

2

This page intentionally left blank.

3

Programming with Unicon

2nd edition

Clinton Je�ery

Shamim Mohamed

Jafar Al Gharaibeh

Ray Pereda

Robert Parlett

Copyright c©1999-2021 Clinton Je�ery, Shamim Mohamed, Jafar Al Gharaibeh, Ray

Pereda, and Robert Parlett

Permission is granted to copy, distribute and/or modify this document under the terms

of the GNU Free Documentation License, Version 1.2 or any later version published by

the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no

Back-Cover Texts. A copy of the license is included in the section entitled �GNU Free

Documentation License�.

This is a draft manuscript dated July 3, 2025. Send comments and errata to

support@unicon.org.

This document was prepared using LATEX.

mailto:support@unicon.org

Contents

Preface to the Second Edition vii

I Core Unicon 5

1 Programs and Expressions 7

1.1 Your First Unicon Program . 7

1.2 Command Line Options . 12

1.3 Expressions and Types . 13

1.4 Numeric Computation . 14

1.5 Strings and Csets . 15

1.6 Goal-directed Evaluation . 16

1.7 Fallible Expressions . 18

1.8 Generators . 18

1.9 Iteration and Control Structures . 20

1.10 Procedures . 22

2 Structures 29

2.1 Tables . 30

2.2 Lists . 31

2.3 Records . 33

2.4 Sets . 34

2.5 Using Structures . 34

2.6 Summary . 40

3 String Processing 41

3.1 The String and Cset Types . 41

3.1.1 String Indexes . 41

3.1.2 Character Sets . 43

3.1.3 Character Escapes . 43

3.2 String Scanning . 44

3.3 Pattern Matching . 48

i

ii CONTENTS

3.3.1 Regular Expressions . 49

3.3.2 Pattern Composition . 49

3.3.3 Pattern Match Operators . 51

3.3.4 Scopes of Unevaluated Variables . 51

3.4 String Scanning and Pattern Matching Miscellany 51

3.4.1 Grep . 51

3.4.2 Grammars . 52

4 Advanced Language Features 57

4.1 Limiting or Negating an Expression . 57

4.2 List Structures and Parameter Lists . 58

4.3 Co-expressions . 59

4.4 User-De�ned Control Structures . 60

4.5 Parallel Evaluation . 61

4.6 Coroutines . 62

4.7 Permutations . 63

4.8 Simulation . 65

4.9 Arrays . 68

5 The System Interface 69

5.1 The Role of the System Interface . 69

5.2 Files and Directories . 70

5.3 Programs and Process Control . 73

5.4 Networking . 77

5.5 Messaging Facilities . 82

5.6 Tasks . 84

5.7 Summary . 90

6 Databases 91

6.1 Language Support for Databases . 91

6.2 Memory-based Databases . 92

6.3 DBM Databases . 93

6.4 SQL Databases . 94

6.5 Tips and Tricks for SQL Database Applications 100

6.6 Summary . 102

7 Graphics 103

7.1 2D Graphics Basics . 103

7.2 Graphics Contexts . 106

7.3 Events . 108

7.4 Colors and Fonts . 110

CONTENTS iii

7.5 Images, Palettes, and Patterns . 111

7.6 3D Graphics . 116

7.7 Textures . 122

7.8 Summary . 134

8 Threads 135

8.1 Threads and Co-Expressions . 136

8.2 First Look at Unicon Threads . 136

8.3 Thread Safety . 140

8.4 Thread Synchronization . 142

8.5 Thread Communication . 153

8.6 Practical examples using threads and messages 162

8.6.1 Disk space usage . 166

8.6.2 More suggestions for parallel processing 168

8.7 Summary . 169

9 Execution Monitoring 171

9.1 Monitor Architecture . 171

9.2 Obtaining Events Using evinit . 179

9.3 Instrumentation in the Icon Interpreter . 181

9.4 Arti�cial Events . 183

9.5 Monitoring Techniques . 184

9.6 Some Useful Library Procedures . 186

9.7 Conclusions . 186

II Object-oriented Software Development 187

10 Objects and Classes 189

10.1 Objects in Programming Languages . 189

10.2 Objects in Program Design . 192

10.3 Classes and Class Diagrams . 193

10.4 Declaring Classes . 195

10.5 Object Instances and Initially Sections . 196

10.6 Object Invocation . 198

10.7 Comparing Records and Classes . 199

10.8 Summary . 201

