex is then used as
an attribute for the data structure. If the second object is a structure that is not marked
as shared, a new mutex is created. This is useful when two objects need to be protected
by the same mutex. For example, the list L and the table T in the following example share
the same mutex:

mtx := mutex()
L := mutex([ ], mtx)
T := mutex(table(), mtx)

which is equivalent to the following if the mutex does not need to be explicit:

L := mutex([ ])
T := mutex(table(0), L)

or

L:=[]
T := mutex(table(0), L)

In all cases, lock(L) and lock(T) lock the same mutex, serializing execution on both data
structures. Not all operations on data structures produce correct results, only “atomic”
operations do. In other words, implicit locking/unlocking takes place per operation, which
means that even if each of the two operations is safe, the combination might not be. A
critical region is still needed to combine the two. For example, if L[1] has the value 3 and
two threads are trying to increment L[1]:

L[1] = L[1] + 1

the resulting L[1] could be 4 or 5. That is because reading L[1] (the right side of the
assignment) and storing the result back in L[1] are two different non-atomic operations,
separated in time. The good news is that solving such an issue does not require an extra
explicit mutex. If L is marked as shared (passed to the mutex() function) it can be passed
to lock() /unlock() functions. It can be used with the critical syntax like this:

critical L: L[1] := L[1] + 1
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Thread safe assignment without a mutex Although protecting a global variable that
is written to concurrently by several threads is always the correct thing to do, there are
some situations where a protecting mutex may be safely discarded. If the type of the
global variable never changes (because every thread writes a value of the same type) then
concurrent assignments are thread safe with one exception: the integers. The reason for
the exception is that the underlying implementation actually uses two different types to
represent integers, one for large integers that are greater than some implementation defined
constant, and one for “normal” integers. If you can guarantee that all of the integers written
to the global variable are all either small or all large (but not a mixture) then you may also
discard the protecting mutex in this case too.

Doing without a mutex should be considered carefully on a case by case basis. In
most cases the overhead introduced by the mutex will have an insignificant effect on the
program’s performance and it is better to be safe than sorry. In the rare cases where the
mutex has a considerable impact on performance, following the guidelines above should
give a worthwhile improvement.

If values of different types are written concurrently to a global variable then a mutex
must be used to avoid the risk of the descriptor that the implementation uses to manage
the variable having one type whilst referring to a value of a different type. Either corrupt
data — if you are lucky — or program termination is the likely outcome of such an error.

Condition variables Mutexes are used to protect shared data in critical regions, and
block threads if there is more than one thread trying to enter the region. Condition variables
take thread blocking/resumption to a new level that is not tied to accessing shared data
like a mutex. A condition variable allows a thread to block until an event happens or
a condition is satisfied. For example, the previous section showed a producer/consumer
problem where the consumer keeps spinning to get values out of the shared list. In real-life
applications, any spinning could be a waste of resources; other threads, including producer
threads could be using the resources to do something useful instead. The consumer needs
to block until there is data to process in the list. This is where a condition variable comes
into play. A condition variable is created using the function condvar(). The returned object
is a condition variable that can be used with wait() and signal() functions. wait(cv) blocks
the current thread on the condition variable cv. The thread remains blocked until another
thread does a signal(cv), which wakes up one thread blocked on cv. A very important
aspect of using a condition variable is that the variable must always be associated with a
mutex. More specifically, the wait() function has to be always protected by a mutex. Unicon
provides a built-in mutex for condition variables which can be thought of as an attribute
similar to thread-safe data structures. This means that a condition variable can also be
used with lock()/unlock() functions or the critical clause. It is important to realize that not
only wait() has to be protected by a critical region, but also the condition or the test that
leads a thread to wait on a condition variable. See the following example:
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if x=0 then wait(cv)

A thread wants to wait on cv if x=0, but what happens if the value of x has changed
between the test and the call to wait(cv)? If a second thread changes the value of x and
signals cv to wake up the first thread, while the first thread transitions from the test to
wait(), it may miss the wake up signal and might block indefinitely because it is waiting
on a condition variable that it should not wait on. The correct way to use wait() with a
condition variable is

lock(cv)
if x=0 then wait(cv)
unlock(cv)

or :
critical cv: if x=0 then wait(cv)

Because other threads might need to access the condition variable while some threads are
waiting on it, the wait() function atomically blocks the thread and releases its corresponding
mutex. After receiving a wake-up signal, the blocked thread wakes up, acquires the mutex
(blocking if necessary) and continues executing, and that is when wait() returns. It is good
practice to do the condition variable test before assuming that it is in one state or another.
This leads to a more correct way to use condition variables that ensures that a thread does
not leave wait() before guaranteeing the test is in a specific state, as follows:

critical cv: while x=0 do wait(cv)

Using a while in place of if will ensure that the thread goes back to sleep if it happens
to wake up and the condition has not changed.

The producer/consumer example mentioned above can be rewritten using a condition
variable. Since the consumer needs to sleep/wake up depending on the availability of
elements in the list, the state of the list must be guaranteed to remain the same while
interacting with the condition variable for the reason explained above (missing wake-up
signals). The list and the condition variable have to be protected by the same mutex.
condvar() allows an optional argument, an existing mutex that is to be associated with the
condition variable. In the original example, using an independent mutex to protect the
condition variable looks like this:

procedure main()
L:=T]
mtx := mutex()
cv = condvar(mtx)
p := thread produce(L, cv)
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¢ := thread consume(L, cv)
every wait(p | c)
end

procedure produce(L, cv)
every i:= 110 do {
critical cv: put(L, i)
if “L=1 then signal(cv)
}

end

procedure consume(L, cv)
i:=0
while i <10 do {
if *L=0 then critical cv: until *L>0 do wait(cv)
if X := get(L) then i +:= 1 & write(x)
}

end

Another way to write this program is on top of the thread-safe list example. Since there
is no explicit mutex to pass to the condvar() function in the original example, a mutex can
be first created and then passed along with the list to the mutex() function. The same mutex
then can be passed to condvar(). The function binds the mutex already associated with the
list to the condition variable. The final result is the same as in the explicit mutex example,
a list and a condition variable sharing the same mutex. Here is the example again with the
shared list and a condition variable:

procedure main()
mtx := mutex()
L := mutex([], mtx)
cv = condvar(mtx)
p := thread produce(L, cv)
¢ := thread consume(L, cv)
every wait(p | c)

end

procedure produce(L, cv)
every put(L, 110) & *L=1 & signal(cv)
end

procedure consume(L, cv)
i:=0
while i <10 do
if x := get(L) then
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i +:=1 & write(x)
else
critical cv: until *L>0 do wait(cv)
end

In previous examples, calls to signal() are not protected by any mutex. signal() does
not need protection, because it does not block the thread, and there are no worries about
a deadlock. The worst thing that can happen is signaling a condition variable that does
not have any thread waiting on it, which is not a problem. However protecting calls to
signal() is not an issue either. Depending on the problem, doing it one way or the other
might be more or less efficient. There is no need to have a thread that spends a lot of time
locking/unlocking a mutex if it is not necessary, creating contention in the critical region.
But a thread that keeps wasting time signaling condition variables that have no threads
waiting on them is also undesirable.

The signal() function takes a second optional parameter: the number of threads to be
woken up. The default is one, but it can be any positive value. For example:

every !4 do signal(cv)
can be written as:
signal(cv, 4)

Furthermore, if all of the threads waiting on cv need to be woken up, a special 0 (or
CV_BROADCAST) value can be passed to signal(), causing it to broadcast a wakeup call for
all threads waiting on cv:

signal(cv, 0)
or

signal(cv, CV_ BROADCAST)

8.5 Thread Communication

Traditionally, co-expressions communicate implicitly, or explicitly using the @ operator. All
co-expression communication is synchronous; the calling co-expression is blocked and the
called co-expression runs. This simple communication model is called activation in Unicon.
A co-expression C1 can activate another co-expression C2 using the syntax x@C2, where x
is an optional value to be transmitted from C1 to C2. C1 waits until it gets activated by
C2 or any other co-expression directly or indirectly activated by C2. As mentioned earlier,
implicit activation takes place whenever a co-expression produces a value or falls off its
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end. With implicit activation, the co-expression activates its parent (the last co-expression
to activate it).

Threads take co-expression communication to a new level with their dynamic nature.
Threads run concurrently; in many cases, a running thread just wants to send a value to
another thread without waiting for a reply, or receive a value from another thread, if there
is one, without waiting. The @ operator is not suitable for this kind of (asynchronous)
communication. Unicon adds four operators dedicated to asynchronous communication.
These are @>, @>>, <@ and <<@. The operators correspond to send, blocking send,
receive, and blocking receive.

Thread messaging queues

Before exploring how these communication operators are used, look at messaging queues
and how they are utilized to support communication between threads. Each thread main-
tains two queues called the inbor and outboxr that are created with the thread. When a
thread sends a message with an explicit destination, the message is queued in the desti-
nation’s inbox. Otherwise, it is queued into the sender’s outbox. A thread can receive
messages from another thread by dequeuing messages from the source’s outbox if there is
an explicit source, otherwise it dequeues messages from its own inbox. Figure 8-1 presents
two threads with inboxes and outboxes.

Thread A Thread B

Figure 8-1: Inboxes and Outboxes for Thread Communication.

send and receive operators

The @> (send) and <@ (receive) operators communicate messages containing arbitrary data
between threads. The operators support co-expressions as well, with the same semantics.
The send operator has the syntax

X @>T

where x can be any data type, including null, which is equivalent to omitting it. T refers
to a thread to which x is transmitted: x is placed in T’s inbox. x can be picked by T using
the receive operator which is presented later. x @> &main may be used to send a message
to the main thread. The send operator can also have no destination, as in
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X @>

In this case x is sent to no one, instead it is placed in the sender’s outbox. The operator
can be read as “produce x”. x can then be picked up later by any thread wanting a value
from this sender. For example the sender in this case might be a creating prime numbers
and placing them in its outbox to be ready for other threads.

The receive operator is symmetric to send, and takes two forms, with explicit source or
with no source, as follows:

<@T
<@

The first case reads “receive a value from T7; it obtains a value from T’s outbox. In the
prime number example mentioned above, <@T would be the way to get a prime number
produced by T. <@ on the other hand reads values directly from the receiver’s inbox. It
reads messages sent explicitly to the thread doing the receive operation.

Both @> and <@ can succeed or fail. In the case of <@ the operator succeeds and
returns a value from the corresponding queue (inbox/outbox) depending on the operand if
the queue is not empty. If the queue is empty the operation fails directly. In the case of
@>, if the value is placed in the corresponding queue the operation succeeds and returns
the size of the queue. If the queue is full, the send operation fails. The inbox/outbox for
each thread is initialized to have a limited size (it can hold up to 1024 values by default).
This limit can be increased or decreased depending on the application needs. The limits are
useful so that queue sizes do not explode quickly by default. They also provide an implicit
communication /synchronization as explained later in following sections. Let us look at the
producer/consumer example again written using the new operators:

procedure main()
p := thread produce()
¢ := thread consume(p)
every wait(p | €)

end

procedure produce()
every 110 @> # place values in my outbox
end

procedure consume(p)
i:=0
while i < 10 do
if X := <@ p then # get values from p
i +:=1 & write(x)
end
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Each thread has exactly one inbox and one outbox, and each operator call is mapped
to only one of these inboxes or outboxes as seen in Figure 1. All messages from all threads
coming to thread B in the figure end up in its inbox. All threads trying to receive messages
from A compete on A’s outbox. Both the inbox and the outbox queues are public com-
munications channels, and it is impossible to distinguish the source of a message if there
are several threads sending messages to the same thread at the same time. Furthermore,
if <@ has an explicit source like A in Figure 1, it only looks in A’s outbox, and does not
see messages from A coming directly to the inbox. Applications that require the sender’s
address can attach that information to messages by building them as records with two
fields, one field for data and the other containing the sender’s address. A better approach
for private communications for some applications is the use of lists shared between the two
communicating threads or the use of private communication channels discussed later in this
document.

Inbox/Outbox and the Attrib() function

As seen in previous sections, communication between threads is done though inbox/outbox
queues which have size limits. The size limit, which defaults to 1024, and the actual size
dictate how synchronization is merged with the communication. The size operator * can
be used with a thread to query its actual outbox size (how many values it contains, not
the maximum limit), as follows:

outbox_size :=*T

But this is only a single attribute for one queue. To access or change other queue
attributes, a new function Attrib() is introduced. This function uses the form Attrib(handle,
attribcode, value, attribcode, value, ...). The integer codes used by this function are defined in
an include file threadh.icn. This header file is part of the threads package, which can be used
by a program via

import threads

When values are omitted, Attrib() generally returns attribute values. To get the size of
the outbox (the same as the * operator), the code is

outbox_size := Attrib(T, OUTBOX_SIZE)
similarly,
inbox_size := Attrib(T, INBOX_SIZE)

gets the current size of the inbox. On the other hand
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Attrib(T, INBOX_LIMIT, 64, OUTBOX_LIMIT, 32)

sets the inbox and outbox size limits to 64 and 32 respectively. The following table sum-
marizes the available attributes and their meanings.

Attribute Meaning Read/Write?
INBOX SIZE Number of items in the inbox Read Only
OUTBOX _SIZE Number of items in the outbox Read Only
INBOX LIMIT The maximum number of items allowed Read/Write

in the inbox
OUTBOX_LIMIT The maximum number of items allowed Read/Write
in the outbox

Blocking send and receive

In many situations senders and receivers generate and consume messages at different speeds
or based on needs. Instead of overloading slow receivers or busy waiting for slow senders,
the two ends of the communication need a synchronizing mechanism to tell them when
to send new messages or when a new message is available. Two more send and receive
operators provide such functionality, the blocking send operator @>> and the blocking
receive operator <<@. These can be used in the same way as @> and <@, except that
instead of failing when the operation cannot be completed, the new operators block and
wait until the operation succeeds. In the simple producer/consumer example, the producer
is only producing 10 values, since the default size of the queue is 1024, using a blocking
send would not make any difference. The consumer however, can make use of the blocking
receive instead of spinning in some cases while the queue is empty and the original blocking
receive just keeps failing. Take a closer look at the consumer code again:

procedure consume(p)
i:=0
while i <10 do
if X := <@ p then # get values from p
i +:=1 & write(x)
end

Using an if statement with <@ checks whether the operation succeeds in receiving a
value. A blocking receive is more suitable in this case and it simplifies the loop slightly,
since the if can be dropped, and also the counter is not necessary anymore. The counter was
previously necessary because the loop needs to keep track of how many <@ were needed to
count to 10. The consumer can be rewritten as

procedure consume(p)
# get exactly 10 values from p, block if necessary
every 110 do write(<<@ p)

end
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In some cases, a thread might want to use a blocking receive to get values from a second
thread, but it is not willing to block indefinitely; it may do some other useful work instead
of waiting. The <<@ operator accepts a timeout parameter to impose a limit on how long
to wait for a result before giving up. Here is how <<@ would look in this case:

result :=timeout <<@ # get from my inbox
or
result := timeout <<@ T # get from T’s outbox

The timeout operand is a non-negative integer denoting the maximum time to wait
in milliseconds. Negative integers are treated as a null value, defaulting to an indefinite
blocking receive. A 0 operand indicates no waiting time, effectively resulting in a non-
blocking receive. The following table summarizes the different forms of the send and receive
operators and their operands:

Operator Operands Behavior
Q>
(send) msg@> Place msg in my outbox, fail if the outbox is full
n
msg@>T  Place msg in T’s inbox, fail if T’s inbox is full
<@
) <@ get a message from my inbox, fail if the inbox is empty
(receive)
<@QT get a message from T’s outbox, fail if T’s outbox is empty
Q@>>

(blocking msg@>>  Place msg in my outbox, block if the outbox is full

send)

msg@>>T  Place msg in my T’s inbox, block if the T’s inbox is full

<<@
(blocking <<@ Get a message from my inbox, block if the inbox is empty
receive)

<<QT Get a message from T’s outbox, block if it is empty

Get a message from my inbox, block up to n milliseconds

n<<@ . . .
waiting for an inbox message to become available

Get a message from T’s outbox, block up to n milliseconds
n<<@QT . .
waiting for a message to become available there

Most applications use only a few of these modes. In a fast sender/slow receiver applica-
tion, the sender would block when the queue is full and unblock when the queue is empty
(using @>>). The receiver would consume messages from the queue until it is empty, and
then block until there is a new message added to the queue (<<@). For some applications
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however this communication scheme might not be optimal, hence many options are pro-
vided. The different options in the table above give the programmer a wide range of control
over when to block or resume a thread based on the availability of data in the communica-
tion queues. This control covers the needs of many applications and provides simple ways
to abstract concurrent programming activities such as load balancing and efficient use of
resources.

Private communication channels

As mentioned in the previous sections, inbox and outbox communication queues are visible
by all threads all the time. In some scenarios two or more threads need to communicate
with each other without worrying about other threads sending and receiving messages at
the same shared queues. While it is possible to build a protocol at the application level
on top of the inbox and outbox queues to achieve such behavior, it is simpler and more
efficient to have the threads communicate privately. This kind of communication can be
done by sharing a list between two threads and protecting it by an explicit mutex, or using a
thread-safe list. A more formal way for such communication is to use the channel() function.

Starting a private communication is similar to a network connection, except that this
connection is taking place between two threads in the same process instead of two different
processes that may be on different machines. A private communication channel between
two threads can be created using the library procedure channel().

channel() is part of the threads package, so import threads is necessary to use it. It takes
one parameter, which is the thread with which the connection will be initiated. If channel()
succeeds, it returns a list representing a communication channel between the two threads.
Representing a bidirectional channel that can be used by the two threads, given that each
thread calls the function channel() with the other thread as an argument. Here is an example.

In thread A:

chB := channel(B) | "failed to open a channel with B"
In thread B:
chA := channel(A) | "failed to open a channel with A"

A channel is a directional communication medium. One thread should use it as an
outbox, and the other should use it as an inbox; only one thread will send messages over
the channel while the other receives them from the other end. The provided channel can
be used with the communication operators (all four of them) with the same semantics
as before. The only difference in this case is that the right operand is a communication
channel instead of a thread. In the channel example below, the main thread transmits the
consumer’s identity to the producer (¢ @> p), who receives it via ¢ := <<@:



160 CHAPTER 8. THREADS

import threads
procedure main()
p := thread produce()
¢ := thread consume(p)
c@>p
every wait(p | €)
end

procedure produce()

Cc =<<@

chC := channel(c)

every 110 @> chC # place values in channel ¢
end

procedure consume(p)

chP := channel(p)

every 110 do write(<<@chP)
end

A simple thread pool

In some cases the explicit creation of a thread for each concurrent activity is the simplest
and most transparent way of writing the program, especially if the threads need access to
the local variables of the procedure that created them. In other cases the work can be
more expeditiously carried out by a pool of “worker” threads, which execute tasks that are
handed to them. The threads package contains a simple thread pool that may be used for
this purpose: it has four procedures.

MakePool(n) Create a pool of n worker threads. The default value for nis 2 +
the number of processors reported in &features.There is usually not much to be gained
by having many more active threads than the number of available processors (unless a
significant number are idle, waiting for an event to happen).

Dispatch(proc, params, ...) Queue a task to be executed by a thread from the
pool. If a thread is available the procedure will be called immediately with the supplied
parameters, otherwise it will be called when a thread becomes available.

isldle() Succeeds if no worker threads are active and there are no tasks in the queue.

ClosePool() Shuts down the pool after remaining tasks have finished (including
those that are in the queue). ClosePool does not return until the pool has been shut
down and all the threads have finished, which provides a simple way of synchronizing the
concurrent activities with the controller thread (often &main).
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Although waiting for everything to finish is the most usual (and safest) technique, if
waiting is not required a simple way to achieve it is to write

thread{ClosePool()}

Note that calling ClosePool directly in a worker thread will lead to deadlock (because
the thread will be waiting for itself to terminate). The same thing happens if you write
Dispatch(ClosePool). There is some risk attached to not waiting for the pool to complete its
work because if the main thread terminates the whole program finishes — regardless of the
state of the thread pool.

The thread pool is minimalist by design. There are a number of extra facilities that
could, perhaps, be added — cancellation of a task, place a task at the front of the queue,
rather than the rear — but these are left as an exercise for the reader who needs them.

Thread-local storage

It is notable that thread—local storage can be implemented in Unicon without any special
support from the runtime system. The threads package contains a TLS procedure that can
be invoked on either side of an assignment operator to store and recover thread-local values.
A plausible implementation of TLS would be

procedure TLS(var)
local thr, tls
static mtx, TT  # A table of tables indexed by thread id
initial { mtx := mutex(); TT := table() }

thr := serial()
critical mtx: tls := if not member(TT,thr) then TTJ[thr] := table() else TT[thr]
return tls[var]

end

In fact, the implementation of TLS is

procedure TLS(var)
local thr; static TT # A table of tables indexed by thread id
initial TT := mutex(table())
[TT[thr:=serial()] := table()
return TT[thr][var]
end

which takes full advantage of the automatic locking and unlocking features discussed earlier
(and is approximately 50% faster). Note that TLS is a misnomer: it actually implements
co-expression local storage but, unless you are writing a multi-threading program that also
uses co-expressions within each thread, the distinction is unlikely to matter.
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8.6 Practical examples using threads and messages

This section starts with a discussion of an early version of a program that forms part of an
indexing system for XTEX files, which are the source for a book. The system operates in
three phases:

1. An analysis phase, where the possible words to be indexed are gathered from the
source files.

2. A manual review phase to select the index terms. Good indexing is an art and some
judgement must be exercised when choosing what to index and how to refer to it.

3. An insertion phase where the chosen terms are located and the indexing terms inserted
into the source files.

We focus on the first (analysis) phase. Here the files are read in and every “word” is put into
a table that counts how many times that word occurs. Words that occur too many times
(either in an individual source file, or the document as a whole) are rejected as indexing
candidates because they are likely to be the common words that are of no value in an index.
A simple program to analyze the files is something like the following. It uses three nested
loops to read each file, split every line into words and put the results into a file table. At
the end of each file, it copies eligible words from the file table into the document table.
Two parameters, perFile and perDoc, govern the limits that cause a particular word to be
rejected as an index candidate. perDoc is used in the reportWords procedure, which is not
shown.

global perFile # If a wordcount exceeds this in a single tex file it is rejected
global perDoc  # If a wordcount exceeds this in the whole document it is rejected

procedure main(args)
local nFiles
local f, wt, dt, word, texWord, fileName, line, count, x

# argument and option processing omitted for clarity

dt := table(0)
texWord := &letters ++ "_-\""
count ;=0

every fileName := largs do {
if f := open(fileName, "r") then {
wt := table(0)
every line := If do { # put each word in the word table
line ? {while tab(upto(texWord))
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word := tab(many(texWord)); wtfword] +:= 1; count +:=1}

}

# Add the candidate words used in this file to the master table.
every word := key(wt) do if (x := wt[word]) <= perFile then dt[word] +:= x
close(f)

} else {write(&errout, "Cannot open ", fileName) }

}
reportWords(dt)

return # Success
end

Whilst this program works, albeit with an idiosyncratic definition of what constitutes a
word, it suffers from a serious defect: it only analyzes one file at a time so a large proportion
of the available processing power is unused (on the author’s machine, which reports 8 cores,
the figure works out at 87.5% idle). We can do much better than that.

In the following version, which uses the threads library package, each file is processed in
parallel by a separate thread drawn from a pool of worker threads. After the analysis of
each file is complete, the results are sent to a separate “accumulator” thread that aggregates
the results.

import threads

global perFile # If a wordcount exceeds this in a single tex file it is rejected
global perDoc  # If a wordcount exceeds this in the whole document it is rejected
global countingThread

procedure main(args)
local nFiles

# argument and option processing omitted for clarity

nFiles := *args
MakePool() # no parameter means default of 2 + no. of processors

# Start a "counting thread" to accumulate answers from the analysis threads.
Dispatch(accumulator)

# Analyze each file in a separate thread. Send the results to the accumulator.
every Dispatch(analyze, !args)

waitFor(nFiles) # Wait for all files to be analyzed.



164 CHAPTER 8. THREADS

# Since all the analyzers have now finished, it is safe to end the counting thread.
# It will get all the answers that have previously been sent before receiving "end".
"end" @>> countingThread

ClosePool() # ClosePool returns when all threads have finished.

return # Success
end

The procedures called by main (except for waitFor) are all pretty much the same as the
corresponding lines of code in the preceding example. Each analysis thread sends a message
to the main thread when it has finished. Since the main thread knows how many files there
are to be processed, it can wait until every file has been analyzed.

# Wait for the specified number of messages before returning
procedure waitFor(messages :integer)

repeat { <<@ ; if 0 >= (messages -:= 1) then return }
end

The analyze procedure is the same as the previous example, except that it sends a result
to the accumulator thread and a “finished” message to the main thread.

procedure analyze(fileName :string)
local f, line, count := 0, word, wt := table(0)
local texWord = &letters ++ "_-\"
if f := open(fileName, "r") then {

every line := If do { # put each word in the word table
line ? {while tab(upto(texWord)) do {
word := tab(many(texWord)); wt[fword] +:= 1; count +:=1}

}

wt @>> countingThread # Send the words to the accumulator thread
close(f)
} else { write(&errout, "Cannot open ", fileName) }

"end" @> &main # Tell the main thread that a file has been analyzed
return # success
end

The accumulator thread gets messages from the analysis threads and from the main
thread. Tt uses the type of the message to distinguish between them. Before starting, it
writes its thread id to a global variable so other threads know where to send messages.

procedure accumulator()



8.6. PRACTICAL EXAMPLES USING THREADS AND MESSAGES 165

local msg, word, x, dt := table(0)
# publish the thread Id so other threads can send messages.
countingThread := &current
repeat {
msg = <<@
case type(msg) of {
"table" : # Add the candidate words in this file to the master table.
{ every word := key(msg)
do if (x := msg[word]) <= perFile then dt[word] +:= x }
"string" : # Final message from the main thread.
{ reportWords(dt); return }
default: stop("Invalid message sent to counting thread")

}

end

Note: this design has a race condition — it is possible that an analysis thread that
has started after the accumulator could finish its analysis before the accumulator has even
started. In that case the program would terminate because of an attempt to send a message
to &null: it has never happened, but the behaviour is theoretically possible (and a correct
concurrent program may make no assumptions about timing). One cure would be for the
main program to wait for a message from the accumulator thread before starting the others.
A less elegant solution would be to delay until the countingThread variable is not null.

Although the tables themselves may be quite large, because a table is a mutable type it
is passed by reference, so the messages passed between threads are quite small. Extra work
has to be done to pass messages and to coordinate the threads but the savings outweigh the
extra work by a considerable margin. The graph below plots the run times of the original
sequential program and the concurrent program using a different number of threads to
perform the analysis.

Because of the accumulator thread, the number of threads performing the analysis is
one less than the graph shows. This explains the slight “bump” at two threads: there is
only one analysis thread, so we get the performance of the sequential version plus the
overheads of message passing. With two analysis threads (three in total) the run time
is halved and with four analysis threads the performance is roughly quadrupled. Adding
more threads doesn’t really increase the performance in this particular example (the test
machine reports eight processors but it’s really four dual hyper-threaded cores: the lack of
speed-up after four analysis threads suggests that the dual hyper-threads don’t have quite
as much “grunt” as two separate cores)

There is no explicit synchronization because the analysis threads are not contending
with each other — if the table that counted words in the whole document were global and
each analysis thread added it’s own results to the global table then contention for the table
might be a performance bottleneck — instead, the analysis threads are just passing their
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results in a message and getting on with their day. An accumulator, for the price of an
extra thread, can often result in a worthwhile increase in performance.

This design pattern (process in parallel and send results to a single accumulator) can
be used in many different circumstances and, in most cases, the reduction in contention
more than makes up for the cost of the extra thread.

8.6.1 Disk space usage

The unix du utility can be used to traverse a filesystem and report on the space used. If,
instead of a recursive traversal of each directory, the separate directories are analyzed in
parallel and the results sent to an accumulator the result is usually faster. The process
may be initiated by a procedure like the following

# Analyze a directory and wait until the analysis is finished
procedure analyze(path)
local thisThread := &current
MakePool()
Adder := thread { Dispatch(du, (\path | "." )); GatherResults() @>> thisThread }
write("total size =", <<@ )
ClosePool()
return # success
end

Note that instead of using a thread from the pool as an accumulator, one is created on
the fly (this is another way of avoiding the start-up race discussed in the previous example).
The du procedure analyzes a directory, adding up the size for regular files, ignoring special
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files and handing off (sub) directories to another thread. At the end it sends off the total

for that directory (but not it’s children) to the accumulator thread.

Before analyzing a directory, it also sends off a message to the accumulator announcing
its intent. The reasons for this are discussed later. In the interests of clarity, some code
dealing with loops in the filesystem has been omitted.

# Get the disk usage for a directory. Do sub-dirs in parallel with this one.
procedure du(d, parent)
local st, fd, f, path, kb := 0

fd := open(d) | { Report("Cannot open", d); return }
# send a "starting analysis of d" message to the Adder
[d, &null] @>>Adder

while f := Ifd do {
if f==(""|"..") then next

if st := stat(path :=d || "/" || f) then {
case st.mode[1] of {
"-": # Normal file - add its rounded size to the total for this directory

kb +:= ((st.size < st.blksize) |
st.blksize * ceil(st.size/(0.0 + st.blksize)))/1024

"d": # Directory - hand it off to a worker thread to analyze in parallel
Dispatch(du, path, d, f)

“I"|"s" | "b" | "c" | "p" | "|": # Ignore special files, symbolic links, pipes etc.
next

default: Report("Cannot handle mode ", st.mode, "", file ", path)

}
} else {
Report("Cannot stat", path)

}

close(fd)
[d, kb,] @>> Adder # Send the result from analysis of d to the Adder

end

The Adder thread, which calls procedure GatherResults, gets results for each directory
until it’s all over. Each directory results in two messages: [d, null] followed, a little later by
[d, size]. Results for child directories of d might come before the second message, but will

never precede the first.
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procedure GatherResults()
local msg, kb :=0

repeat {
msg = <<@; kb +:=\msg[2]

# Have we finished? The question is trickier than it looks!
if Isldle() & (Attrib(Adder,INBOX_SIZE) = 0) then return kb

}

end

Now to the discussion of “Have we finished?” The reason the question is tricky is because
GatherResults operates in parallel with the analysis; perhaps before it has even started. We
must ensure that we don’t bail out before at least one directory has been analyzed, which
is achieved by placing the test after the reception of the first message — this is one of
the reasons for sending two messages per directory. We must check the analysis is finished
i.e. there is no work in progress. The WIP logic depends on du queuing new work before
reporting the result of analyzing a directory. Finally, we must have processed all of the
messages.

Note that Isldle() must be true before checking the message queue is empty; otherwise,
there is a race between the analysis thread and GatherResults (We might see an empty
message queue, then the analyzer posts [d, size] and finishes before we call Isldle(): The
result would be that we’d ignore the final message, or messages).

It is sometimes true that deciding when a concurrent algorithm has finished — without
terminating prematurely or discarding some of the final results or never terminating — is
harder than writing the processing algorithm itself!

The reader may be wondering why the directory name is passed to the GatherResults
procedure, which doesn’t use it. The reason is that these examples are edited extracts from
a larger program that builds a structure that represents the directory and its child sub-
directories. It then displays a series of pie charts (one for each directory) showing where all
the space has gone. It needs the directory names to label the segments of each pie chart.
The other reason for passing two messages per directory is that the full program needs to
set up the structure for a directory before receiving any results for its children.

When analyzing a fairly large (500GB) directory, the pie chart program — which runs
on the Unicon interpreter and is based on the code examples above — outperforms the
built in du program by almost an order of magnitude on an eight core processor; the built
in program is presumably written in C and optimised but, crucially, it is single threaded.

8.6.2 More suggestions for parallel processing

If several files are involved, it is often quite easy to see how the processing may be done
in parallel but there are other cases — some more obvious than others — where it might
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prove useful:

Monte Carlo methods Any problem that calls for a large number of trials, where the
result of one trial does not affect subsequent trials is amenable to being written as a
parallel application.

Matrix multiplication Large matrices may be multiplied in parallel, either by a naive
rewrite of the sequential (O(n?)) algorithm or by dividing the matrix up into blocks
(divide and conquer) and handling each block in a separate thread.

Unicon compiler Analysis and code generation is largely independent for each Unicon
procedure. It might be possible to farm out larger procedures to a thread pool and
thereby increase the overall performance of the compiler.

grep If the regular expression is computationally expensive, spreading out the analysis
work for each line of the file to a thread pool might be faster.

The last two suggestions are speculative but demonstrate that the world can look quite
different when viewed through concurrent spectacles.

8.7 Summary

True concurrency opens up major new application domains for the Unicon language. More
importantly, it enables the language to utilize more than the small fraction of modern
processors utilized by traditional sequential execution. For example, on a typical quad-
core desktop, many applications will be able to get between 2x and 4x the performance
of a sequential Unicon program with relatively minor changes. This is comparable to the
speedup typically delivered by the optimizing compiler. Some applications will be able to
do even better on processors with more cores.

This document presented Unicon’s concurrency facilities from a programmer’s perspec-
tive. The implementation and its performance are described in more detail in [Al-G12].
There are major areas for future work, including GPU- and APU support, and various
forms of implicit concurrency that can be added to the language.
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Chapter 9

Execution Monitoring

Unicon’s execution monitoring facilities allow the user to execute a Unicon program under
the observation of one or more monitoring programs, also written in Unicon. This chapter
presents the monitoring architecture and a standard execution monitoring scenario, followed
by details of the language features involved. This chapter is based on “Program Monitoring
and Visualization” [Jeff99], which has many additional examples.

9.1 Monitor Architecture

The monitoring facilities components are summarized in Figure 9-1. Many of these com-
ponents are general-purpose language features that are useful independent of execution
monitoring.

©
®
@J ogo@

Alargel program under observation

@ automatic instrumentation
@ event—driven execution control
@ maonitor coordinator

@ event forwarding

@ execution monitors (EMs)

@ direct access library

Runtime System
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Figure 9-1: The Alamo architecture
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Monitor Terminology

The terminology used in discussing Unicon’s execution monitoring architecture relates to
events and the linguistic features associated with them.

Dynamic loading — The ability to load multiple programs into a shared execution en-
vironment supports monitor access to target program data. Dynamic linking is not
desirable in the context of execution monitoring; the names in the monitor are distinct
from those in the target program.

Synchronous execution — The monitor and target program execute independently, but
not concurrently. This allows the monitor to control target program execution using
a simple programming model. Unicon’s co-expression data type is used to support
the relationship between monitor and target program.

High-level instrumentation — Information about program execution is available to the
monitor from locations in the language runtime system that are coded to report sig-
nificant events. This obviates the need for, and offers higher performance than target
program instrumentation. The runtime system instrumentation is a generalization
of an earlier special-purpose monitoring facility oriented around dynamic memory
allocation and reclamation [Town89|. It also supercedes Icon and Unicon’s procedure
tracing mechanism.

Events — The primary language concept added in order to support execution monitoring
is an event. An event is the smallest unit of execution behavior that is observable
by a monitor. In practice, an event is the execution of an instrumentation point
in the code (a sensor) that is capable of transferring control to the monitor. This
definition limits events to those aspects of program behavior that are instrumented
in the language runtime system or the program itself. If instrumentation does not
exist for an aspect of program behavior of interest, it is often possible to monitor
the desired behavior by means of other events. In the present implementation, for
example, no instrumentation exists for file input and output. If an EM wishes to
monitor I/O behavior, it can monitor function and operator events and act on those
functions and operators that relate to input and output. A similar example involving
the monitoring of Icon’s built-in string scanning functions is presented in [Jeffery99|

In Unicon, events occur whether they are monitored or not, and each event may or
may not be observed by any particular monitor. This definition is useful in a multi-
monitor environment, in which EMs are not coupled with the instrumentation and
multiple EMs can observe a TP’s execution.

Event codes and values — From the monitor’s perspective, an event has two compo-
nents: an event code and an event wvalue. The code is generally a one-character
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string describing what type of event has taken place. For example, the event code C
denotes a procedure call event. Event codes all have associated symbolic constants
used in program source code. For example the mnemonic for a procedure call event
is E_Pcall. These constants are available to programmers as part of a standard event
monitoring library described below.

The event value is an Icon value associated with the event. The nature of an event
value depends on the corresponding event code. For example, the event value for a
procedure call event is an Icon value designating the procedure being called, the event
value for a list creation event is the list that was created, the event value for a source
location change event is the new source location, and so forth. Event values can be
arbitrary Icon structures with pointer semantics; the EM accesses them just like any
other source language value.

Event reports — The number of events that occurs during a program execution is ex-
tremely large—large enough to create serious performance problems in an interactive
system. Most EMs function effectively on a small fraction of the available events; the
events that an EM uses are said to be reported to the EM. An event report results
in a transfer of control from the TP to the EM. Efficient support for the selection of
appropriate events to report and the minimization of the number of event reports are
primary concerns.

Event masks — A monitor controls the target program by means of this dynamic form
of filtering events. An event mask is a set that describes the execution behavior
of interest to the monitor. Because event codes are one-letter strings, the cset data
type is used for event masks. Csets are represented internally by bit vectors, so a cset
membership test is very efficient compared to the set data type, whose membership
test is a hash table lookup.