11 Inheritance and Associations 203

11.1 Inheritance . 203

11.2 Associations . 215

iv CONTENTS

11.3 Aggregation . 215

11.4 User-de�ned associations . 216

11.5 Summary . 219

12 Writing Large Programs 221

12.1 Abstract Classes . 221

12.2 Design Patterns . 223

12.3 Packages . 228

12.4 HTML documentation . 232

12.5 Summary . 232

13 Use Cases and Supplemental UML Diagrams 235

13.1 Use Cases . 236

13.2 Statechart Diagrams . 239

13.3 Collaboration Diagrams . 241

13.4 Summary . 242

III Example Applications 243

14 CGI Scripts 245

14.1 Introduction to CGI . 245

14.2 The CGI Execution Environment . 248

14.3 An Example HTML Form . 249

14.4 An Example CGI Script: Echoing the User's Input 251

14.5 Debugging CGI Programs . 252

14.6 Appform: An Online Scholarship Application 252

15 System and Administration Tools 255

15.1 Searching for Files . 255

15.2 Finding Duplicate Files . 257

15.3 User File Quotas . 263

15.4 Capturing a Shell Command Session . 268

15.5 Filesystem Backups . 270

15.6 Filtering Email . 274

15.7 Summary . 279

16 Internet Programs 281

16.1 The Client-Server Model . 281

16.2 An Internet Scorecard Server . 282

16.3 A Simple �Talk� Program . 285

16.4 Summary . 291

CONTENTS v

17 Genetic Algorithms 293

17.1 What are Genetic Algorithms? . 293

17.2 Operations: Fitness, Crossover, and Mutation 294

17.3 The GA Process . 297

17.4 ga_eng: a Genetic Algorithm Engine . 298

17.5 Color Breeder: a GA Application . 303

17.6 Picking Colors for Text Displays . 305

18 Object-oriented User Interfaces 307

18.1 A Simple Dialog Example . 307

18.2 A More Complex Dialog Example . 310

18.3 Containers . 317

18.4 Menu Structures . 319

18.5 Other Components . 322

18.5.1 Trees . 323

18.5.2 Borders . 327

18.5.3 Images and icons . 327

18.5.4 Scroll bars . 328

18.5.5 Custom Components . 328

18.5.6 Tickers . 338

18.6 Advanced List Handling . 343

18.6.1 Selection . 343

18.6.2 Popups . 344

18.6.3 Drag and drop . 344

18.7 Programming Techniques . 351

18.8 ivib . 353

18.9 Summary . 360

IV Appendices 363

A Language Reference 365

A.1 Immutable Types: Numbers, Strings, Csets, Patterns 365

A.2 Mutable Types: Containers and Files . 368

A.3 Variables . 369

A.4 Keywords . 370

A.5 Control Structures and Reserved Words . 376

A.6 Operators and Built-in Functions . 380

A.7 Preprocessor . 413

A.8 Execution Errors . 415

A.9 Syntax . 422

vi CONTENTS

B The Icon Program Library 431

B.1 Procedure Library Modules . 432

B.2 Application Programs, Examples, and Tools 473

B.3 Selected IPL Authors and Contributors . 493

C The Unicon Component Library 495

C.1 GUI Classes . 495

D Di�erences between Icon and Unicon 509

D.1 Extensions to Functions and Operators . 509

D.2 Objects . 509

D.3 System Interface . 509

D.4 Database Facilities . 510

D.5 Multiple Programs and Execution Monitoring Support 510

E Portability Considerations 511

E.1 POSIX extensions . 511

E.2 Microsoft Windows . 516

F Installation 519

G Experimental Features 521

G.1 User de�ned operators . 522

G.2 Extensions to &random . 522

G.3 Plugins . 522

G.3.1 Bitman . 522

G.3.2 SecureHash . 524

G.3.3 SQLite . 527

Bibliography 535

Preface to the Second Edition

This book will raise your level of skill at computer programming, regardless of whether

you are presently a novice or expert. The �eld of programming languages is still in its

infancy, and dramatic advances will be made every decade or two until mankind has had

enough time to think about the problems and principles that go into this exciting area of

computing. The Unicon language described in this book is such an advance, incorporating

many elegant ideas not yet found in most contemporary languages.