Event masking allows the monitor to specify which events are to be reported and to
change the specification at runtime. Events that are of no interest to the execution
monitor are not reported and do not impose unreasonable execution cost. When a
monitor starts or resumes execution of the program being monitored, the monitor
selects a subset of possible event codes from which to receive its first report. The
program executes until an event occurs with a selected code, at which time the event
is reported. After the monitor has finished processing the report, it transfers control
back to the program, again specifying an event mask. Dynamic event masking enables
the monitor to change the event mask in between event reports.

When an event report transfers control from TP to EM, the two components of the
event are supplied in the Icon keywords &eventcode and &eventvalue, respectively.

As discussed earlier, these keywords are special global variables that are given their
values by the runtime system during an event report, rather than by explicit user
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assignment. The monitor then can act upon the event based on its code, display or
manipulate its value, etc.

Standard Execution Monitoring Scenario

The following scenario presents the relationship between execution monitors and target
program in its simplest form. More sophisticated relationships between the monitor and
target program, such as running many monitors on a single target program via a monitor
coordinator, are described in “Program Monitoring and Visualization” [Jeffery99|. In addi-
tion, the expected user and range of program behavior observable using these monitoring
facilities are characterized.

Scenario Definitions

target program (TP) — The target program is the Unicon pro-
gram under study, a translated Unicon executable file. Monitoring
does not require that the TP be recompiled, nor that the TP’s source
code be available, although some monitors make use of program text
to present information.

cccccc

execution monitor (EM) — An execution monitor is a Unicon
program that collects and presents information from an execution

of a TP.
) program behavior — Program behavior denotes the results of
/ \ executing the TP. Behavior is meant in a general sense that includes

program output, execution time, and the precise sequence of actions
that take place during execution.

user — In our standard scenario, the user is a human capa-
ble of understanding the TP’s execution behavior. The user must
know the target language in order to make good use of many EMs
or to write a new EM. In general, the user need not necessarily be
familiar with the TP’s source code.

Execution monitoring begins with a user who has questions about the behavior of a TP
(Figure 9-2). Typical questions relate to correctness or performance, such as “How is the
result calculated?” or “What is taking so long?”. Questions may be more general in nature
if the user is just trying to understand how a program works.
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Figure 9-2: Monitoring starts with a user, a program, and questions.

Answers to important questions can be found by following the execution at the source
language level, but key behavior often depends upon language semantics, implemented by
the language runtime system. In Figure 9-3, iconx.c denotes the set of files in the Unicon
language runtime system. Many monitors can provide useful information about runtime
behavior even if the TP’s source code is not available. Figure 9-3 could be elaborated to
include dependencies on the platform on which the program is running.

icn [t

O

Figure 9-3: Behavior depends on the language, not just the program.

Selecting or Developing Appropriate Monitors

Rather than focusing on one monolithic EM that attempts to accommodate all monitoring
tasks, the framework advocates development of a suite of specialized EMs that observe
and present particular aspects of a TP’s behavior. The user is responsible for selecting an
appropriate EM or set of EMs that address the user’s concerns.

If no available EM can provide the needed information, the user can modify an existing
EM or write a new one. This end user development of execution monitors is also useful when
an existing EM provides the needed information, but it is obscured by other information;
existing EMs can be customized to a particular problem.
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Running the Target Program

The user runs the TP, monitored by a selection of EMs (Figure 9-4). General-purpose EMs
provide an overall impression of program behavior. Visualization techniques enable the
presentation of a large amount of information and abstract away detail.

R [[== g N

Figure 9-4: EMs can answer questions about TP behavior.

Obtaining specific information often requires that the user interact with the EMs to
control the TP’s execution, either to increase the amount of information presented during
specific portions of execution or to pause execution to examine details. In order to provide
this interactive control, EMs present execution information as it happens during the TP’s
execution, rather than during a postmortem analysis phase.

Framework Characteristics

The preceding scenario requires language support in several areas: controlling a program’s
execution, obtaining execution information, presenting large quantities of information, and
interacting with the user. To support these tasks, the framework provides synchronous
shared address multitasking and an event-driven execution control model. The first two of
these features are the focus of this chapter.

Multitasking

In the monitoring execution model, in which an EM is a separate program from the TP |
the relationship is almost that of two co-expressions, except that activations of the monitor
are implicit occurrences of events within the runtime system, rather than expression results
or explicit activations using the @ operator. Event reports are transfers of control to the
monitor as well as the primary source of execution information from a TP (Figure 9.5).
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Figure 9-5: EM and TP are separately loaded coroutines

Multitasking has the following benefits for monitoring: the EM and TP are independent
programs, the EM has full access to the TP, and the mechanism accommodates multiple
EMs. These benefits are described in more detail below.

Independence

Because the EM and TP are separate programs, the TP need not be modified or even
recompiled in order to be monitored by an EM, and EMs can be used on different target
programs. By definition, execution of tasks such as EMs and TPs is synchronous. The
TP is not running when an EM is running, and vice versa. This synchronous execution
allows EMs and TPs to be independent without introducing the complexities of concur-
rent programming. In a concurrent context, each thread might have a monitor, but the
target thread and its associated monitor are not concurrent — and monitoring concurrent
programs is not yet supported by the implementation.

Another degree of EM and TP independence is afforded by separate memory regions;
EMs and TPs allocate memory from separate heaps. Memory allocation in the EM does
not affect the allocation and garbage collection patterns in the TP. Because Unicon is a
type-safe language with runtime type checking and no pointer data types, EMs and TPs
cannot corrupt each others’ memory by accident; only code that contains explicit references
to another program’s variables and data can modify that program’s behavior. EMs can
(and some do) modify TP values in arbitrary ways; the purpose of separate memory regions
is to minimize uninteniional data intrusion.

Access

An address space is a mapping from machine addresses to computer memory. Within an
address space, access to program variables and data is direct, efficient operations such as
single machine instructions. Accessing program variables and data from outside the address
space is slow and requires operating system assistance.

The EM and TP reside within the same address space. This allows EMs to treat TP data
values in the same way as their own: EMs can access TP structures using regular Unicon
operations, compare TP strings with their own, and so forth. Because of the shared address
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space, the co-expression switch used to transfer execution between EMs and TPs is a fast,
lightweight operation. This is important because monitoring requires an extremely large
number of task switches compared to typical multitasking applications.

Multiple Monitors and Monitor Coordinators

Unicon’s dynamic loading capabilities allow simultaneous execution of not just a single EM
and a single TP, but potentially many EMs, TPs, and other Icon programs in arbitrary
configurations. Although uses for many such configurations can be found, one configuration
merits special attention when many specialized EMs are available: the execution of multiple
monitors on a single TP (Figure 9-6, left).
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Figure 9-6: Multiple EMs (left); EMs under a monitor coordinator (right)

The difficulty posed by multiple monitors is not in loading the programs, but in coor-
dinating and transferring control among several EMs and providing each EM with the TP
execution information it requires. Since EMs are easier to write if they need not be aware
of each other, things are much simpler if EMs run under a monitor coordinator (MC), a
special EM that monitors a TP and provides monitoring services to one or more additional
EMs (Figure 9-6, right). EMs receiving an MC'’s services need not be aware of the presence
of an MC any more than a TP need be aware of the presence of an EM.

The virtual monitor interface provided by MCs makes adding a new monitor to the
system extremely easy. A new monitor could conceivably be written, compiled, linked, and
loaded during a pause in the TP’s execution. In addition, constructing efficient MCs that
provide high-level services is another area of research that is supported within the Alamo
Icon framework.
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Support for Dual Input Streams

An EM typically has two primary input streams: the event stream from the TP, and the
input stream from the user (Figure 9-7). Although these two input streams are conceptually
independent and may be treated as such, for many EMs this unnecessarily complicates the
central loop that obtains event reports from TP—the EM must also check its own window
for user activity.

event report

user input

Figure 9-7: Monitors have two input streams

The runtime system instrumentation includes code that optionally checks for EM input
and reports it as an event by the execution monitoring facility, instead of requiring that the
EM explicitly check the user input stream. This simplifies EM control flow and improves
EM performance.

9.2 Obtaining Events Using evinit

A standard library called evinit provides EMs with a means of obtaining events. Programs
wishing to use the standard library include a link declaration such as link evinit. In addition,
monitors include a header file named evdefs.icn to obtain the symbolic names of the event
codes.

Setting Up an Event Stream

An EM first sets up a source of events; the act of monitoring then consists of a loop
that requests and processes events from the TP. Execution monitoring is initialized by the
procedure Evlnit(x/,input,output,error]). If x is a string, it is used as an icode file name in a
call to the Unicon function load(). If x is a list, its first argument is taken as the icode file
name and the rest of the list is passed in to the loaded function as the arguments to its
main procedure. Evinit() assigns the loaded TP’s co-expression value to EM’s &eventsource
keyword. The input, output, and error arguments are files used as the loaded program’s
standard files.

EMs generally call the library procedure EvTerm() when they complete, passing it their
main window (if they use one) as a parameter. EvTerm() informs the user that execution
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has completed and allows the final screen image to be viewed at the user’s leisure, waiting
for the user to press a key or mouse button in the window and then closing it.

The typical EM, and all of the EMs presented as examples in this book, follow the
general outline:

$include "evdefs.icn"

link evinit

procedure main(arguments)
Evinit(arguments) | stop("can't initialize monitor")
# ... initialization code, open the EM window
# ... event processing loop (described below)
EvTerm()

end

This template is generally omitted from program examples for the sake of brevity.

EvGet()

Events are requested by an EM using the function EvGet(mask). EvGet(mask) activates the
co-expression value of the keyword &eventsource to obtain an event whose code is a member
of the cset mask. mask defaults to &cset, the universal set indicating all events are to
be reported. The TP executes until an event report takes place; the resulting code and
value are assigned to the keywords &eventcode and &eventvalue. EvGet() fails when execution
terminates in TP.

Event Masks and Value Masks

EvGet() allows a monitor the flexibility to change event masks each time the event source
is activated. Another function that sets event masks is eventmask(). eventmask(C,c) sets the
event mask of the task owning co-expression C to the cset value given in c.

Event masks are the most basic filtering mechanism in Alamo, but there are situations
where they are not specific enough. For example, instead of handling events for all list
operations, you may want events only for specific lists. This situation is supported by the
concept of value masks. A value mask is an Icon set or cset whose members are used to filter
events based on their &eventvalue, just as an event mask filters based on the &eventcode. You
may specify a different value mask for each event code. Value masks for all event codes are
supplied in a single Icon table value whose keys map event codes to corresponding value
masks. This table is passed as an optional second parameter to EvGet() or third parameter
to eventmask(). Note that no value mask filtering is performed for event codes that are not
key in the value mask. Note also that value masks persist across calls to EvGet(). They
are replaced when a new value mask is supplied, or disabled if a non-table is passed as the
value mask parameter.
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There is one special case of value masks that receives extra support in Icon: virtual
machine instructions. Requesting an event report for the execution of the next virtual ma-
chine instruction is performed by calling EvGet() with an event mask containing E_Opcode.
VM instructions occur extremely frequently; dozens of them can occur as a result of the
execution of a single line of source code. Consequently, performance is severely affected by
the selection of all VM instruction events.

However, a particular instruction or small set of instructions may be of interest to a
monitor. In that case, the EM need not receive reports for all instructions. The function
opmask(C, c) allows EM to select a subset of virtual machine instructions given by ¢ in C’s
task. Subsequent calls to EvGet() in which E_Opcode is selected reports events only for the
VM instructions designated by c.

The event values for E_Opcode are small non-negative integers. They fall in a limited
range (< 256), which is what allows a cset representation for them. Symbolic names for
individual virtual machine instructions are defined in the include file opdefs.icn. opmask(C,
c) is equivalent to:

t ;= table()
t[E_Opcode] := ¢
eventmask(C, , t)

9.3 Instrumentation in the Icon Interpreter

This section describes the instrumentation used by Unicon to produce events at various
points in the runtime system. Significant points in interpreter execution where transfer of
control might be warranted are explicitly coded into the runtime system with tests that
result in transfer of control to an EM when they succeed. When execution reaches one
of these points, an event occurs. Events affect the execution time of the TP; execution is
either slowed by a test and branch instruction (if the event is not of interest to the EM),
or stopped while the event is reported to the EM and it processes information. Minimizing
the slowdown incurred due to the presence of monitoring instrumentation has been a focus
of the implementation.

There are several major classes of events that have been instrumented in the Unicon
interpreter. Most of these events correspond to explicit elements within the source code;
others designate actions performed implicitly by the runtime system that the programmer
may be unaware of. A third class of event that has been instrumented supports user
interaction with the EM rather than TP behavior.

Explicit Source-Related Events

The events that relate behavior observable from the source code are:
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Program location changes — Source code locations are reported in terms of line num-
bers and columns.

Procedure activity — There are events for procedure calls, returns, failures, suspensions,
and resumptions. In addition to these explicit forms of procedure activity, events
occur for implicit removals of procedure frames.

Built-in functions and operations — Events that correspond to Icon built-ins describe
many areas of behavior from numeric and string operations to structure accesses and
assignments. Like procedures, events are produced for function and operator calls,
returns, suspensions, resumptions, and removals.

String scanning activity — Icon’s pattern matching operations include scanning envi-
ronment creation, entry, change in position, and exit. To obtain a complete picture of
string scanning, monitors must observe these events along with the built-in functions
related to string scanning.

Implicit Runtime System Events

Events that depict important program behavior observed within the runtime system in-
clude:

Memory allocations — Memory is allocated from the string and block regions in the
heap. Allocation events include size and type information. This instrumentation is
based on earlier instrumentation added to Icon for a memory monitoring and visual-
ization system [Town89).

Garbage collections — The storage region being collected (Icon has separate regions for
strings and data structures), the memory layout after compaction, and the completion
of garbage collection are reported by several events.

Type conversions — In Icon, automatic conversions are performed on parameters to
functions and operators. Information is available for conversions attempted, failed,
succeeded, and found to be unnecessary.

Virtual machine instructions — Icon’s semantics may be defined by a sequence of in-
structions executed by the Icon virtual machine [Gris86]. The program can receive
events for all virtual machine instructions, or an arbitrary subset.

Clock ticks — The passage of CPU time is indicated by a clock tick.

Most EMs, except completely passive visualizations and profiling tools, provide the user
with some degree of control over the monitoring activity and must take user interaction into
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account. For example, the amount of detail or the rate at which the monitor information
is updated may be variables under user control. Since an EM’s user input occurs only
as often as the user presses keys or moves the mouse, user interaction is typically far less
frequent than events in TP. Even if no user input occurs, polling for user input may impose
a significant overhead on the EM because it adds code to the central event processing loop.

In order to avoid this overhead, the event monitoring instrumentation includes support
for reporting user activity in the EM window as part of the TP’s event stream. Monitor
interaction events are requested by the event code E_MXevent. An example of the use
of monitor interaction events is presented further in this chapter in the section entitled
“Handling User Input”. A complete list of event codes is presented in Appendix 77 in order
to indicate the extent of the instrumentation.

9.4 Artificial Events

As described above, the Unicon co-expression model allows interprogram communication
via explicit co-expression activation or implicit event reporting within the runtime system.
Artificial events are events produced by explicit Icon code; they can be viewed at the
language level as co-expression activations that follow the same protocol as implicit events,
assigning to the keyword variables &eventcode and &eventvalue in the co-expression being
activated.

There are two general categories of artificial events, virtual events meant to be indis-
tinguishable from implicit events and pseudo events that convey control messages to an
EM. Virtual events are generally used either to produce event reports from manually in-
strumented locations in the source program, to simulate event reports, or to pass on a real
event from the primary EM that received it to one or more secondary EMs. Pseudo events,
on the other hand, are used for more general inter-tool communications during the course
of monitoring, independent of the TP’s execution behavior.

Virtual Events Using event()

The function event(code, value, recipient) sends a virtual event report to the co-expression
recipient, which defaults to the &main co-expression in the parent of the current task, the
same destination to which implicit events are reported.

There are times when a primary EM wants to pass on its events to a secondary EM.
An example would be an event transducer that sits in between the EM and TP, and uses
its own logic to determine which events are reported to EM with more precision than is
provided by the masking mechanism. A transducer might just as easily report extra events
with additional information it computes, in addition to those received from TP. A more
substantial application of virtual events is a monitor coordinator, an EM that coordinates
and produces events for other monitors. Such a tool is presented in [Jeffery99|
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Pseudo Events for Tool Communication

EMs generally have an event processing loop as their central control flow mechanism.
The logical way to communicate with such a tool is to send it an event. In order to
distinguish a message from a regular event report, the event code must be distinguishable.
In the monitoring framework, this is achieved simply by using an event code other than a
one-letter string, such as an integer. Since not all EMs handle such events, they are not
delivered to an EM unless it passes a non-null second argument (the “value mask argument”)
to EvGet(), such as EvGet(mask, 1).

The framework defines a minimal set of standard pseudo events, which well-behaved
EMs should handle correctly [Jeffery99|. Beyond this minimal set, pseudo events allow the
execution monitor writer to explore communication between EMs as another facility to ease
programming tasks within the monitoring framework.

9.5 Monitoring Techniques

Monitors generally follow a common outline and use a common set of facilities, which are
described below.

Anatomy of an Execution Monitor

The execution monitoring interface uses a form of event driven programming: the central
control flow of EM is a loop that executes the TP for some amount of time and then returns
control to EM with information in the form of an event report. The central loop of an EM
typically looks like:

while EvGet(eventmask) do
case &eventcode of {
# a case clause for each code in the event mask

}

Event-driven programming is more commonly found in programs that employ a graphi-
cal user interface, where user activity dominates control flow. Because monitoring employs
a programming paradigm that has been heavily studied, many coding techniques devel-
oped for graphical user interface programming, such as the use of callbacks [Clark85|, are
applicable to monitors. Several of the example EMs in the IPL use a callback model to
take advantage of a higher-level monitoring abstraction available by means of a library
procedure.

Handling User Input

An EM that handles user input could do so by polling the window system after each event
in the main loop:
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while EvGet(eventmask) do {
case &eventcode of {
# a case clause for each code in the event mask

}

# poll the window system for user input

}

If the events being requested from the TP are relatively infrequent, this causes no great
problem. However, the more frequent the event reports are, the more overhead is incurred
by this approach relative to the execution in TP. In typical EMs, polling for user events
may slow execution from an imperceptible amount to as much as 15 percent. Relative
frequency for different types of events varies wildly; it is discussed in [Jeffery99|.

Since the slowdown is a function of the frequency of the event reports and not just the
cost of the polling operation itself, techniques such as maintaining a counter and polling
once every n event reports still impose a significant overhead. In addition, such techniques
reduce the responsiveness of the tool to user input and therefore reduce the user’s control
over execution.