Unicon is an object-oriented, goal-directed programming language based on the Icon

programming language. Unicon can be pronounced however you wish; we pronounce it

variably depending on mood, whim, or situation; the most frequent pronunciation rhymes

with �lexicon�.

For Icon programmers this work serves as a �companion book� that documents material

such as the Icon Program Library, a valuable resource that is underutilized. Don't be

surprised by language changes: the book presents many new facilities that were added to

Icon to make Unicon and gives examples from new application areas to which Unicon is

well suited. For people new to Icon and Unicon, this book is an exciting guide to a powerful

language.

It is with sweet irony that we call this book the 2nd Edition, since the �rst edition

was never formally published but instead existed solely as an online document, although

laser-printed hard copies could be requested. A lot has happened to Unicon since the �rst

edition of this book, which culminated in 2004. This �2nd Edition� catches readers up

with things like concurrent threads and vastly improved 3D graphics facilities. Along the

way, the games chapter and parts of the internet programming chapter got spun o� into a

separate work, the so-called Manual of Puissant Skill at Game Programming.

Organization of This Book

This book consists of four parts. The �rst part, Chapters 1-8, presents the core of the

Unicon language, much of which comes from Icon. These early chapters start with simple

expressions, progress through data structures and string processing, and include advanced

programming topics and the input/output capabilities of Unicon's portable system inter-

face. Part two, in Chapters 9-12, describes object-oriented development as a whole and

vii

viii PREFACE TO THE SECOND EDITION

presents Unicon's object-oriented facilities in the context of object-oriented design. Object-

oriented programming in Unicon corresponds closely to object-oriented design diagrams in

the Uni�ed Modeling Language, UML. Some of the most interesting parts of the book are

in part three; Chapters 13-18 provide example programs that use Unicon in a wide range

of application areas. Part four consists of essential reference material presented in several

Appendixes.

Acknowledgments

Thanks to the Icon Project for creating a most excellent language. Thanks especially to

those unsung heroes, the university students and Internet volunteers who implemented the

language and its program library over a period of many years. Icon contributors can be

divided into epochs. In the epoch leading up to the �rst edition of this book, we were

inspired by contributions from Gregg Townsend, Darren Merrill, Mary Cameron, Jon Lipp,

Anthony Jones, Richard Hatch, Federico Balbi, Todd Proebsting, Steve Lumos and Naomi

Martinez. In the epoch since the �rst edition of this book, the Unicon Project owes a debt

of gratitude to Ziad al Sharif, Hani bani Salameh, Jafar Al Gharaibeh, Mike Wilder, and

Sudarshan Gaikaiwari.

The most impressive contributors are those whose in�uence on Icon has spanned across

epochs, such as Ralph Griswold, Steve Wampler, Bob Alexander, Ken Walker, Phillip

Thomas, and Kostas Oikonomou. We revere you folks! Steve Wampler deserves extra

thanks for serving as the technical reviewer for the �rst edition of this book. Phillip

Thomas and Kostas Oikonomou have provided extensive support and assistance that goes

way beyond the call of duty; in many ways this is their book.

This manuscript received critical improvements and corrections from many additional

technical reviewers, including, David A. Gamey, Craig S. Kaplan, David Feustel, David

Slate, Frank Lhota, Art Eschenlauer, Wendell Turner, Dennis Darland, and Nolan Clayton.

The authors wish to acknowledge generous support from the National Library of

Medicine and AT&T Bell Labs Research. This work was also supported in part by the

National Science Foundation under grants CDA-9633299, EIA-0220590 and EIA-9810732,

and the Alliance for Minority Participation.

Clinton Je�ery

Shamim Mohamed

Jafar al Gharaibeh

Ray Pereda

Robert Parlett

Introduction

Software development requires thinking about several dimensions simultaneously. For large

programs, writing the actual computer instructions is not as di�cult as �guring out the

details of what the computer is supposed to do. After analyzing what is needed, program

design brings together the data structures, algorithms, objects, and interactions that ac-

complish the required tasks. Despite the importance of analysis and design, programming

is still the central act of software development for several reasons. The weak form of the

Sapir-Whorf hypothesis suggests that the programming language we use steers and guides

the way we think about software, so it a�ects our designs. Software designs are mathemat-

ical theorems, while programs are proofs that test those designs. As in other branches of

mathematics, the proofs reign supreme. In addition, a correct design can be foiled by an

inferior implementation.

This book is a guide and reference for an exciting programming language called Unicon

that has something to o�er both computer scientists as well as casual programmers. You

will �nd explanations of fundamental principles, unique language idioms, and advanced

concepts and examples. Unicon exists within the broader context of software development,

so the book also covers software engineering fundamentals. Writing a correct, working

program is the central task of software engineering. This does not happen automatically

as a result of the software design process. Make no mistake: if you program very much,

the programming language you use is of vital importance. If it weren't, we would still be

programming in machine language.

Prototyping and the Spiral Model of Development

A software prototype is a working subset of a software system. Prototypes help check

software designs and user interfaces, demonstrate key features to customers, or prove the

feasibility of a proposed solution. A prototype may generate customer feedback on missing

functionality, provide insight on how to improve the design, lead to a decision about whether

to go ahead with a project or not, or form a starting point for the algorithms and data

structures that will go into the �nal product. Prototyping is done early in the software

development process. It �ts naturally into the spiral model of development proposed by

Barry Boehm (1988). Figure I-1 shows the spiral model; time is measured by the distance

1

2 PREFACE TO THE SECOND EDITION

from the center. Analysis, design, coding, and evaluation are repeated to produce a better

product with each iteration. "Prototyping" is the act of coding during those iterations when

the software is not yet fully speci�ed or the program does not yet remotely implement the

required functionality.

Figure I-1 The Spiral Model of Software Development

Tight spirals are better than loose spirals. The more powerful the prototyping tools, the

less time and money spent in early iterations of development. This translates into either

faster time to market, or a higher quality product. Some prototypes are thrown away once

they have served the purpose of clarifying requirements or demonstrating some technique.

This is OK, but in the spiral model some prototypes are gradually enhanced until they

become the �nal production system.

Icon: a Very High Level Language for Applications

Icon is a programming language developed at the University of Arizona. Icon generalizes

its developers' experience creating an earlier language, SNOBOL4. Icon embodies seminal

research ideas, but it is also more fun and easier to program than other languages. Most

very high-level languages revel in cryptic syntax, while Icon is not just more powerful, but

often more readable than its competitors. This gain in expressive power without losing

readability is an addicting result of Icon's elegant design.

The current Arizona Icon, version 9.5, is described in The Icon Programming Language,

3rd edition by Ralph and Madge Griswold (1996). Its reference implementation is a virtual

machine interpreter. Icon evolved through many releases over two decades and is far more

capable than it was originally. It is apparently a �nished work.

Enter Unicon: More Icon than Icon

The name �Unicon� refers to the descendant of Icon described in this book and distributed

from www.unicon.org. Unicon is Icon with portable, platform-independent access to hardware

www.unicon.org

3

and software features that have become ubiquitous in modern applications development,

such as objects, networks, and databases. Unicon is created from the same public domain

source code that Arizona Icon uses, so it has a high degree of compatibility. We were not

free to call it version 10 of the Icon language, since it was not produced or endorsed by the

Icon Project at the University of Arizona.

Just as the name Unicon frees the Icon Project of all responsibility for our e�orts, it

frees us from the requirement of backward compatibility. While Unicon is almost entirely

backward compatible with Icon, dropping full compatibility allows us to clear out some

dead wood and more importantly, to make some improvements in the operators that will

bene�t everyone at the expense of...no one but the compatibility police. This book covers

the features of Icon and Unicon together. A compatibility check list and description of the

di�erences between Icon and Unicon are given in Appendix D.