Monitor interaction events, presented earlier in this chapter, address this performance
issue by allowing user input to be supplied via the standard event stream produced by
EvGet(). Since the E_MXevent event occurs far less frequently than other events, it makes
sense to place it last in the case expression that is used to select actions based on the event
code. Using this feature, the main loop becomes:

while EvGet() do
case &eventcode of {
# other cases update image to reflect the event
E_MXevent: {
# process user event

}
}

EvGet() reports pending user activity immediately when it is available; the control over
execution it provides is comparable to polling for user input on each event.

After each event report, EMs can use Unicon’s intertask data access functions to query
TP for additional information, such as the values of program variables and keywords. The
access functions can be used in several ways, such as

e applying a predicate to each event report to make monitoring more specific,

e sampling execution behavior not reported by events by polling the TP for information
unrelated to the event reports [Ogle90], or

e presenting detailed information to the user, such as the contents of variables.
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9.6 Some Useful Library Procedures

As mentioned, several library procedures are useful in EMs. The following library proce-
dures that are included in the evinit library.

Location decoding and encoding procedures are useful in processing location change
event values, but they are also useful in other monitors in which two-dimensional screen
coordinates must be manipulated. Besides program text line and columns, the technique
can variously be applied to individual pixels, to screen line and columns, or to screen grid
locations in other application-specific units.

In addition, various EMs use utility procedures. Figure 9-8 lists some library procedures
that are recommended for use in monitors.

procedure returns or computes

evnames(s) converts event codes to text descriptions and vice versa
evsyms() two-way table mapping event codes to their names
typebind(w,c) table mapping codes to color coded Clones for w
opnames() table mapping VM instructions to their names
location() encodes a two dimensional location in an integer
vertical() y/line/row component of a location

horizontal() x/column component of a location

prog_len() number of lines in the source code for TP
procedure_name() name of a procedure

WColumns() window width in text columns

WHeight() window height in pixels

WRows() window height in text rows

WWidth() window width in pixels

Figure 9-8: Additional library procedures for monitors.

9.7 Conclusions

Unicon includes facilities to exploit instrumentation available within its runtime system.
Writing a monitor consists of writing an ordinary application. The key concepts introduced
for Unicon’s event monitoring facilities are events, event reports, event codes and values,
and event masks. Monitors also make use of a standard monitoring library and the graphics
facilities.
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Chapter 10

Objects and Classes

Object-oriented programming means different things to different people. In Unicon, object-
oriented programming starts with encapsulation, inheritance, and polymorphism. These
ideas are found in most object-oriented languages as well as many that are not object-
oriented. This and following chapters present these ideas and illustrate their use in design
diagrams and actual code. Diagrams and code are alternative notations by which program-
mers share their knowledge. This chapter explores the essence of object-orientation and
gives you the concepts needed before you delve into diagrams and code examples. In this
chapter you will learn:

e How different programming languages support objects in different ways
e To simplify programs by encapsulating data and code

The relationship between objects and program design

Draw diagrams that show class names, attributes, and methods

Write corresponding code for classes and their methods

To create instances of classes and invoke methods on those objects

10.1 Objects in Programming Languages

Object-oriented programming can be done in any language, but some languages make
it easier than others. Support for objects should not entail strange syntax or programs
that look funny in a heterogeneous desktop-computing environment. Smalltalk has these
problems. C++ avoids these programs, but its low-level machine-orientation is less than
ideal as an algorithmic notation usable by non-experts. Java offers a simple object model
and familiar syntax. The advantages Unicon has over Java are fundamentally higher-level
built-in types, operations, and control structures.

Many object-oriented languages require that everything be done in terms of objects,
even when objects are not appropriate. Unicon provides objects as just another tool to aid
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in the writing of programs, especially large ones. Icon already provides a powerful notation
for expressing a general class of algorithms. The purpose of object-orientation is to enhance
that notation, not to get in the way of it.

Icon does not support user-defined objects, although its built-in types have nice object-
like encapsulation and polymorphism properties. Unicon’s object-oriented facilities descend
from a package for Icon called Idol. In Idol, a preprocessor implemented objects with no
support from the underlying Icon runtime system. In contrast, Unicon has support for
objects built-in to the language. This simplifies the notation and improves the performance
of object-related computations.

Object-orientation adds several general concepts into procedure-based programming.
The single overriding reason for object-oriented programming is to reduce complexity in
large programs. Simple programs can be written easily in any language. Somewhere be-
tween the 1,000-line mark and the 10,000-line mark most programmers can no longer keep
track of their entire program at once. By using a very high-level programming language,
fewer lines of code are required; a programmer can write perhaps ten times as large a
program and still be able to keep track of things.

As programmers write larger and larger programs, the benefit provided by very high-
level languages does not keep up with program complexity. This obstacle has been labeled
the “software crisis”, and object-oriented programming is one way to address this crisis.
In short, the goals of object-oriented programming are to reduce the complexity of coding
required to write very large programs and to allow code to be understood independently of
the context of the surrounding program. The techniques employed to achieve these goals
are discussed below.

A second reason to consider object-oriented programming is that the paradigm fits cer-
tain problem domains especially well, such as simulation, and graphical user interfaces.
The first well-known object-oriented language, Simula67, certainly had the domain of sim-
ulation in mind. The second pioneering object-oriented language, Smalltalk, popularized
fundamental aspects of bitmapped graphical user interfaces that are nearly universal today.
Three decades of experience with object-oriented techniques has led many practitioners to
conclude that the concepts presented below are very general and widely applicable, but not
all problems fit the object-oriented mold. Unicon advocates the use of objects, but this is
a suggestion, not a rule.

Encapsulation

The primary concept advocated by object-oriented programming is the principle of encap-
sulation. Encapsulation is the isolation, in the source code that a programmer writes, of a
data representation and the code that manipulates the data representation. In some sense,
encapsulation is an assertion that no other routines in the program have side-effects with
respect to the data structure in question. It is easier to reason about encapsulated data
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because all of the source code that could affect that data is immediately present with its
definition.

Encapsulation does for data structures what the procedure does for algorithms: it draws
a line of demarcation in the program source code. Code outside this boundary is irrelevant
to the code that is inside, and vice versa. Communication across the boundary occurs
through a public interface. An encapsulated data structure is called an object. Just as a
set of named variables called parameters is the interface between a procedure and the code
that uses it, a set of named procedures called methods comprises the interface between an
object and the code that uses it.

This textual definition of encapsulation as a property of program source code accounts
for the fact that good programmers can write encapsulated data structures in any language.
The problem is not capability, but verification. To verify encapsulation some languages
require programmers to specify the visibility of every piece of information in each data
structure as public or private. There are even multiple forms of privacy (semi-private?).
Unicon instead stresses simplicity.

Inheritance

In large programs, the same or nearly the same data structures are used over and over again
for myriad different purposes. Similarly, variations on the same algorithms are employed by
structure after structure. To minimize redundancy, techniques are needed to support code
sharing for both data structures and algorithms. Code is shared by related data structures
through a programming concept called inheritance.

The basic premise of inheritance is simple: when writing code for a data structure similar
to a structure that is already written, specify the new structure by giving the differences
between it and the old structure, instead of copying and modifying the old structure’s
code. There are times when the inheritance mechanism is not useful, such as if the two
data structures are more different than they are similar, or if they are simple enough that
inheritance would only confuse things, for example.

Inheritance addresses multiple programming problems found at different conceptual
levels. The most obvious software engineering problem it solves might be termed enhance-
ment. During the development of a program, its data structures may require extension
via new state variables or new operations or both; inheritance is especially useful when
both the original structure and the extension are used by the application. Inheritance also
supports simplification, or the reduction of a data structure’s state variables or operations.
Simplification is analogous to argument culling, an idea from lambda calculus (don’t worry
if this sounds like Greek to you), in that it describes a logical relation between structures.
In general, inheritance may be used in source code to describe any sort of relational hy-
ponymy, or special casing. In Unicon the collection of all inheritance relations defines a
directed (not necessarily acyclic) graph.
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Polymorphism

From the perspective of the writer of related data structures, inheritance provides a conve-
nient method for code sharing, but what about the code that uses objects? Since objects
are encapsulated, that code is not dependent upon the internals of the object at all, and it
makes no difference to the client code whether the object in question belongs to the original
class or the inheriting class.

We can make a stronger statement. Due to encapsulation, different executions of code
that uses objects to implement an algorithm may operate on objects that are not related
by inheritance at all. Such code can utilize any objects that implement the operations
that the code invokes. This facility is called polymorphism, and such algorithms are called
generic. This feature is found in many non-object-oriented languages; in object-oriented
languages it is a natural extension of encapsulation.

10.2 Objects in Program Design

Another fundamental way to think about objects is from the point of view of software de-
sign. During program design, objects are used to model the problem domain. The different
kinds of objects and relationships between objects capture fundamental information that
organizes the rest of the program’s design and implementation. Program design includes
several other fundamental tasks such as the design of the user interface, or interactions
with external systems across a network. Additional kinds of modeling are used for these
tasks, but they all revolve around the object model.

For small, simple, or well-understood software projects, a prose description may be all
the documentation that is needed. The Unified Modeling Language (UML) is a notation
for building software models of larger software systems for which a prose description alone
would be inadequate. It was invented by Grady Booch, Ivar Jacobson, and James Rum-
baugh. In UML, software models document the purpose and function of a software system.
The advantage of a model is that it conveys information that is both more precise and more
readily understood than a prose description. UML is used during multiple phases of the
software lifecycle. UML defines several kinds of diagrams, of which we will only consider
four in this book.

e Use case diagrams show the organization of the application around the specific
tasks accomplished by different users.

e Class diagrams show much of the static structure of the application data.

e Statechart diagrams model dynamic behavior of systems that respond to external
events, including user input.

e Collaboration diagrams model interactions between multiple objects
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These diagrams describe key aspects of many categories of software applications. The
reader should consult the UML Notation Guide and Semantics documents for a complete
description of UML. A good introduction is given in UML Toolkit, by Hans-Erik Eriksson
and Magnus Penker (1998).

A typical application of UML to a software development project uses these diagrams
in sequence. You start by constructing use case diagrams and detailed descriptions of the
different kinds of users and tasks performed using the system. Then develop class diagrams
that capture the relationships between different kinds of objects in the system. Finally,
construct statechart and collaboration diagrams as needed to describe the sequences of
events that can occur and the corresponding operations performed by various objects in
response to those events.

Use case and statechart diagrams are important, but their purpose is to elaborate on
an object model described in class diagrams. For this reason, class diagrams are presented
first, along with the corresponding programming concepts. Use case diagrams, statecharts,
and collaboration diagrams are discussed in Chapter 12.

10.3 Classes and Class Diagrams

Classes are user-defined data types that model the information and behavior of elements
in the application domain. In Unicon they are records with associated procedures, called
methods. Instances of these special record types are called objects. But the language
constructs originated from a need to model application domain concepts, so it is appropriate
to introduce them from that perspective.

Modeling a software system begins with identifying things that are in the system and
specifying how they are related. A class diagram shows a static view of relationships
between the kinds of elements that occur in the problem domain. A class diagram is
a data-centric, object-centric model. In contrast, a user-centric view is provided by use
cases. Class diagrams have several basic components.

Classes are represented by rectangles. A class denotes a concept of the application do-
main that has state information (depicted by named attributes) and/or behavior (depicted
by named operations, or methods) significant enough to be reflected in the model. Inside
the rectangle, lines separate the class name and areas for attributes and operations. Figure
10-1 shows an example class.
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class name | job Offer

attributes Salary
Title

methods

Accept()
Reject()
Issue()

Figure 10-1: Class Job Offer has two Attributes and Three Methods

Classes in an object model are implemented using programming language classes, which
are described in the next section. The degree of separation between the notion of a class in
the model and in the implementation depends on the programming language. In the case of
Unicon, the separation is minimal, because built-in types such as lists and tables take care
of almost all data structures other than those introduced specifically to model application
domain elements. In the case of C++ or Java, many additional implementation artifacts
typically have to be represented by classes.

The same class can appear in many class diagrams to capture all of its relationships with
other classes. Different diagrams may show different levels of detail, or different aspects
(projections) of the class relevant to the portion of the model that they depict. In the
course of modeling it is normal to start with few details and add them gradually through
several iterations of the development process. Several kinds of details may be added within
a class. Such details include:

e The visibility of attributes and operations. A plus sign (+) before the attribute name
indicates that the attribute is public and may be referenced in code external to the
class. A minus sign (-) before the attribute name indicates that the attribute is
private and may not be referenced in code outside the class.

e Types, initial values, and properties of attributes

e Static properties of the class that will not be relevant at run-time

Attribute names may be suffixed with a colon and a type, an equal sign and a value, and
a set of properties in curly braces. Figure 10-2 shows two very different levels of detail for
the same class. Each level of detail is appropriate in different contexts.



10.4. DECLARING CLASSES 195

Job Offer

-Salary: integer >0
+Title: integer # code

Job Offer

Accept(conditions)
Reject(grounds)
Issue(expiry : date)

Figure 10-2: A Class is Drawn with Different Levels of Detail in Different Diagrams

You can draw rectangles with names of classes inside them all day, but unless they say
something about program organization, such diagrams serve little purpose. The main point
of drawing a class diagram is not the classes; it is the relationships between classes that
are required by the model. These relationships are called associations. In a class diagram,
associations are lines that connect classes. Accompanying annotations in the diagram
convey relevant model information about the relationships. The details of associations and
their implementation are described in Chapter 10.

10.4 Declaring Classes
In Unicon program code, the syntax of a class is:

class foo(attribute1, attribute2, attribute3, ...)
# procedures (methods) to access class foo objects

# code to initialize class foo objects
end

The procedures that manipulate class objects are called methods. Methods define a class’
interface from the rest of the program. The syntax of a method like a procedure:

method bar(param1, param2, param3, ...)
# Unicon code that may access fields of a class foo object
end

Execution of a class method is always associated with a given object of that class. The
method has access to an implicit variable called self that is a record containing fields whose
names are the attributes given in the class declaration. Fields from the self variable are
directly accessible by name. In addition to methods, classes may also contain global and
record declarations; such declarations have the standard semantics and exist in the global
name space.
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10.5 Object Instances and Initially Sections

Like records, instances of a class type are created with a constructor function whose name
is that of the class. Instances of a class are called objects, and behave similar to records.
The fields of an instance generally correspond directly to the class attributes. Fields may
be initialized explicitly in the constructor in exactly the same way as for records. For
example, after defining a class foo(x, y) one may write:

procedure main()
f:=foo(1, 2)
end

In this case x would have the value 1, and y would have the value 2, the same as for a
record type. The fields of an object do not have to be initialized by a parameter passed to
the class constructor. Many constructors initialize objects’ fields to some standard value.
In this case, the class declaration includes an initially section after its methods are defined
and before its end. An initially section is just a special method that is invoked automatically
by the system when it creates each instance of the class.

An initially section begins with the word initially and an optional parameter list, followed
by lines of code that are executed when an object of that class is constructed. These lines
typically assign values to one or more of the attributes of the object being created.

For example, suppose you want an enhanced table type that permits sequential access
to elements in the order they are inserted into the table. You can implement this using
a combination of a list and a table, both of which would be initialized to the appropriate
empty structure:

class taque(L, T) # pronounced "taco"
# methods to manipulate taques,
# e.g. insert, index, foreach...
initially
L:=T]
T :=table()
end

In such a case you can create objects without including arguments to the constructor:

procedure main()
mytaque := taque()
end

Although the default behavior of classes is the same as records, and constructor argu-
ments normally assign each of the fields in the class in order, there are some important
rules that override classes’ record-like constructor behavior.
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e With no initially section, a class constructor behaves exactly like a record constructor.
Class fields are assigned in order from parameters and missing arguments default to
the null value.

e With an initially(...) that has a parenthesized list of zero or more formal parameter
names, the constructor parameters are used to initialize the formal parameters of
the initially() method. In this case, the constructor does not assign class fields from
parameters implicitly. Instead the initially section may initialize fields as it sees fit,
including initializing them using values from the named parameters of method initially()
if it so chooses.

e an initially section without a parenthesized formal parameter list behaves somewhere in
between the above two cases. Normal record-like assignment of parameters to fields
is performed. Missing arguments start with a null value. However, the initially section
may assign those fields without the caller having passed values into the constructor.

The initially section with no parameter list makes it possible to write classes with some
fields that are initialized explicitly by the constructor parameters, while other fields are
initialized implicitly by code in the initially section. In this case you should declare the
automatically initialized fields after those initialized by parameters in the constructor. The
parameters are assigned to fields in the constructor exactly in the order they appear in the
class declaration.

This default semantics for constructor parameters is awkward in some cases, so there is
an alternative. When an initially section includes a parameter list, no implicit initialization
of objects’ fields is performed. This frees the constructor from having the same number
and order of parameters as the declared class fields. In the following example, class C
is constructed with only a single parameter even though it has three fields. The actual
parameter "Greenwich Village" is bound to initially formal parameter x. The third field in the
class (c) is initialized from the constructor parameter x, overriding the default behavior of
initializing fields in the declared order. This capability becomes important in large classes
with many fields.

class C(a, b, ¢)

initially (x)
a = ["vital", "urgent”, "gentrified"]
b := promptedread("tell me about " || x)
Ci=X

end

procedure main()
v := C("Greenwich Village")
end
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Hopefully all this has convinced you that initially sections are important and useful. They
are in fact just a special method that gets called when an object is constructed, but that
means they play the role of a constructor function that is found in many other object-
oriented languages. The next chapter, which goes into inheritance in detail, points out
that the inheritance rules apply to initially sections just like any other method. A subclass
initially will usually need to invoke its superclass(es)’ initially sections, along with initializing
any new fields that it introduces.

10.6 Object Invocation

Once you have created an object with a class constructor, you manipulate the object by
invoking its class methods. Since objects are both procedures and data, object invocation
is a combination of a procedure call and a record access. The syntax is

object . methodname ( arguments )

If an object’s class is known, object methods can also be called using a normal procedure
call. This allows object oriented Unicon code to be called from Icon. Called as a procedure,
the name of a method is prefixed with the class name and an underscore character. The
object itself is always the first parameter passed to a method. In the absence of inheritance
(discussed in the next chapter) if x is an object of class C, x.method(arguments) is equivalent
to C_method(x, arguments).

Although object methods can be called using procedure calls, the field operator has the
advantage that it handles inheritance and polymorphism correctly, allowing algorithms to
be coded generically using polymorphic operations. Generic algorithms use any objects
whose class provides the set of methods used in the algorithm. Generic code is less likely
to require change when you later enhance the program, for example adding new subclasses
that inherit from existing ones. In addition, if class names are long, the field syntax is
considerably shorter than writing out the class name for the invocation. Using the taque
example:

procedure main()
mytaque := taque()
mytaque.insert("greetings”, "hello")
mytaque.insert(123)
every write(mytaque.foreach())
if mytaque.index("hello") then write(", world")
end

For object-oriented purists, using the field operator to invoke an object’s methods in
this manner is the only way to access an object. In Unicon, visibility issues such as “public”
and “private” are addressed in an application’s design and documentation. A good starting
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point is to consider all fields “private” and all methods “public”. Nevertheless, an object is
just a kind of record, complete with record-style field access.