The Programming Languages Food Chain

It is interesting to compare Icon and Unicon with the competition. Mainstream program-

ming languages such as C, C++, and Java, like the assembler languages that were main-

stream before them, are ideal tools for writing all sorts of programs, so long as vast amounts

of programmer time are available. Throwing more programmers at a big project does not

work well, and programmers are getting more expensive while computing resources continue

to become cheaper. These pressures inexorably lead to the use of higher-level languages

and the development of better design and development methods. Such human changes are

incredibly slow compared to technological changes, but they are visibly occurring never-

theless. Today, the most productive programmers are using extra CPU cycles and memory

to reduce the time it takes to develop useful programs.

There is a subcategory of mainstream languages, marketed as rapid application de-

velopment languages, whose stated goals seem to address this phenomenon. Languages

such as Visual Basic or PowerBuilder provide graphical interface builders and integrated

database connectivity, giving productivity increases in the domain of data entry and pre-

sentation. The value added in these products are in their programming environments, not

their languages. The integrated development environments and tools provided with these

languages are to be acclaimed and emulated, but they do not provide productivity gains

that are equally relevant to all application domains. They are only a partial solution to

the needs of complex applications.

Icon is designed to be easier and faster to program than mainstream languages. The

value it adds is in the expressive power of the language itself, in the category of very high

level languages that includes Lisp, APL, Smalltalk, REXX, Perl, Tcl, Python, and Ruby;

there are many others. Very high-level languages can be subdivided into scripting lan-

guages and applications languages. Scripting languages often glue programs together from

disparate sources. They are typically strong in areas such as multilingual interfacing and �le

4 PREFACE TO THE SECOND EDITION

system interactions, while su�ering from weaker expression semantics, typing, scope rules,

and control structures than their applications-oriented cousins. Applications languages

typically originate within a particular application domain and support that domain with

special syntax, control structures, and data types. Since scripting is an application domain,

scripting languages are just one prominent subcategory of very high-level languages.

Icon is an applications language with roots in text processing and linguistics. Icon

programs tend to be more readable than similar programs written in other very high-level

languages, making Icon well-suited to the aims of literate programming. For example,

Icon was used to implement Norman Ramsey's literate programming tool noweb (Ramsey,

1994). Literate programming is the practice of writing programs and their supporting

textual description together in a single document.

Unicon makes the core contributions of Icon useful for a broader range of applications.

This book's many examples illustrate the range of tasks for which Unicon is well suited, and

these examples are the evidence in support of Unicon's existence. Consider using Unicon

when one or more of the following conditions are true. The more conditions that are true,

the more you will bene�t from Unicon.

• Programmer time must be minimized.

• Maintainable, concise source code is desired.

• The program includes complex data structures or experimental algorithms.

• The program involves a mixture of text processing and analysis, custom graphics,

data manipulation, network or �le system operations.

• The program must run on several operating systems and have a nearly identical

graphical user interface with little or no source code di�erences.

Unicon is not the last word in programming. You probably should not use Unicon if your

program has one or more of the following requirements:

• The fastest possible performance is needed.

• The program has hard real-time constraints.

• The program must perform low-level or platform-speci�c interactions with the hard-

ware or operating system.

Programming languages play a key role in software development. The Unicon language is a

very high level object-oriented language with a unique combination of expressive power and

scalable rapid development. In this book, many examples from a wide range of application

areas demonstrate how to apply and combine Unicon's language constructs to solve real-

world problems. It is time to move past the introductions. Prepare to be spoiled by this

language. You may have the same feelings that Europeans felt when they gave up using

Roman numerals and switched to the Hindu-Arabic number system. �This multiplication

stu� isn't that hard anymore!�

Part I

Core Unicon

5

Chapter 1

Programs and Expressions

This chapter presents many of the key features of Unicon, starting with those it has in

common with other popular languages. Detailed instructions show how to compile and run

programs. Soon the examples introduce important ways in which Unicon is di�erent from

other languages. These di�erences are more than skin deep. If you dig deeply, you can �nd

dozens of details where Unicon provides just the right blend of simplicity, �exibility, and

power. After this chapter, you will know how to

• edit, compile, and execute Unicon programs

• use the basic types to perform calculations

• identify expressions that can fail, or produce multiple results

• control the �ow of execution using conditionals, looping, and procedures

1.1 Your First Unicon Program

This section presents the nuts and bolts of writing and running an Unicon program, after

which you will be able to try the code examples or write your own programs. Before you

can run the examples here or in any subsequent chapter, you must install Unicon on your

system. (See Appendix F for details on downloading and installing Unicon from the Unicon

web site, http://unicon.org.) We are going to be very explicit here, and assume nothing

about your background. If you are an experienced programmer, you will want to skim this

section, and move on to the next section. If you are completely new to programming, have

no fear. Unicon is pretty easy to learn.