Direct external access to an object’s data fields using the usual field operator is not
good practice, since it violates the principle of encapsulation. Within a class method, on
the other hand, access to an object’s attributes is expected. The implicit object named self
is used under the covers, but attributes and methods are referenced by name, like other
variables. The taque insert method is thus:

method insert(x, key)
/key = x
put(L, x)
T[key] := x

end

The self object allows field access just like a record, as well as method invocation like
any other object. Using the self variable explicitly is rare.

10.7 Comparing Records and Classes

The concepts of classes and objects are found in many programming languages. The follow-
ing example illustrates Unicon’s object model and provides an initial impression of these
concepts’ value. To motivate Unicon’s OOP constructs, our example contrasts conventional
[con code with object-oriented code that implements the same behavior.

Before objects

Suppose you are writing some text-processing application such as a text editor. Such
applications need to be able to process structures holding the contents of various text files.
You might begin with a simple structure like the following:

record buffer(filename, text, index)

where filename is a string, text is a list of strings corresponding to lines in the file, and index
marks the current line at which the buffer is being processed. Icon record declarations are
global; in principle, if the above declaration needs to be changed, the entire program must
be rechecked. A devotee of structured programming would write procedures to read the
buffer in from a file; write it out to a file; examine, insert and delete individual lines; and
so on. These procedures, along with the record declaration given above, can be placed in
their own source file (buffer.icn) and understood independently of the program(s) in which
they are used. Here is one such procedure:
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# read a buffer in from a file
procedure read_buffer(b)
f := open(b.filename) | fail
b.text :=[]
b.index := 1
every put(b.text, If)
close(f)
return
end

There is nothing wrong with this example; in fact its similarity to the object-oriented
example that follows demonstrates that a good, modular design is the primary effect en-
couraged by object-oriented programming. Using a separate source file to contain a record
type and those procedures that operate on the type allows an Icon programmer to maintain
a voluntary encapsulation of that type.

After objects

Here is part of the same buffer abstraction coded in Unicon. The purpose here is to
facilitate a direct comparison with the preceding record-based example. The example lays
the groundwork for a further object-oriented illustration in the following chapter. Classes
are record types with associated code. Methods are procedures that are always called in
reference to a particular object (a class instance).

class buffer(filename, text, index)
# read a buffer in from a file
method read()
f := open(filename) | fail
text :=[]
index := 1
every put(text, If)
close(f)
return
end
# ...additional buffer operations, including method erase()
initially
if \filename then read()
end

This example does not illustrate the full object-oriented style, but it is a start. The
object-oriented version offers encapsulation and polymorphism. A separate name space for
each class’s methods allows shorter names. The same method name, such as read(), can be
used in each class that implements a given operation. This notation is more concise than is
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possible with procedures, and it enables an algorithm to work on objects of any class that
implements the operations required by that algorithm.

Consider the initialization of a new buffer. Constructors allow the initialization of fields
to values other than &null. In the example, the read() method is invoked if a filename is
supplied when the object is created. This can be simulated using records by calling a
procedure after the record is created; the value of the constructor is that it is automatic.
The programmer is freed from the responsibility of remembering to call this code everywhere
objects are created in the client program(s). This tighter coupling of memory allocation
and its corresponding initialization removes one more source of program errors, especially
on multi-programmer projects.

The preceding two paragraphs share a common theme: the net effect is that each piece
of data is made responsible for its own behavior in the system. Although this example
dealt with simple line-oriented text files, the same methodology applies to more abstract
entities such as the components of a compiler’s grammar.

The example illustrates an important scoping issue. Within class buffer, method read()
makes the regular built-in function read() inaccessible! Beware of such conflicts. It would
be easy to capitalize the method name to eliminate the problem. If renaming the method
is not an option, as a last resort you could get a reference to the built-in function read(),
even within method read(), by calling proc('read", 0). The function proc() converts a string
to a procedure; supplying a second parameter of 0 tells it to skip scoping rules and look
for a built-in function by that name.

10.8 Summary

Classes are global declarations that define a record data type and a set of procedures (meth-
ods) that operate on that type. Class instances, called objects, are normally manipulated
solely by calling the class’ methods; such object privacy is a matter of design, documenta-
tion, and convention. All methods execute within an object of interest, whose fields and
methods are visible without the record dot notation, in a class scope that is introduced in
between the local and global scopes.
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Chapter 11

Inheritance and Associations

Relationships between classes are depicted in UML class diagrams by lines drawn between
two or more class rectangles. One of the most important relationships between classes
describes the situation when one class is an extension or minor variation of another class:
this is called generalization, or inheritance. Most other relationships between classes are
really relationships between those classes’ instances at run-time; these relationships are
called associations. This chapter starts with inheritance, and then describes a variety of
associations. In this chapter you will learn how to:

e Define a new class in terms of its differences from an existing class

e Compose aggregate classes from component parts.

Specify new kinds of associations

Supply details about the roles and number of objects in an association

Use structure types to implement associations

11.1 Inheritance

In many cases, several classes of objects are very similar. In particular, many classes arise
as enhancements of classes that have already been defined. Enhancements might consist of
added fields, added methods, or both. In other cases a class is just a special case of another
class. For example, if you have a class fraction(numerator, denominator), you could define class
inverses(denominator) whose behavior is identical to that of a fraction, but whose numerator
is always 1.

Both of these ideas are realized with the concept of inheritance. When the definition of
a class is best expressed in terms of the definition of another class or classes, we call that
class a subclass. The class or classes from which a subclass obtains its definition are called
superclasses. The logical relation between the subclass and superclass is called hyponymy.
It means an object of the subclass can be manipulated just as if it were an object of one

203
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of its defining classes. In practical terms it means that similar objects can share the code
that manipulates their fields.

Inheritance appears in a class diagram as a line between classes with an arrow at one
end. The arrow points to the superclass, the source of behavior inherited by the other class.
Consider Figure 11-1, in which an offer of a salaried appointment is defined as one kind of
job offer. The attributes (salary, title) and methods (Accept() and Reject()) of class JobOffer
are inherited by class Salaried Appointment, and do not need to be repeated there. A new
attribute (term) is added in SalariedAppointment that is not in JobOffer.

Job Offer Salaried Appointment
salary: integer < term: interval

title: integer

Accept() SetTerm(tinterval)
Reject()

Issue()

Figure 11-1: A Salaried Appointment is a subclass of a Job Offer
The syntax of a subclass is

class classname superclasses (attributes)
methods

initially section

end

Where superclasses is an optional list of class names separated by colons, attributes is
an optional list of variable names separated by commas, methods is an optional list of
declarations for the class methods, and the initially_section is optional initialization code for
the class constructor. For example

class SalariedAppointment : JobOffer (term)
method SetTerm(t : interval)

term =t
end
initially
/term := "unknown term"

end

As you can see, a subclass declaration is identical to a regular class, with the addition
of one or more superclass names, separated by colons. The meaning of this declaration is
the subject of the next section.
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Inheritance semantics

There are times when a new class might best be described as a combination of two or more
classes. Unicon classes may have more than one superclass, separated by colons in the class
declaration. This is called multiple inheritance.

Subclasses define a record type consisting of the field names of the subclass itself and
all its superclasses. The subclass has associated methods consisting of those in its own
body, those in the first superclass that were not defined in the subclass, those in the second
superclass not defined in the subclass or the first superclass, and so on. In ordinary single-
inheritance, this adding of fields and methods follows a linear bottom-up visit of each
superclass, followed in turn by its parent superclass.

When a class has two or more superclasses, the search generalizes from a linear sequence
to an arbitrary tree, directed acyclic graph, or full graph traversal. Multiple inheritance
adds fields and methods in an order defined by a depth-first traversal of the parent edges
of the superclass graph. Think of the second and following superclasses in the multiple
inheritance case as adding methods and fields only if the single-inheritance case (following
the first superclass and all its parents) has not already added a field or method of the same
name.

Warning

Care should be taken employing multiple inheritance if the two parent classes have any
fields or methods of the same name!

Fields are initialized by parameters to the constructor or by the class initially section,
which is a method and is inherited in the normal way. It is common for a subclass initially
section to call their superclasses’ initially sections, for example:

class sub : A : B(x)

initially
x:=0
A.initially()
B.initially()

end

It is also common to have some attributes initialized by parameters, and assign others in
the initially section. For example, to define a class inverse (for numbers of the form 1 / n) in
terms of a class fraction(numerator, denominator) one can write:

class inverse : fraction (denominator)
initially

numerator := 1
end

Objects of class inverse can be manipulated using all the methods defined in class
fraction; the code is actually shared by both classes at runtime.
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Viewing inheritance as the addition of superclass elements not found in the subclass is
the opposite of the more traditional object-oriented view that a subclass is an instance of
the superclass as augmented in the subclass definition. Unicon’s viewpoint adds quite a
bit of leverage, such as the ability to define classes that are subclasses of each other. This
feature is described further below.

Invoking superclass operations

When a subclass defines a method of the same name as a method defined in the superclass,
invocations on subclass objects execute the subclass’ version of the method. This can be
overridden by explicitly including the superclass name in the invocation:

object$superclass.method(parameters)

This facility allows the subclass method to do any additional work required for added
fields before or after calling an appropriate superclass method to achieve inherited behavior.
The result is frequently a chain of inherited method invocations.

Since initially sections are methods, they can invoke superclass operations including
superclass initially sections. This allows a chain of initially sections to be specified to
execute in either subclass-first or superclass-first order, or some mixture of the two.

Inheritance examples

Several inheritance examples follow from the buffer example from Chapter 10. Suppose
the program does more than edit text, it has a word-associative dictionary, bibliography,
spell-checker, and thesaurus. These features can be implemented using the table type. The
contents vary, but they all use string keyword lookup. As external data, the databases can
be stored in text files, one entry per line, with the keyword at the beginning. The format
of the rest of the line varies from database to database.

Figure 11-2 shows a class diagram with subclasses derived from buffer. A class buftable
refines the buffer class, adding support for random access. Other classes are defined as
subclasses of buftable. The implementation of these classes is given below.
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buffer
filename
text
index
read()

A

buftable
read()
index()
A

[ |
bibliography spellChecker dictionary
parent read()
spell() write()

Figure 11-2: Some Subclasses of the Buffer Class

Although all these types of data are different, the code used to read the data files can
be shared, as well as the initial construction of the tables. In fact, since we are storing our

data one entry per line in text files, we can use the code already written for buffers to do
the file I/O itself.

class buftable : buffer()
method read()
self.buffer.read()
tmp := table()
every line := ltext do
line ? { tmp[tab(many(&letters))] := line | fail }
text :=tmp
return
end
method index(s)
return text[s]
end
end

This concise example shows how little must be written to achieve data structures with
vastly different behavioral characteristics, by building on code that is already written. The
superclass read() operation is one important step of the subclass read() operation. This
technique is common enough to have a name: it is called method combination in the
literature. It allows you to view the subclass as a transformation of the superclass. The
buftable class is given in its entirety, but our code sharing example is not complete: what
about the data structures required to support the databases themselves? They are all
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variants of the buftable class, and a set of possible implementations follow. Note that the
formats presented are designed to illustrate code sharing; clearly, an actual application
might make different choices.

Bibliographies Bibliographies might consist of a keyword followed by an uninterpreted
string of information. This imposes no additional structure on the data beyond that im-
posed by the buftable class. An example keyword would be Jeffery99.

class bibliography : buftable()
end

Spell-checkers The database for a spell-checker might be a list of words, one per line, the
minimal structure required by the buftable class. Some classes introduce new terminology
rather than to define a new data structure. This example introduces a lookup operation
that can fail, for use in tests. In addition, since many spell-checking systems allow user
definable dictionaries in addition to their central database, spellChecker objects may chain
together for the purpose of looking up words.

class spellChecker : buftable(parent)
method spell(s)
return \text[s] | (\parent).spell(s)
end
end

Dictionaries Dictionaries are slightly more involved. Each entry might consist of a
part of speech, an etymology, and an arbitrary string of uninterpreted text comprising
a definition for that entry, separated by semicolons. Since each such entry is itself a
structure, a sensible decomposition of the dictionary structure consists of two classes: one
that manages the table and external file I/O, and one that handles the manipulation of
dictionary entries, including their decoding and encoding as strings.

class dictionaryentry(word, partofspeech, etymology, definition)
# decode a dictionary entry into its components
method decode(s)
s ?{

word = tab(upto(’y))

move(1)

partofspeech := tab(upto(’;’))

move(1)

etymology :=tab(upto(’;’))

move(1)

definition := tab(0)



11.1. INHERITANCE 209

end
method encode() # encode a dictionary entry into a string
return word || ;" || partofspeech || ;" || etymology || ;" || definition
end
initially

if /partofspeech then {
# constructor was called with a single string argument
decode(word)

}

end

class dictionary : buftable()
method read()
self.buffer.read()
tmp := table()
every line := ltext do
line ? { tmp[tab(many(&letters))] := dictionaryentry(line) | fail }
text :=tmp
end
method write()
f := open(filename, "w") | fail
every write(f, ('text).encode)
close(f)
end
end

Thesauri Although an oversimplification, one might conceive of a thesaurus as a list of
entries, each of which consists of a comma-separated list of synonyms followed by a comma-
separated list of antonyms, with a semicolon separating the two lists. Since the code for
such a structure is nearly identical to that given for dictionaries above, we omit it here
(you might start by generalizing class dictionaryentry to handle arbitrary strings organized
as fields separated by semicolons).

A (toy) Dictionary Program

The above examples were intended to illustrate a pedagogical point about how inheritance
facilitates specialization of existing code. Although they are legal Unicon code, they were
always toy examples that illustrate ideas, not an extract from a real software application.
Consult the Unicon translator implementation, or the Unicon GUI classes, for many real-
world examples of inheritance.

Having said that, here is a complete program that makes use of some of the preceding
class examples. The program, called deen (from Deutsch-English) reads in a dictionary in



210 CHAPTER 11. INHERITANCE AND ASSOCIATIONS

plain text format, originally obtained from http://ftp.tu-chemnitz.de/pub/Local /urz/ding/de-
en/ and writes out English entries for one or more German language words given on the
command-line. German was chosen fairly arbitrarily here, but the code does depend on
the file format of the dictionary file, de-en.txt.

#

# deen.icn - give English equivalents of German words

#

$define DEEN "http:/ftp.tu-chemnitz.de/pub/Local/urz/ding/de-en/de-en.txt.gz"

procedure main(av)
if av[1]=="-all" then all := pop(av)
dd := DeenDictionary()
every s := lavdo
if lu := dd.lookup(s) then {

if \all then

every write(s, ": ", dd.lookup(s).definition)
else write(s, ": ", lu.definition)
}

else write(s, " is not in the dictionary.")
end

class buffer(filename, text)
# read a buffer in from a file
# todo: decompress if .gz extension
method read()
if match("http://", filename) then mode := "m" else mode :="r"
f := open(filename, mode) | stop("can’t open ", image(filename))

if flename[-3:0] == ".gz" then {

if mode=="m" then { # download_to_local_file

if not (f2 := open("de-en.txt.gz","w")) then
stop("can’t write")

while s := reads(f, 1000000) do writes(f2, s)
close(f)
close(f2)
}

system("gunzip de-en.txt.gz")

f := open("de-en.txt") | stop("can’t read de-en.txt")

}

writes("Opened ",image(f),".\nReading")
text :=[]
every put(text, If) do if “text%1000=0 then writes(".")
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close(f)
write("\ndone. Read ", *text, " lines")
return
end
method erase()
#..7?
end
# ...additional buffer operations
initially
if \filename then read()
end

class buftable : buffer()
method read()
self.buffer.read()
tmp := table()
every line := ltext do {
line ? {
word := tab(many(&letters)) | stop("failed on ", image(line))
tmp[word] := line
}
}
text :=tmp
return
end
method lookup(s)
suspend !\ (text[s])
end
end

class dictionaryentry(word, part, etymology, definition)
# decode a dictionary entry into its components
# assumed format is word;pos;eym;def
method decode(s)
s ?{
word := tab(find(";"))
move(1)
part := tab(find(";"))
move(1)
etymology := tab(find(";"))
move(1)
definition := tab(0)
}

end
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method encode() # encode a dictionary entry into a string

return word || ";" || part || ";" || etymology || ;" || definition
end
initially
if /part then # constructor was called with a single string argument
decode(word)

end

class dictionary : buftable()
method read()
self.buffer.read()
tmp := table()
every line := ltext do
line ? {
word := tab(many(&letters)) | stop("failed on ", image(line))
tmp[word] := dictionaryentry(line) | falil

}
text :=tmp
end
method Write()

f := open(filename, "w") | fail
every write(f, (text).encode)
close(f)
end
end

class DeenEntry : dictionaryentry(gender)
initially(de, en)

de ? {
if word := trim(tab(find("{")),,0) then {
="{"
gender := tab(find("}"))
}

else { # here is one without gender info
word := trim(tab(find("[")|0),,0)

gender :="?"
}
}
definition := en
end

#
# Return a list of dictionary entries for a given line of text
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#
procedure get_entries(s)
subentries :=]
s?{
deutsch := tab(find("::")) | stop("no :: in ", image(s))
="::"; tab(many(’’))
english := tab(0)

deutsch ? {
while *(deutschwort := tab(find("|") | 0))>0 do {
deutschwort := trim(deutschwort,0)
="|"
tab(many(’ "))
englishword := trim(english[1:find("|",english)|0],,0)
english ?:= {
tab(many(’ \t'))
=englishword
tab(many(’ \t’))
="|"
tab(many(’ \t’))
tab(0)
}
if i ;= find(";", deutschwort) then {
deutschwort ? {
while *(dword := tab(find(";") | 0))>0 do {

tal;(many(’ )

if gronk:=englishword[1:upto(’;|’, englishword)|0] then {

if *gronk>0 then {
eword := gronk
}

}

put(subentries, DeenEntry(dword, eword))

englishword ?:= { =eword; =";"; tab(many(’ ’)); tab(0)}

}
}

else {
put(subentries, DeenEntry(deutschwort, englishword))

}

}
}

return subentries

213
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end

class DeenDictionary : dictionary()
method read()
self.buffer.read()
tmp := table()
every line := ltext do
line ? {
if ="#" | line==""then next
if not (L := get_entries(line)) then
stop("get_entries failing on ", image(line))
every x := L do {
if not member(tmp, x.word) then
tmp[x.word] := [x]
else put(tmp[x.word], x)
}
}
text :=tmp
end
initially
if stat("de-en.txt") then filename := "de-en.txt"
else if stat("de-en.txt.gz") then filename := "de-en.ixt.gz"
else filename := DEEN
self.read()
end

Superclass cycles and type equivalence

In many situations, there are several ways to represent the same abstract type. Two-
dimensional points might be represented by Cartesian coordinates x and y, or equivalently
by radial coordinates expressed as a distance d and angle r given in radians. If one im-
plements classes corresponding to these types there is no reason one of them should be
considered a subclass of the other; they are interchangeable and equivalent.

In Unicon, expressing this equivalence is simple and direct. In defining classes Cartesian
and Radial we may declare them to be superclasses of each other:

class Cartesian : Radial (x, y)
# code that manipulates objects using Cartesian coordinates
end

class Radial : Cartesian (d, r)
# code that manipulates objects using radial coordinates
end
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These superclass declarations make the two types equivalent names for the same type
of object; after inheritance, instances of both classes will have fields x, y, d, and r, and
support the same set of operations.

Equivalent types each have a unique constructor given by their class name. Often the
differing order of the parameters used in equivalent types’ constructors reflects different
points of view. Although they export the same set of operations, the actual procedures
invoked by equivalent types’ instances may be different. For example, if both classes define
an implementation of a method print(), the method invoked by a given instance depends on
which constructor was used when the object was created.

If a class inherits methods from one of its equivalent classes, it is responsible for initial-
izing the state of the fields used by those methods in its constructor. It is also responsible
for maintaining the state of the inherited fields when its methods make state changes to
its own fields. In the geometric example given above, for class Radial to use any methods
inherited from class Cartesian, it must at least initialize x and y explicitly in its constructor
from calculations on its d and r parameters. This added responsibility is minimized in those
classes that treat an object’s state as immutable.

11.2 Associations

An association denotes a relationship between classes that occurs between specific instances
of the classes at runtime. Just as objects are instances of classes, associations have instances
called links. Like objects, links have a lifetime, from the instant at which the relationship
is established to the time at which the relationship is dissolved. Besides serving to connect
two objects, links may have additional state information or behavior; in the most general
case links can be considered to be objects themselves: special objects whose primary role
is to interconnect other objects.

11.3 Aggregation

Inheritance may be the most famous kind of relationship between classes, but it is not
the most indispensable. Many languages that provide objects do not even bother with
inheritance. The composition of assembly objects from their component parts, on the
other hand, is a truly ubiquitous and essential idea called aggregation. The class dictionary
defined in the previous section is a good example of an aggregate object; its component
parts are dictionaryentry objects.

Aggregation is depicted in class diagrams by a line between classes with a diamond
marking the aggregate, or assembly, class. Figure 11-3 shows an aggregate found in the
domain of sports, where a team is comprised of a group of players.
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Team |@——— Players

Figure 11-3: A Team is an Aggregation of Players

Unlike inheritance, aggregation describes a relationship between instances at run-time.
Different aggregate instances are assembled from different component part instances. While
a given player might play for different teams over a period of time, at any given instant a
player is normally part of at most one team.

11.4 User-defined associations

All the other relationships between classes in UML are left to the application designer to
specify as custom associations. User-defined associations are depicted by lines, annotated
with the association name next to the line, midway between the two classes. Figure 11-4
shows a silly user-defined association that describes a family relationship called Marriage.
For a diagram containing such an association to be well defined, the semantics of such a
relationship must be specified in external documentation that describes Marriage for the
purposes of the application at hand.

Husband Wife
Marriage

Fixes() Analyzes()

Figure 11-4: A User-Defined Association

Multiplicities, roles, and qualifiers

Whether they are aggregations or user-defined application domain relationships, associa-
tions are not completely specified until additional details are determined during program
design, such as how many instances of each type of object may participate in a given re-
lationship. These additional details appear in canonical positions relative to the line that
depicts the association within a class diagram.

A multiplicity is a number or range that indicates how many instances of a class are
involved in the links for an association. In the absence of multiplicity information an
association is interpreted as involving just one instance. It normally appears just below the
association line next to the class to which it applies. Figure 11-5 shows a BasketballTeam
that is an aggregate with a multiplicity of five Players.
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o — |

Basketball Team 5 | Players

Figure 11-5: Multiplicity of a Basketball Team

A multiplicity range is expressed as a pair of numbers separated by two periods, as in
1..3. The value * may be used by itself to indicate that a link may associate any number
(zero or more) of objects. The * value may also be used in a range expression to indicate
no upper bound is present, as in the range 2..*.

A role is a name used to distinguish participants and responsibilities within an asso-
ciation. Roles are drawn just above or below the association line, adjacent to the class
to which they refer. They are especially useful if a given association may link multiple
instances of the same class in asymmetric relationships. Figure 11-6 shows a better model
of the classes and roles involved in a Marriage association depicted earlier in Figure 11-4.

Man Woman

Marriage

Fixes() Husband Wife | Analyzes()

Figure 11-6: Roles in an Association

A qualifier is a key value used to distinguish instances in a link, in lieu of a large
multiplicity that would otherwise be inefficient. For example, a directory may contain
many files, but each one may be directly accessed by name. A qualifier is drawn as a
rectangular association end with the qualifier key given inside the rectangle. Figure 11-7
shows a reinterpretation of the basketball aggregation in which the players on the team are
distinguished using a qualifier key named position.

Basketball Team position ‘ Players

Figure 11-7: Using a Qualifier in lieu of multiplicity

Implementing associations

Unlike inheritance, which is implemented by the language and resolved at compile time,
associations involve dynamic relationships established at runtime, and are implemented by
the programmer...or are they? In the most general case, an association may be implemented
by writing a class whose instances are links between the related classes’ objects. In the
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narrowest special case, an association can be implemented by adding an attribute in one
class to contain a reference to an object in an associated class. Much of the value introduced
by multiplicity and qualifier information is to narrow the association semantics down to
what is readily implementable using the built-in structure types instead of writing classes
for them. If an association can be implemented using a list or table instead of defining a
new class, the resulting code will be smaller and faster.

In all cases, associations will introduce additional fields into the classes being associated.
The following code example implements the Marriage association from Figure 11-6. For
illustration purposes it is modeled as a one-one relationship at any given point in time. No-
tice the intertwining methods in the two classes that establish a bi-directional relationship.
Error checking is left as an exercise for the reader.

class Man(wife)
method Marry(w)

wife :=w
if not (self === w.husband) then w.Marry(self)
end

end
class Woman(husband)
method Marry(m)
husband :=m
if not (self === m.wife) then m.Marry(self)
end
end

As a general rule, an association that has a qualifier is implemented with a table. The
following example corresponds to the basketball team diagram in Figure 11-7. The players
attribute might be a list or set in class Team, but the qualifier allows class BasketballTeam
to override this and implement players using a table. Such a refinement can be awkward
in a statically typed object-oriented language. Depending on whether its player parameter
is supplied or is null, method Player() serves to either lookup a player, given a position, or
to insert a player into the association. In either case the player at the designated position
is returned.

class BasketballTeam : Team ()
method Player(position, player)
players[position] := \player
return players[position]
end
initially
players := table()
end
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Associations with multiplicity might be implemented using sets or lists, with lists being
favored when multiplicity is bounded to some range, or when there is a natural ordering
among the instances. The following version of the BasketballTeam class uses a list of five
elements to implement its aggregation, which occupies less space than either a set or the
table in the last example.

class BasketballTeam : Team (players)
method Player(player)
if player === Iplayers then fail # already on the team
if /Iplayers := player then return # added at null slot
?players := player # kick someone else off team to add
end
initially
players := list(5)
end

Defining a new class to implement an association handles rare cases such as many-many
relationships and associations that have their own state or behavior. Other examples of
associations and their implementation are given in Part 3 of this book.

11.5 Summary

The relationships between classes are essential aspects of the application domain that are
modeled in object-oriented programs. You can think of them as the "glue" that connects
ideas in a piece of software. Class diagrams allow many details of such relationships to
be specified graphically during design. Unicon’s structure types allow most associations to
map very naturally onto code. In order to understand the subtleties of how these features
are implemented, you may wish to study the output of unicon -E for various examples; the
-E option writes out the Icon translation of the object-oriented code.
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Chapter 12

Writing Large Programs

This chapter describes language features, techniques, and software tools that play a sup-
porting role in developing large programs and libraries of reusable code. You can write large
programs or libraries without these tools; the tools just make certain tasks easier. These
facilities are not specific to object-oriented programs. However, they serve the same target
audience since one of the primary benefits of object-orientation is to reduce the difficulty
of developing large programs.

In the case of Unicon, "large" might mean any program so complex that it is not self-
explanatory without any special effort. This includes all programs over a few thousand lines
in size, as well as shorter programs with complex application domains, and those written
by multiple authors or maintained by persons other than the original author.

Writing and maintaining large programs poses additional challenges not encountered
when writing small programs. The need for design and documentation is greater, and the
challenge of maintaining the correspondence between design documents and code is more
difficult. Design patterns can help you with the design process, since they introduce easily
recognizable idioms within a design. The more familiar the design is, the less cognitive
load is imposed by the task of understanding it.

This chapter shows you how to:

e Understand the difference between abstract and concrete classes
e Use design patterns to simplify and improve software designs
e Organize programs and libraries into packages

e Generate HT'ML indices and reference documentation for your code

12.1 Abstract Classes

In programming languages, it turns out there are at least two very different kinds of things
referred to by the word "class". Most classes denote a data type, of which there are one or
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more instances. The word class is also used to denote a general category of objects, of which
there are no actual instances. Such classes are called abstract classes. Abstract classes are
used by defining subclasses which do have instances. In a small program you might not
run into a need for abstract classes, but if you write a large object-oriented program, or
your small program uses someone else’s large object-oriented class library, you are likely to
need to understand abstract classes.

The whole idea of class and inheritance originated by analogy from biology, but if you
think about it, biology uses a host of different terms to denote categories (phylum, family,
genus, etc.), that are distinct from the term that denotes a class of instances (species).
There are plenty of instances of species Homo sapiens, but there are no instances of a
genus Homo, there are only instances of Homo’s subclasses. Similarly, if you are designing
software to model the behavior of cars and trucks, you may identify a lot of shared behavior
and place code for it in a superclass Vehicle, but there are no instances of Vehicle, only its
subclasses.

In a larger inheritance graph (or tree) most classes may well be abstract. It may be
those classes (primarily leaves) of which there are actual instances that are special and
deserve a different term besides "class". We could easily think of all classes as abstract
by default, and refer to classes that have instances as "concrete classes" or "instantiation
classes". The analogy to biology would be better served by such terminology. But for
better or for worse, most software engineers will have to live with "abstract class" and
"class" to denote general categories and instantiable categories, respectively.

Numerous larger and more concrete examples of abstract classes appear in the Unicon
GUT class library, described in Chapter 17. Some classes, such as Button, denote general
categories of widgets that have code and behavior in common (such as the fact that you
can click them). There are no instances of Button, there are only subclasses such as
TextButton, IconButton, and CheckBox, that may be instantiated. In larger applications,
the code sharing (or duplication avoidance) of abstract classes may be compelling, but like
all uses of inheritance they do require you to read and understand multiple bodies of code
(the class and all its superclasses) in order to use the class effectively.

Although some abstract classes like Button look exactly like regular classes and have
to be identified as abstract via their supporting comments or documentation, Unicon does
have one language feature that is only used within abstract classes. The reserved word
abstract may be given preceding a method header in lieu of providing the actual body of
the method. Such an abstract method declaration implies that subclasses must provide
an implementation of the method in question, as it will be called by other methods in
the abstract class or in client code. For example, the Unicon GUI Component class is an
abstract class that is a superclass of all GUI components. It provides many methods that
components can all inherit and use or override. It also declares one abstract method that
all subclasses must implement to indicate what they do (if anything) in response to the
passage of time:
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abstract method tick()

Class Button is a subclass of Component and provides an implementation of method tick():

method tick()
if dispatcher.curr_time_of_day() > self.repeat_delay then
fire(BUTTON_HELD_EVENT)
end

12.2 Design Patterns

Class and function libraries provide good mechanisms for code reuse, and inheritance helps
with code reuse in some situations. But in large programs it is desirable to reuse not just
code, but also successful designs that capture the relationships between classes. Such design
reuse is obtained by identifying design patterns with known successful uses in a broad range
of application domains. For example, the practice of using pipes to compose complex filters
from more primitive operations has been successfully used in compilers, operating system
shells, image processing, and many other application areas. Every programmer should be
familiar with this pattern.

The field of software design patterns still quite young. Practitioners are producing
simple catalogs of patterns, such as the book Design Patterns, by Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides. When the field is more mature it will include
syntactic and/or semantic rules for how patterns are combined to form higher-order pat-
terns, as is the case for building architecture. This section presents a few classic patterns
and their implementation in Unicon.

At best, this discussion of patterns may whet your appetite to go read more about the
subject. In addition to their design reuse value, patterns also provide software developers
with a common vocabulary for discussing recurring design concepts. The judicious use of
one or more abstract classes seems to be a recurring theme throughout most of the design
patterns identified by Gamma et al.

Singleton

Perhaps the simplest design pattern is the singleton, describing a class of which exactly
one instance is required. Singletons are interesting because they are related to packages, a
language feature described later in this chapter. A package is a mechanism for segregating
a group of global objects so that their names do not conflict with the rest of the program.
This segregation is similar to that provided by object encapsulation; a package is similar
to a class with only one instance.

Consider as an example a global table that holds all the records about different employ-
ees at a small company. There are many instances of class Employee, but only one instance
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of class EmployeeTable. What is a good name for this instance of EmployeeTable, and how
can you prevent a second or subsequent instance from being created? The purpose of the
singleton pattern is to answer these questions.

In Unicon, one interesting implementation of a singleton is to replace the constructor
procedure (a global variable) by the instance. Assigning an object instance to the variable
that used to hold the constructor procedure allows you to refer to the instance by the name
of the singleton class. It also renders the constructor procedure inaccessible from that point
on in the program’s execution, ensuring only one instance will be created.

class EmployeeTable(...)
initially

EmployeeTable := self
end

There are undoubtedly other ways to implement singleton classes.

Proxy

A proxy is a "stand-in" for an object. The proxy keeps a reference to the object it is
replacing, and implements the same interface as that object by calling the object’s version
of the corresponding method each time one of its methods is invoked. Figure 12-1 shows a
proxy serving a client object in lieu of the real object.

Client | direct | CIOXY delegation 1?1?5 ct

ml() e
0 T m) m2()

~.'r

proxy.ml()

proxy.m2()

Figure 12-1: The Proxy Pattern

Proxies are used when the original object cannot or should not be invoked directly. If
the object is on a remote machine, the proxy can take care of network communication and
hide the location of the object from the clients. As another example, the original object
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may be instantiated lazily - it may be a large object that is not loaded into memory unless
one of its operations is invoked.

Similar to both of the preceding examples, mobile objects might be implemented using
proxies. If several machines are running a computation jointly and communicating, some
gigantic object might be kept on one machine at a time. In applications with strong
locality of reference, whenever a machine needs to do a call on the gigantic object it might
do hundreds of calls on that object. In that case the object should move from wherever it
is, to the machine where it is needed. The rest of the program does not need to be aware
of whether the object is local, remote, or mobile; it just interacts with the proxy instance.

class gigantic(x1,x2,...,x1000)
method invoke()
end
initially
# Gigantic object’s state is loaded from network
end
class proxy(g)
method invoke()

/g := gigantic()
return g.invoke()

end
method depart()
g = &null
end
end

Chain of responsibility

This pattern is similar to a proxy, in that an object is delegating one or more of its methods
to a second object. It is not presented in detail, but its similarity to proxies is mentioned
because many design patterns in the Gamma book seem incredibly similar to each other;
reading the book is like having déja vu all over again. Perhaps there ought to be some kind
of orthogonality law when it comes to patterns.

The difference between a chain of responsibility and a proxy is that the proxy forwards
all method invocations to the "real" object, while in a chain of responsibility, the object
may handle some methods locally, and only delegate certain methods to the next object
in the chain. Also, proxies are normally thought of as a single level of indirection, while
the chain of responsibility typically involves multiple linked objects that jointly provide a
set of methods. The following example illustrates a chain of responsibility between a data
structure object (a cache) and an Image class that knows how to perform a computationally
intensive resolution enhancement algorithm.
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class Image(...)
method enhance_resolution(area)
# enormous computation...

end
initially

# ... lots of computation to initialize lots of fields
end

class hirez_cache(s, 1)
method enhance_resolution(area)
if member(t,area) then { # proxy handles
return t[area]

}

# else create the gigantic instance
/im := image()
return t[area] := im.enhance_resolution(area)
end
initially
t := table()
# Insert some known values for otherwise enormous computation.
# Don’t need im if user only needs these values.
1] =1
2] =1
end

The instance of class Image is not created until one is needed, and image’s method
enhance_resolution() is not invoked for previously discovered results. Of course, en-
hance_resolution() must be a pure mathematical function that does not have any side
effects for this caching of results to be valid.

Visitor

The visitor pattern is a classic exercise in generic algorithms. It is fairly common to have a
structure to traverse, and an operation to be performed on each element of the structure.
Writing the code for such a traversal is the subject of many data structure texts. In fact,
if you have one operation that involves traversing a structure, there is a good chance that
you have (or will someday need) more than one operation to perform for which the same
traversal is used. Figure 12-2 illustrates the visitor pattern.
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Visitor visits Leaf

doL eaf() datum

doInternalNode() % | Accept(visitor)
InternalNode
children
Accept(visitor)

Figure 12-2: The Visitor Pattern

The visitor pattern says you can separate out the traversal algorithm from the operation
performed at each element of the structure, and reuse the traversal on other operations. The
following code illustrates this separation of traversal (implemented by method Accept())
from visitation (implemented by methods DoLeaf() and DolnternalNode() in the visitor).
Where there is one kind of visitor there may be many, and in that case, class Visitor
may be an abstract class, instantiated by many concrete Visitor subclasses that have the

same method names but do not share code. Note also that this code example allows for
n

heterogeneous structures: the Visitor just defines a "Do..." method for each type of node

in the structure.

class Visitor()
method DoLeaf(theLeaf)
# ... visit/use theLeaf.datum
end
method DolnternalNode(theNode)
# ... visit/use theNode.datum
end
end
class Leaf(datum)
method Accept(v)
v.DoLeaf(self)
end
end
class InternalNode : Leaf(children)
method Accept(v)
every (Ichildren).Accept(v)
v.DolnternalNode(self)
end
end

Executing a traversal from a root object looks like root.Accept(myvisitor) where myvis-
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itor is an instance of some Visitor class. The point of the Visitor pattern is that you
can define different Visitor classes. For example, here are Visitors to print a tree, and to
calculate and store the heights of all nodes in the tree:

class Printer()
method DoLeaf(theLeaf)
writes(theLeaf.datum, " ")
end
method DolnternalNode(theNode)
writes(theNode.datum, " )
end
end
class Heights()
method Dol eaf(theLeaf)
theLeaf.datum = 1
end
method DolnternalNode(theNode)
theNode.datum =0
every theNode.datum <:= (Ichildren).datum
theNode.datum +:= 1
end
end

12.3 Packages

In large programs, the global name space becomes crowded. You can create a disaster if one
of your undeclared local variables uses the same name as a built-in function, but at least you
can memorize the names of all the built-in functions and avoid them. Memorization is no
longer an option after you add in hundreds of global names from unfamiliar code libraries.
You may accidentally overwrite some other programmer’s global variable, without any clue
that it happened.