All programs consist of commands that use hardware to obtain or present information

to users, and perform calculations that transform information into a more useful form.

To program a computer you write a document containing instructions for the computer to

carry out. In Unicon a list of instructions is called a procedure, and a program is a collection

of one or more procedures. In larger programs, groups of related procedures are organized

7

8 CHAPTER 1. PROGRAMS AND EXPRESSIONS

into classes or packages; these features are presented in Part II of this book. Unicon

programs are text �les that may be composed using any text editor. For the purposes

of demonstration this section describes how to use Ui, the program editor and integrated

development tool that comes with Unicon.

It is time to begin. Fire up Ui by typing "ui" from the command line, or launching the

menu item or icon labeled "Unicon," and type:

procedure main()
write("Hello, amigo!")

end

Your screen should look something like Figure 1-1. The large upper area of the window

is the editing region where you type your program code. The lower area of the window is

a status region in which the Ui program displays a message when a command completes

successfully, or when your program has an error. Until you explicitly name your �le some-

thing else, a new �le has the name noname.icn. The font Ui uses to display source code is

selectable from the Options menu.

Figure 1-1: Writing an Unicon program using the Ui program.

1.1. YOUR FIRST UNICON PROGRAM 9

The list of instructions that form a procedure begins with the word procedure and ends

with the word end. Procedures have names. After writing a list of instructions in a

procedure you may refer to it by name without writing out the list again. The write()

instruction is just such a procedure, only it is already written for you; it is built in to the

language. When you issue a write() instruction, you tell the computer what to write. The

details a procedure uses in carrying out its instructions are given inside the parentheses

following that procedure's name; in this case, "Hello, amigo!" is to be written. When you see

parentheses after a name in the middle of a list of instructions, it is an instruction to go

execute that procedure's instructions. Inside the parentheses there may be zero, one, or

many values supplied to that procedure.

Besides writing your program, there are a lot of menu commands that you can use to

control the details of compiling and executing your program within Ui. For instance, if you

select Run→Run, Ui will do the following things for you.

1. Save the program in a �le on disk. All Unicon programs end in .icn; you could name

it anything you wished, using the File→SaveAs command.

2. Compile the Unicon program from human-readable text to (virtual) machine lan-

guage. To do this step manually, you can select the Compile→Make executable

command.

3. Execute the program. This is the main purpose of the Run command. Ui performed

the other steps in order to make this operation possible.

If you type the hello.icn �le correctly, the computer should chug and grind its teeth for

awhile, and

Hello, amigo!

should appear in a window on your screen. This ought to be pretty intuitive, since the

instructions included the line

write("Hello, amigo!")

in it. That's how to write to the screen. It's that simple.

The �rst procedure to be executed when a program runs is called main(). Every instruc-

tion listed in the procedure named main() is executed in order, from top to bottom, after

which the program terminates. Use the editor to add the following lines right after the line

write("Hello, amigo") in the previous program:

write("How are you?")
write(7 + 12)

The end result after making your changes should look like this:

10 CHAPTER 1. PROGRAMS AND EXPRESSIONS

procedure main()
write("Hello, amigo!")
write("How are you?")
write(7 + 12)

end

Run the program again. This example shows you what a list of instructions looks like,

as well as how easy it is to tell the computer to do some arithmetic.

Note

It would be �ne (but not very useful) to tell the computer to add 7 and 12 without

telling it to write the resulting value. On seeing the instruction

7 + 12

the computer would do the addition, throw the 19 away, and go on.