Packages allow you to partition and protect the global name space. A package is similar
to a “singleton” class with only one instance. Every global declaration (variables, proce-
dures, records, and classes) is "invisible" outside the package, unless imported explicitly.

The package declaration

A package declaration specifies that all global symbols within a source file belongs to a
package. The package declaration looks similar to the link declaration. You provide the
package name, an identifier, or a string filename:

package foo
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or
package "/usr/local/lib/icon/foo"

There can be only one package declaration in a source file. It need not be at the
beginning of the source file, but this is conventional. Within a package, global names
defined inside the package are referenced normally. Global names outside the package are
not visible by default. Here is an example source file that declares some globals and adds
them to a package.

# packl.icn

package first

procedure my_proc()
write(“In my_proc”)

end

class SomeClass()
method f()

write(“In SomeClass.f’)

end

end

When this code is compiled, the information that package first contains the symbols
my_proc and SomeClass is recorded into a database and that using package first implies
linking in packl.u along with any other files that are part of package first. In order to
prevent name conflicts the compiler also applies a name mangling process to the global
symbols, described below.

The import declaration

To access symbols within another package, use the import declaration, which has the fol-
lowing syntax:

import foo

This causes the compiler to look up the package in its database and identify its sym-
bols. Import declarations use the IPATH environment variable in the same way as do link
declarations. In particular, an import declaration is a link declaration, augmented with
scope information about the names defined in the package.
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Explicit package references

Sometimes, two imported packages may define the same symbol, or an imported symbol
conflicts with a global declaration in one of your files. To resolve these problems, you
can explicitly specify the package to use for particular symbol references. For example, if
packages first and second both define a procedure named write, then

import first, second

procedure main()
first::write() # calls write() in package first
second::write() # calls write() in package second
mwrite()  # calls the global write()

end

The use of the :: operator on its own is a useful way to refer to a global procedure from
within a class that has a method of the same name, as in

class Abc(x)
method write()
write(*Abc x=", x)
end
end

In this example, omitting the :: would cause the write() method to call itself until the
program runs out of memory and produces a runtime error.

Name conflicts and name mangling

The purpose of packages is to reduce name conflicts, especially accidental ones. You will get
a link error if you declare the same name twice in the same package. You will get a compile
error if you try to import a package that contains a variable that is already declared. In
Unicon, unlike Arizona Icon, you will also get a warning message if you declare a global
variable of the same name as a built-in function, or assign a new value to such a name.
Often this is done on purpose, and it shows off the flexibility of the language. But other
times when it happens by accident, it is a disaster. Such warnings can be turned off with
the -n option to the unicon compiler.

Under the hood, packages are implemented by simple name mangling that prefixes the
package name and a pair of underscores onto the front of the declared name. You can easily
defeat the package mechanism if you try, but the reason to mention the name mangling is
so you can avoid variable names that look like names from other packages.

A similar name mangling constraint applies to classes. Also, the compiler reserves
field names s and __ m for internal use; they are not legal class field names. Identi-

fiers consisting of _n, where n is an integer are reserved for Unicon temporary variable
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names. Finally, for each class foo declared in the user’s code, the names foo, foo _ state,
foo methods, and foo _ oprec are reserved, as are the names foo bar corresponding to
each method bar in class foo.

Compilation order and the unidep tool

When possible, you should compile all files in a package before you import that package.
Even if you do, if multiple source files belong to the same package, the order in which they
are compiled is significant. Consider the following code in three source files:

# order1.icn
package demo
procedure first()

write(“first”)
end

# order2.icn

package demo

procedure second()
write(“second”)
first()

end

# order3.icn

import demo

procedure main()
second()

end

Files orderl.icn and order2.icn belong to a package demo, which is used by order3.icn.
You can rightly guess that order3.icn should be compiled after orderl.icn and order2.icn,
but does it matter which of them is compiled first? If order2.icn is compiled first, Unicon’s
database does not know symbol first is part of the package, and does not mangle the name;
if you compile these files out of order you will get a runtime error.

The brute force solutions you have available to you are: to always place all of a package
in the same source file, or to compile the files twice. Neither of these options is especially
appealing. The symbol references in each package’s files form a graph of dependencies on
the other files in the same package. As long as this graph is acyclic, a correct order can
be calculated. Unidep is a program that automates this task and generates a makefile
specifying the dependencies in build rules. For example, given the program above, and the
following makefile:

order: order1.u order2.u order3.u
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unicon -o order order1.u order2.u order3.u
%.U: %.icn
unicon -c $*

Running the command “unidep orderl.icn order2.icn order3.icn” will append the re-
quired additional dependencies. In this case these are:

order1.u: orderi.icn
order2.u: order2.icn orderi.u
order3.u: order3.icn order2.u

With these dependencies added, the makefile will compile the files in the correct order.
You will want to add a rule to invoke Unidep from the makefile, and rerun it when your
program changes significantly.

12.4 HTML documentation

Iplweb is an Icon documentation generator, inspired loosely by Java’s JavaDoc program,
and based on an HTML-generating program called iplref, by Justin Kolb. Iplweb depends
on your program being in "TPL normal form", which is to say that comments in your source
files should be in the format used in the Icon Program Library. From these comments and
the signatures of procedures, methods, records, and classes, Iplweb generates reference
documentation in HTML format.

This approach produces reference documentation automatically, without altering the
original source files. Run Iplweb early, and run it often. It is common for reference docu-
mentation to diverge over time from the source code without such a tool. It is especially
suitable for documenting the interfaces of procedure and class libraries. What it doesn’t
help with is the documentation of how something is implemented. It is designed primarily
for the users, and not the maintainers, of library code.

12.5 Summary

Writing and maintaining large programs poses additional challenges not encountered when
writing small programs. The need for design and documentation is greater, and the chal-
lenge of maintaining the correspondence between design documents and code is more dif-
ficult. Design patterns can help you with the design process, since they introduce easily
recognizable idioms or sentences within a design. The more familiar the design is, the less
cognitive load is imposed by the task of understanding it.

Packages have little or nothing to do with design patterns, but they are just as valuable
in reducing the cognitive load required to work with a large program. Packages are not
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just a source code construct. They actually do play a prominent role in software design
notations such as UML. From a programmer’s point of view, packages protect a set of
names so that their associated code is more reusable, without fear of conflicts from other
reusable code libraries or the application code itself.
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Chapter 13

Use Cases and Supplemental UML
Diagrams

When starting a new software project, it is tempting to begin coding immediately. An
advocate of stepwise refinement starts with the procedure main() that every program has,
and grows the program gradually by elaboration from that point. For complex systems,
a software designer should do more planning than this. Chapters 9 and 10 covered the
basics of class diagramming, an activity that allows you to plan out your data structures
and their interrelationships.

The hard part about class diagramming is figuring out what information will need to
be stored in attributes, and what object behavior will need to be implemented by methods.
For many large projects there are basic questions about what the program is supposed
to do that must be answered before these details about the application’s classes can be
determined. In addition, class diagrams depict static information but model nothing about
the system that involves changes over time.

This chapter discusses some UML diagramming techniques that are useful before you
start coding. They can help you figure out the details that belong in your class diagrams,
by modeling dynamic aspects of your application’s behavior. When you are finished with
this chapter you will know how to:

e Draw use case diagrams that show the relationships between different kinds of users
and the tasks for which they will use the software.

e Describe the details of use cases that define an application’s tasks.

e Draw statechart diagrams that depict an object’s behavior as states and transitions
between states that model the dynamic aspects of the application.

e Specify conditions and activities that occur when an event causes an object to change
its state.

235
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e Draw collaboration diagrams that illustrate dynamic interactions between groups of
objects.

13.1 Use Cases

A use case is an individual task. It defines a unit of functionality that the software enables
one or more users to carry out. Sometimes it is a challenge to figure out what makes a
reasonable “unit of functionality” in an application where long sequences of complex tasks
are performed. Should the use cases correspond to small units such as individual user
actions such as mouse clicks, or longer jobs such as updating a spreadsheet? One way to
identify the appropriate units of functionality is to ask, for any given user action, whether
it completes a change to the state of the application data. If the user would likely want to
be able to save their work afterwards, the task is large enough to constitute a use case.

A diagram showing all the use cases helps early on in development to identify the overall
scope and functionality of the software system as seen from the outside. The components
of a use case diagram are depicted in Figure 13-1.
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Applications A use case

An actor

Manager
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js\ Evaluate connects actors

Applications to use cases

A use case may

Check ™ F=uses>>  Lvaluate depend on other
References Applications use cases

A use case may
elaborate on
another use case

Evaluate
Permanent-position
Applications

<<extends>>

Evaluate
Applications

Figure 13-1: The main components of use case diagrams

The use cases themselves are shown as ovals. The name of the use case is inside the
oval. The use cases have an accompanying description; an example description is given in
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the next section. A use case is not represented in software by a class, but rather in the logic
of the program’s control flow. A use case relates several otherwise unassociated objects for
a limited time to accomplish a particular task.

The term actor denotes both human users and external hardware or software systems
that interact with the software system under design. Actors are shown in use case diagrams
as stick figures. Each stick figure in the diagram represents a different kind of actor that
interacts with the system during one or more use cases. The name of the role is written
under the stick figure. An actor is really just a special kind of class that represents an
external, asynchronous entity.

The associations between use cases and the actors that perform those tasks are drawn
as plain lines. A use case may be performed by one or several actors. Use case associations
identify the actors that participate in each use case. They are only slightly related to the
associations between classes found in class diagrams.

Dependencies and elaborations between use cases are drawn as lines with arrows, anno-
tated with a label between « and ». Some use cases use other use cases as part of a more
complex task. Other use cases are defined as extensions of another use case.

Use case diagrams

A use case diagram consists of a set of use case ovals, bordered by a rectangle that signifies
the extent of the software system. Actors are drawn outside the rectangle, with connecting
lines to those use cases in which they participate. When some actors are non-human
external systems, by convention the human actors are depicted on the left, and the non-
humans go on the right.

An example use case diagram is shown in Figure 13-2, which depicts a recruiting man-
agement system. The manager hiring a new employee may interact with the company’s legal
department to produce an acceptable position advertisement. Many applicants might ap-
ply for a given position. The manager evaluates applications, possibly interviewing several
candidates. When a candidate is selected, the manager interacts with the legal department
to make a job offer.
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Recruiting Management System

Apply for Job

1

Manager
Applicant Make Offer

Figure 13-2 A Use Case Diagram

Use case descriptions

The details of each use case are specified in a related use case description. This description
may include prose text, such as the following description of the “Make Offer” use case:

Make Offer is started by the manager when an applicant has been selected from among
the candidates for a position. The manager obtains approval from the legal department,
commits necessary budget resources, and generates an offer letter with details on salary,
benefits, and the time frame in which a decision is required.

The use case description may be organized into fields, or more detailed than this. For
example, one field might consist of the most common sequence of events, emphasized by
an explicit enumeration. The common variations on the primary event sequence are also
of value. A more organized description of the Make Offer use case might be

Make Offer Initiated: by manager, after candidate for a position has been selected.
Terminates: when the candidate receives the offer in writing.
Sequence:

1. Manager obtains approval from legal department.

2. Manager commits resources from budget

3. Manager telephones candidate with offer

4. Manager generates offer letter

5. Offer letter is express mailed to candidate.

Alternatives:

In step 2, Manager may request extra non-budgeted resources.
In step 3, Manager may fax or e-mail offer in lieu of telephone.
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13.2 Statechart Diagrams

Statecharts are diagrams that depict finite state machines. A finite state machine is a set
of states, drawn as circles or ovals, plus a set of transitions, drawn as lines that connect
states. Statecharts generally have an initial state, which may be specially designated by a
small, solid circle, and one or more final states, which are marked by double rings.

In object modeling, states represent the values of one or more attributes within an
object. Transitions define the circumstances or events that cause one state to change
to another. Statecharts are a tool for describing allowable sequences of user interactions
more precisely than is captured by use cases. Discovering the events that cause transitions
between states, as well as the conditions and actions associated with them, helps the
software designer to define the required set of operations for classes.

Figure 13-3 shows an example statechart diagram for a real estate application. A house
enters the FORSALE state when a listing agreement is signed. The house could leave the
FORSALE state with a successful offer at the listed price (entering a REVIEW period) or
by utter failure (if the listing agreement expires), but the most common occurrence is for a
buyer to make an offer that is less than the asking price. In that case, a NEGOTIATION
state is entered, which may iterate indefinitely, terminating when either the buyer or seller
agrees to the other party’s offer or walks away from the discussion. When an offer is
accepted, a PENDING period is entered in which financing is arranged and inspections
and walkthroughs are performed; this period is terminated when escrow is closed, title is
transferred, and the house is SOLD.

listing
\ag.e emert  offer

orsale

agresment
listing
enpires

entry/open_escrow()
arrange_financing()
inspections()

Figure 13-3: A Statechart Diagram

Since a state represents the values of one or more attributes within an object, a transition
coincides with assignments that alter those attributes’ values. The purpose of the diagram
is to identify when and why those values change, in terms of the application domain.
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Events and conditions

Most transitions in a statechart are triggered by an event. In Figure 13-3 the events were
things like “offer” and “closing”. Typically, an event describes an asynchronous communi-
cation received from another object. An event is instantaneous, while a state corresponds
to some possibly lengthy interval of time until an object transitions into some other state.
From the point of view of the object being modeled in the statechart, the event is an in-
terrupt that affects the object’s behavior. Such an event would normally be implemented
by defining a method for the object with a name derived from the event name.

It is common during modeling to have a transition that can only occur if a Boolean
condition is satisfied. In Figure 13-3, the event offer was used for two transitions out of the
same state, with different conditions (amount >= list price versus amount < list price) to
determine which transition would be taken. In statechart diagrams, conditions are given
after the event name, in square brackets, as in [amt < list].

For a condition on a transition, it might make sense for that transition to require no
trigger event at all. The transition would occur immediately if the condition were ever
satisfied. Such a constraint-based transition would potentially introduce condition tests at
every point in the object’s code where the condition could become true, such as after each
assignment to a variable referenced in the condition. This may work in special cases, but
poses efficiency problems in general. Transitions without trigger events make sense in one
other situation. If a state exits when a particular computation completes, you can use a
triggerless transition to the new state that the object will be in when it is finished with the
job it is performing in the current state.

Actions and activities

Events are not the only class methods that are commonly introduced in statecharts. In
addition to a condition, each event can have an associated action. An action is a method
that is called when the event occurs. Since events are instantaneous, action methods should
be of bounded duration. Similarly, states can have a whole regalia of related methods called
activities. There are activities that are called when a state is entered or exited, respectively.
The most common type of activity is a method that executes continuously as long as the
object is in that state. If more than one such activity is present, the object has internal
concurrency within that particular state.

In statechart diagrams, actions are indicated by appending a slash (/) and an action
after the event name and any condition. Activities are listed within the state oval. If a
keyword and a slash prefix the activity, special semantics are indicated. For example, the
do keyword indicates repeated activity. In Figure 13-3, the activity do / show() says that
the house will be shown repeatedly while it is in the FORSALE state. The activity entry /
open_escrow() indicates that the method open_escrow() is called on entry to the PENDING
state, after which inspections() and arrange_financing() activities are performed.
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13.3 Collaboration Diagrams

Statecharts normally model the state of one object. They show how the object reacts to
events that come from the other objects in the system, but do not depict where those
events came from. In a complex system, it is useful to understand the interactions among
many objects. An event that changes one object’s state may trigger events in many other
objects, or a group of objects may trigger events in one another in a cyclic fashion.

Collaboration diagrams show such interactions between objects. They are drawn simi-
larly to class diagrams. A group of rectangles are drawn to represent instances of classes,
and lines depict the relationships between those classes. But while a class diagram em-
phasizes the static structures, representing details such as class attributes, and association
multiplicity, a collaboration diagram depicts a specific sequence of messages sent from ob-
ject to object during the completion of some task. The messages are annotated alongside
the links between objects to indicate sender and recipient, and numbered to show both
the sequence and the tree structure of the nested messages. In the general case more than
one message number can be annotated for a given link, since multiple messages may be
transmitted between the same objects in the course of completing the use case.

Figure 13-4 shows an example collaboration diagram. This particular collaboration
illustrates the input processing of a user event in a game application in which pieces are
moved about a board, such as chess or checkers. The incoming event is sent as a message
from the window object to the board widget (message 1). The board widget uses its layout
to map mouse (X, y) coordinates onto a particular square to which the user is moving the
currently selected piece, and forwards a message to that square (1.1). The square sends a
message to a rules object, which checks the validity of the user’s move (1.1.1), and if the
move is legal, the square sends a message to the game piece, effectively telling it to move
itself (1.1.2). The game piece sends an “erase” message to the square where it was formerly
located (1.1.2.1) before changing its link to refer to the square to which it is moving.

111
<<global>> RULES
L BOARD Ll

WINDOW [p— @ —|SQUARE 7112  |GAME|l1-2.1 | SQUARE

WIDGET WIDGET |<<gcbat>> |PIECE WIDGET
1. user mouse click
1.1  square select
1.1.1 legal move check
1.1.2  update position
1.1.2.1 erase (at old position)

Figure 13-4: A Collaboration Diagram

There are a couple more annotations worth noting in Figure 13-4. The links between
window, board widget, and square widget are identified as aggregations since they denote
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geometric containment; this information is redundant with the class diagram, but is given to
explain how the objects are linked to allow message transmission. The connections between
the square widget and the rules and game piece objects are marked as <<global>> to
indicate that the square widget obtains references to these objects from global variables.
The link between the game piece and the square widget in which it is located is a regular
association and does not require further annotation. Besides < <global>> you can annotate
a link as a <<parameter>> or <<local>> to indicate other non-association references
through which messages are transmitted.

13.4 Summary

This chapter introduced four UML diagram types that are useful in modeling dynamic
aspects of a program’s behavior. To learn more about these techniques and others, consult
a primary UML resource, such as The Unified Modeling Language User Guide, by Grady
Booch, James Rumbaugh, and Ivar Jacobson.

No one technique is a complete solution, but some combination of use cases, statecharts,
and collaboration diagrams will allow you to sufficiently model most applications. Use
cases are particularly valuable for describing tasks from the point of view of the application
domain and human user. Statecharts are good for modeling event-based systems such
as user interfaces or distributed network applications. Collaboration diagrams describe
interactions between objects that allow you to model the big picture in a complex system.

In terms of primacy and chronological order, for most applications you should start
with use cases and try to develop them completely. For those use cases that seem complex,
or for which the conventional use case description seems inadequate, you can then bring in
statecharts or collaboration diagrams to assist in completing an understandable design.

Class diagrams are the backbone of a detailed object oriented design. They can be
developed by extracting details from the other kinds of diagrams, and should reflect pro-
grammers’ understanding of the application domain for which the software is being written.
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Chapter 14

CGI Scripts

CGI scripts are programs that read input forms and generate dynamic HTML content for
the World Wide Web. CGI programs are often written in scripting languages, but they can
be written in any language, such as C. Unicon is ideal for writing CGI scripts, since it has
extraordinary support for string processing. In this chapter you will learn how to

e Construct programs whose input comes from a web server.
e Process user input obtained from fields in HTML forms

e Generate HTML output from your Icon programs

14.1 Introduction to CGI

The Common Gateway Interface, or CGI, defines the means by which Web servers interact
with external programs that assist in processing Web input and output. CGI scripts are
programs that are invoked by a Web server to process input data from a user, or provide
users with pages of dynamically generated content, as opposed to static content found in
HTML files. The primary reference documentation on CGI is available on the Web from the
National Center for Supercomputer Applications (NCSA) at http://hoohoo.ncsa.uiuc.edu/cgi/.
If you need a gentler treatment than the official reference, The CGI Book, by Bill Weinman,
is a good book on CGI. Although other methods for writing web applications on the server
have been developed, CGI is the most general, portable method and is likely to remain in
wide use for some time.

This chapter describes cgi.icn, a library of procedures for writing CGI scripts. The cgi.icn
library consists of a number of procedures to simplify CGI input processing and especially
the generation of HTML-tagged output from various data structures. The cgi.icn reference
documentation can be found in Appendix B, which describes many important modules in
the Icon Program Library.

Note

245
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To use cgi.icn, place the statement link cgi at the top of your program.

CGI programs use the hypertext markup language HTML as their output format for
communicating with the user through a Web browser. Consequently, this chapter assumes
you can cope with HTML, which is beyond the scope of this book. HTML is an ASCII
format that mixes plain text with fags consisting of names enclosed in angle brackets such
as <HTML>. HTML defines many tags. A few common tags will be defined where they
occur in the examples. Most tags occur in pairs that mark the beginning and end of some
structure in the document. End tags have a slash character preceding the name, as in
</FONT>. More details on HTML are available from the World Wide Web Consortium at
http://www.w3.org/MarkUp/.

Organization of a CGI script

CGI programs are very simple. They process input data supplied by the Web browser that
invoked the script (if any), and then write a new Web page, in HTML, to their standard
output. When you use cgi.icn the input-processing phase is automatically completed before
control is passed to your program, which is organized around the HTML code that you
generate in response to the user. In fact, cgi.icn includes a main() procedure that processes
the input and writes HTML header and tail information around your program’s output.
For this reason, when you use cgi.icn, you must call your main procedure cgimain().

Processing input

The HTTP protocol includes two ways to invoke a CGI program, with different methods of
supplying user input, either from the standard input or from a QUERY_STRING environment
variable. In either case, the input is organized as a set of fields that were given names in
the HTML code from which the CGI program was invoked. For example, an HTML form
might include a tag such as:

<INPUT TYPE = "text" NAME = "PHONE" SIZE=15>

which allows input of a string of length up to 15 characters into a field named PHONE.

After the CGI library processes the input, it provides applications with the various
fields from the input form in a single table, which is a global variable named cgi. The keys
of this table are exactly the names given in the HT'ML INPUT tags. The values accessed
from the keys are the string values supplied by the user. For example, to access the PHONE
field from the above example, the application could write

cgi["PHONE"]
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Processing output

The main task of the CGI program is to write an HTML page to its standard output,
and for this task cgi.icn provides a host of procedures. Typically these procedures convert a
structure value into a string, wrapped with an appropriate HTML tag to format it properly.
A typical example is the library procedure cgiSelect(name,values), which writes an HTML
SELECT tag for a field named name. The SELECT tag creates a list of radio buttons on an
HTML form whose labels are given by a list of strings in the second parameter to cgiSelect().
A programmer might write

cgiSelect("GENDER?", ["female", "male"])

to generate the HTML

<SELECT NAME="GENDER">
<OPTION SELECTED>female
<OPTION>male

</SELECT>

Common CGI environment variables

The official CGI definition includes a set of standard environment variables that are set by
the Web server as a method of passing information to the CGI script. Programmers access
these environment variables using getenv(), as in

getenv("REMOTE_HOST")

Table 14-1 presents a summary of the CGI environment variables as a convenience so
that this book can serve as a stand-alone reference for writing most CGI scripts. For a
complete listing of all the environment variables supported by CGI go to http://hoohoo.ncsa.
uiuc.edu/cgi/env.html on the Internet.

Table 14-1

CGI Environment Variables


http://hoohoo.ncsa.uiuc.edu/cgi/env.html
http://hoohoo.ncsa.uiuc.edu/cgi/env.html
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Variable Explanation
CONTENT_LENGTH The length of the ASCII string provided by method="POST".
The user’s browser software and proxy gateway, if any. The

HTTP_USER_AGENT . . . .
format is name/version, but varies wildly.

The information submitted through the form, which fol-
lows the 7 in the URL when using method="GET".
QUERY_STRING QUERY_STRING data is parsed and inserted into a table
stored in the global variable cgi, so cgi.icn scripts do not

generally consult this environment variable.
REMOTE_ADDR The IP address of the client machine.

The hostname of the client machine. Defaults to IP held
by REMOTE_ADDR.

REQUEST_METHOD The method (GET or POST) used to invoke the CGI script.
SERVER_NAME The server’s hostname. It defaults to the IP address.

The Web server that invoked the CGI script. The format
is name/version.

REMOTE_HOST

SERVER_SOFTWARE

14.2 The CGI Execution Environment

CGI scripts do not execute as stand-alone programs and aren’t launched from a command
line; a Web server executes them. The details of this are necessarily dependent on the
operating system and Web server combination in use. The following examples are based
on a typical UNIX Apache server installation in which users’ HTML files are located under
$HOME/public_html. Check with your system administrator or Web server documentation
for the specific filenames, directories, and permissions required to execute scripts from your
Web server. Some web servers do not allow scripts at all, and most others run scripts with
a special userid in a limited/protected file system where absolute pathnames are different
from how you see them.

Under Apache, you need a directory under $HOME/public_html named cgi-bin. Both
$HOME/public_html and its cgi-bin subdirectory should have "group" and "other" permis-
sions set to allow reading and executing for the Web server to run the programs you place
there. Do not give anyone but yourself write permissions! The following commands set
things up on a typical Apache system. The percent sign (%) is not part of the command;
it is the UNIX shell prompt. The period in the final command is part of the command and
refers to the current working directory.

% mkdir SHOME/public_html
% cd $HOME/public_html

% mkdir cgi-bin

% chmod go+rx . cgi-bin

The next two example files will allow you to verify that your directories and permissions
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are correct for your Web server. Despite all the attempts to make the world’s web servers
secure, the only security you can count on is your own. From security expert David A.
Gamey we have the following tips:

e Use no data without checking for validity. Even HTTP header data can be wrong. If
you expect a number, make sure the supplied data is a number.

e It is a very bad idea to make any system() calls (or open piped commands, etc.) from
scripts. If you absolutely have to run something external, construct command strings
yourself or fully parse user data being used to check for command separators and
hidden commands, etc.

e Don’t rely on looking for known bad characters; restrict input to known good char-
acters. Use known good values such as those selected from list boxes

e Sensitive data should be sent using POST, not GET.

e Check for and prevent file system attacks, such as paths including .. in them.

e Log everything received by your script, so you can tell when attacks occur.

14.3 An Example HTML Form

CGI scripts are typically invoked from HTML pages. When you view the following example
page in your browser, it should look something like the one shown in Figure 14-1. For this
test, create an HTML form $HOME/public_html/simple.html containing Listing 14-1. When
you have a CGI script compiled and ready to run, you can edit the URL in this file to point
at your CGI program, the simple.cgi executable.
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% An HTML Form Example - Netscape
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Figure 14-1: An HTML Form Example
Listing 14-1 An HTML form

<HTML><HEAD><title> An HTML Form Example </title></HEAD>
<BODY>
<h1> A <tt>cgi.icn</tt> Demonstration</h1>
<form method="GET"
action="http://www.cs.uidaho.edu/ jeffery/cgi-bin/simple.cgi">
1. Name: <input type="text" name="name" size=25> <p>
2. Age: <input type="text" name="age" size=3> &nbsp;Years <p>
3. Quest:
<input type="checkbox" nhame="fame">Fame</input>
<input type="checkbox" name="fortune">Fortune</input>
<input type="checkbox" name="grail">Grail</input><p>
4. Favorite Color:
<select name="color">
<option>Red
<option>Green
<option>Blue
<option selected>Don’t Know (Aaagh!)
</select><p>
Comments:<br>
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<textarea rows=5 cols=60 name="comments"></textarea><p>
<input type="submit" value="Submit Data">

<input type="reset" value="Reset Form">

</form>

</BODY>

</HTML>

14.4 An Example CGI Script: Echoing the User’s Input

The following script, named simple.cgi might be invoked from the FORM tag above. The
simple.cgi script is produced from an Unicon source file, simple.icn, that you can copy from
the book web site (http:/unicon.org/book/). This program needs to be compiled with the
command

unicon —o simple.cgi simple.icn

Many Web servers are configured so that CGI scripts must end with the extension
.cgi. Check with your system administrator about CGI naming conventions if the .cgi
extension does not work for you. In addition to the web server being configured to allow
user invocation, unless you use compiler option -B to bundle the virtual machine into
your executable, your program must be able to find and execute the virtual machine from
whatever user id CGI’s are executed.

The program reads the form input specified in simple.html, and writes it back out. All
cgiEcho() is doing in this case is adding an HTML newline tag after each call. If you look it
up in Appendix B, you will find that it will copy its arguments to both the HTML output
and a log file if given a file as its first argument.

link cgi
procedure cgimain()
cgiEcho("Hello, ", cgi["name"], "I")
cgiEcho("Are you really ", cgi["age"], " years old?")
cgiEcho("You seek: ", cgi["fame"]==="on" & "fame")
cgiEcho("You seek: ", cgi["fortune"]==="on" & "fortune")
cgiEcho("You seek: ", cgi["grail"]==="on" & "grail")
cgiEcho("Your favorite color is: ", cgi["color"])
cgiEcho("Your comments: ", cgi["comments"])
end

Generating an output page that rehashes the user’s input is a good test of your HTML
form before you deploy it with a CGI script that actually does something. In some cases, it
is also helpful in allowing the user to recheck their submitted input and confirm or cancel
before acting on it.
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14.5 Debugging CGI Programs

CGI programs can be a pain to debug. You may have to debug your CGI execution
environment, before you can even start debugging your CGI program itself. If your CGI
script returns an "internal server error", or no output at all, you may have file permissions
wrong, or the CGI script may not be able to find the Unicon virtual machine in order to
run the program. Some web servers execute CGI scripts under a special userid such as
"web", others will run them under your user id. Some web servers run CGI scripts under
a protected file system where the root directory "/" is not the same as the root directory
visible to your user account, so the path to iconx that you normally use may be invalid in
your CGI program. CGI scripts may have a very limited PATH for security reasons, not
the PATH you set for your user account. Your best bet is probably to use the -B Unicon
compiler option to bundle the Unicon interpreter into your executable file; alternatively
you can probably copy the virtual machine "iconx" into your cgi-bin directory

Debugging your CGI program itself may require special tricks. Because your CGI
program is executed by a web server, its standard error output may not be visible to you.
You can try to redirect error output to standard out, but your error output may not be
readable unless it is converted into HTML (say, by adding <BR> at each newline). One way
to accomplish this is to write two programs: one that performs the primary task, and a
second program that calls the first one, catches any error messages, and converts any plain
text output to HT'ML.

14.6 Appform: An Online Scholarship Application

The next example, appform.icn, is a CGI script for an on-line scholarship application that
was used at a university. Its structure is similar to the previous example, with a twist: the
user input is printed for the convenience of the scholarship administrators. As a backup,
the CGI script also e-mails the application to the scholarship administrator. This is useful
if the print job fails for some reason. The program is a single cgimain() procedure, which
starts by processing each of the user input fields. The program then opens a temporary
file with a .txt extension, and writes a nicely formatted document containing the user’s
scholarship application information.

The code for Appform is shown in Listing 14-2. To run it you must adapt it to your
environment. As written, it prints to Ipr, and sends mail to jeffery@cs.uidaho.edu. When
running a CGI script it is important to realize you will run in a different directory, and
with different user id and PATH environment, than your regular account. The program
runs with whatever user id and permissions the system administrator assigns the Web
server process. For example, its root (/) directory may not be at the root of your regular
filesystem, so absolute paths may not work.

Listing 14-2
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An online application form

HUHHHH R R R R H AR R R R R
# File: appform.icn

# Subject: CGl program to process scholarship applications

# Author: Clinton Jeffery

#  Date: July 11,2002
BRI
# This program processes a bunch of input fields defined in an on-line schol-
# arship application at http://unicon.org/book/appform.html and from them,

# generates a text file, prints and e-mails it to the scholarship coordinator.
HHHHHH A

link cgi, io
$define ADMIN "jeffery@cs.uidaho.edu”
procedure cgimain()
fname := tempname("appform”, ".txt", "/tmp")
f ;= open(fname, "w") | stop("can t open ", fname)
write("Generating typeset copy of application form...")
write(f,"Scholarship Program Application\n")
write(f, "Name: ", cgi["NAME"], "\t\t Phone: ", cgi["PHONE"])
write(f, "Address: ", cgi["ADDRESS1"], ’ \t\t Social Sec. Number: ", cgi["SOC"])
write(f, cgi["ADDRESS2"], " \t\t Gender (M/F): ",cgi["GENDER"], "\n")
write(f,"Semester hours completed: ", cgi["CREDITS"))
write(f,"College GPA: Overall ", cgi["GPA"])
write(f,"Present Employer: ", cgi["EMPLOYER"])
write(f,"Position: ", cgi["POSITION"], " Hours/week: ", cgi["HOURS"])
write(f,"Educational Background")
write(f,"High School: name, year, GPA, graduated?")
write(f, cgi["HIGH1"], "\n", cgi["HIGH2"])
write(f,"For each college, list name, dates attended, credit hours,")
write(f,"degrees awarded", cgi["COLL1"], "\n", cgi["COLL2"], "\n\n")
write(f," Academic honors, scholarships, and fellowships™)
(
(
(
(
(
(
(f,
(
(
(
(f,
(

write(f,cgi["HONOR1"], "\n", cgi["HONOR2"], "\n")
write(f,"Extracurricular interests:", cgi["EXTRA1"], "\n", cgi["EXTRA2"])
write(f,"Professional organizations:", cgi["ORGS1"], "\n", cgi["ORGS2"])
write(f,"Research interests:")

write(f,cgi["RESEARCH1"], "\n", cgi["RESEARCH2"])

write(f,"Name(s) of at least one person you have asked to")
write(f,"write an academic reference letter.")

write(f,"Name Address Relationship")

write(f,cgi["REF1"], "\t", cgi["REFADD1"], "\t",cgi["REFREL1"])
write(f,cgi["REF2"], "t", cgi["REFADD2"], "\t",cgi["REFREL2"])
write(f,"\nl certify that information provided on this")
write(f,"application is correct and complete to my knowledge.\n")
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write
write

f,"Signature: ", repl("_", 60), "\n Date: ", repl("_", 60), "\n\"N\n")
f,"Please write a short statement of purpose, including")

write(f,"information about your background, major, and career")

write(f,"interests, and professional goals.\n")

write(f, cgi["INFO"])

close(f)

write("Mailing form to program director...")

f := open(fname)

m := open("mailto:" || ADMIN, "m", "Subject: appform")

while write(m, read(f))

close(m)

close(f)

write("Printing hard copy...")

system("lpr " || fname || "; rm " || fname)

cgiEcho("Thank you for applying, ", cgi["NAME"])

cgiEcho("Your application has been submitted to " || ADMIN)
end

—_— e~~~

Summary

Writing CGI scripts in Unicon is easy. The input fields are handed to you elegantly in a
global variable, and library functions allow you to write terse code that generates correct
HTML output. The only thing certain about the fast-changing Internet standards is that
they will get continually more complex at a rapid pace. CGI scripting is no substitute for
JavaScript, XML, or any newer buzzword that may be hot this week. But it is a lasting,
multi-platform standard for how to run a program on a Web server from a browser, and it
may be the simplest and best solution for many Internet applications for some time.



Chapter 15

System and Administration Tools

In an open computing environment, users build their own tools to extend the capabilities
provided by the system. Unicon is an excellent language for programmers who wish to
control and extend their own system. This chapter presents techniques used to write
several system utilities of interest to general users as well as system administrators. Best of
all, many of these utilities work across multiple platforms, thanks to Unicon’s high degree
of system portability. You will see examples of

e Traversing and examining directories and their contents.

Finding duplicate files.

Implementing a quota system for disk usage.

e Doing your own custom backups.

Capturing the results of a command-line session in a file.

15.1 Searching for Files

To begin, consider a simple problem: that of finding a file whose name matches a specified
pattern. Regular expressions are commonly used to describe the patterns to match, so
you may want to link in the regular expression library. Here is the start of a file-search
application.

#

# search.icn

#

# Search for files whose (entire) names match a pattern given
# as a regular expression

#

# Usage: ./search <pattern> [dirs]

255
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link regexp

The application starts by processing the command-line arguments. There must be at
least one argument: the pattern to search for. Arguments following that one are directories
to search. If no directories are specified, you can use the current working directory. The
procedure findfile() performs the actual task of searching for the files:

procedure main(args)
(*args > 0) | stop("Usage: search <pattern> [directories]")
pattern := pop(args)
if *args = 0 then findfile(".", pattern)
else
every dir := largs do findfile(dir, pattern)
exit(0)
end

The search algorithm is a depth-first search. In each directory, check the type of each
file. If you find a directory, make a recursive call to findfile(). But before you do that, check
to see if the name of the file matches the pattern.

For efficiency, since the program uses the same regular expression for all searches, you
can compile the pattern into a static variable called pat. The regular expression library
allows you to perform this compilation once, the first time that findfile() is called, a