Add the following line, and run it:

write("7 + 12")

This illustrates what quotes are for. Quoted text is taken literally; without quotes, the

computer tries to simplify (do some arithmetic, or compute the value of what is written),

which might be di�cult if the material in question is not an expression!

write(hey you)

makes no sense and is an error. Add this line, and run it:

write(7 + "12")

The 12 in quotes is taken literally as some text, but that text happens to be digits that

comprise a number, so adding it to another number makes perfect sense. The computer

will not have as much success if you ask it to add 7 to �amigo�. The computer views all

of this in terms of values. A value is a unit of information, such as a number. Anything

enclosed in quotes is a single value. The procedure named write() prints values on your

screen. Operators such as + take values and combine them to produce other values, if it

is possible to do so. The values you give to + had better be numbers! If you try to add

something that doesn't make sense, the program will stop running at that point, and print

an error message.

By now you must have the impression that writing things on your screen is pretty easy.

Reading the keyboard is just as easy, as illustrated by the following program:

procedure main()
write("Type a line ending with <ENTER>:")
write("The line you typed was" , read())

end

1.1. YOUR FIRST UNICON PROGRAM 11

Run the program to see what it does. The procedure named read() is used to get what

the user types. It is built in to the language. The read() instruction needs no directions

to do its business, so nothing is inside the parentheses. When the program is run, read()

grabs a line from the keyboard, turns it into a value, and produces that value for use in

the program, in this case for the enclosing write() instruction.

The write() instruction is happy to print out more than one value on a line, separated by

commas. When you run the program, the "the line you typed was" part does not get printed

until after you type the line for read() and that instruction completes. The write() instruction

must have all of its directions (the values inside the parentheses) before it can go about its

business.

Now let's try some variations. Can you guess what the following line will print?

write("this line says " , "read()")

The read() procedure is never executed because it is quoted! Quotes say "take these

letters literally, not as an equation or instruction to evaluate." How about:

write("this line says , read()")

Here the quotes enclose one big value, which is printed, comma and all. The directions one

gives to a procedure are parameters ; when you give a procedure more than one parameter,

separated by commas, you are giving it a parameter list. For example,

write("this value ", "and this one")

Compile and run the following strange-looking program. What do you think it does?

procedure main()
while write("" ˜== read())

end

This program copies the lines you type until you type an empty line by pressing Enter

without typing any characters �rst. The "" are used just as usual. They direct the program

to take whatever is quoted literally, and this time it means literally nothing - an empty line.

The operator ˜== stands for "not equals". It compares the value on its left to the value on

its right, and if they are not equal, it produces the value on the right side; if they are equal,

it fails - that is, the �not equals� operator produces no value. If you have programmed in

other languages, this may seem like a strange way to describe what is usually performed

with nice simple Boolean values True and False. For now, try to take this description

at face value; Unicon has no Boolean type or integer equivalent, it uses a more powerful

concept that we will examine more fully in the chapters that follow.

Thus, the whole expression "" ˜== read() takes a line from the keyboard, and if it is not

empty, it produces that value for the enclosing write() instruction. When you type an empty

12 CHAPTER 1. PROGRAMS AND EXPRESSIONS

line, the value read() produces is equal to "", and ˜== produces no value for the enclosing

write() instruction, which similarly fails when given no value. The while instruction is a

"loop" that repeats the instruction that follows it until that instruction fails (in this case,

until there is no more input). There are other kinds of loops, as well as another way to use

while; they are all described later in this chapter.

So far we've painted you a picture of the Unicon language in very broad strokes, and

informally introduced several relevant programming concepts along the way. These con-

cepts are presented more thoroughly and in their proper contexts in the next sections and

subsequent chapters. Hopefully you are already on your way to becoming an Icon pro-

grammer extraordinaire. Now it is time to dive into many of the nuts and bolts that make

programming in Unicon a unique experience.

1.2 Command Line Options

Unicon comes with an IDE, but you can edit programs with any editor, and compile and

run them from your operating system's command line. This section describes the Unicon

command line tools along with several useful options. The Unicon compiler executable is

named unicon, and to compile the program foo.icn you would type

unicon foo

To execute the resulting program, just type

foo

To compile and link a program consisting of several modules, you can type them all on

the command line, as in

unicon foo bar baz

but often you will want to compile them separately (using the -c command line option) and

link the resulting object �les, called ucode �les; their extension is .u

unicon -c foo
unicon -c bar
unicon -c baz
unicon foo.u bar.u baz.u

Some of the other useful command line options include:

• -o arg name the resulting output �le arg

• -x args execute the program immediately after linking; this option goes after the

program �lenames

1.3. EXPRESSIONS AND TYPES 13

• -t turn on tracing

• -u produce a warning for undeclared variables

• -E output preprocessed source code

• -C compile to C code and link

These options can be speci�ed in the Ui program under the Compile menu's Compile

Options command. Other options exist; consult your Unicon and Icon manual pages and

platform-speci�c help �les and release information for more details.

1.3 Expressions and Types

Each procedure in a Unicon program is a sequence of expressions. Expressions are instruc-

tions for obtaining values of some type, such as a number or a word; some expressions also

cause side e�ects, such as sending data to a hardware device. Simple expressions just read

or write a value stored in memory. More interesting expressions specify a computation that

manipulates zero or more argument values to obtain result values by some combination of

operators, procedures, or control structures.

The simplest expressions are literals, such as 2 or "hello, world!". These expressions di-

rectly specify a value stored in memory. When the program runs, they do not do any

computation, but rather evaluate to themselves. Literals are combined with other values

to produce interesting results. Each literal has a corresponding type. This chapter focuses

on the atomic types. Atomic types represent individual, immutable values. The atomic

types in Unicon are integer and real (�oating-point) numbers, string (a sequence of charac-

ters), and cset (a character set). Atomic types are distinguished by the fact that they have

literal values, speci�ed directly in the program code and represented as data in the compiled

code. Values of other types such as lists are constructed during execution. Later chapters

describe structure types that organize collections of values, and system types for interacting

with the operating system via �les, databases, windows, and network connections.

After literals, references to variables are the next simplest form of expression. Variables

are named memory locations that hold values for use in subsequent expressions. You refer

to a variable by its name, which must start with a letter or underscore and may contain

any number of letters, underscores, or numbers. Use names that make the meaning of the

program clear. The values stored in variables are manipulated by using variable names in

expressions like i+j. This expression results in a value that is the sum of the values in the

variables i and j, just like you would expect.

Some words may not be used as variable names because they have a special meaning in

the language. These reserved words include procedure, end, while, and so on. Other special

variables called keywords start with the ampersand character (&) and denote special values.

14 CHAPTER 1. PROGRAMS AND EXPRESSIONS

For example, global variables are initialized to the null value represented by the keyword

&null. Other keywords include &date, &time, and so on. Complete lists of reserved words

and keywords are given in Appendix A.

Unlike many languages where you have to state up front (declare) all the variables you

are going to use and specify their data type, in Unicon variables do not have to be declared

at all, and any variable can hold any type of value. However, Unicon will not allow you to

mix incompatible types in an expression. Unicon is type safe, meaning that every operator

checks its argument values to make sure they are compatible, converts them if necessary,

and halts execution if they cannot be converted.

1.4 Numeric Computation

Unicon supports the usual arithmetic operators on data types integer and real. Integers

are signed whole numbers of arbitrary magnitude � Unicon is not limited to the range of

whole numbers provided by the underlying hardware. The real type is a signed �oating

point decimal number whose size on any platform is the largest size supported by ma-

chine instructions, typically 64-bit double precision values. In addition to addition (+),

subtraction (-), multiplication (*) and division (/), there are operators for modulo (%) and

exponentiation (ˆ). Arithmetic operators require numeric operands.

Note

Operations on integers produce integers; fractions are truncated, so 8/3 produces 2. If

either operand is a real, the other is converted to real and the result is real, so 8.0/3 is

2.66666...

As a general rule in Unicon, arguments to numeric operators and functions are auto-

matically converted to numbers if possible, and a run-time error occurs otherwise. The

built-in functions integer(x) and real(x) provide an explicit conversion mechanism that fails

if x cannot be converted to numeric value, allowing a program to check values without

resulting in a run-time error.

In addition to the operators, built-in functions support several common numeric op-

erations. The sqrt(x) function produces the square root of x, and exp(x) raises e to the x

power. The value of pi (3.141...) is available in keyword &pi, the Golden Ratio (1.618...) is

available in &phi, and e (2.718...) is available in &e. The log(x) function produces the nat-

ural log of x. The common trigonometric functions, such as sin() and cos() take their angle

arguments in radian units. The min(x1, x2, ...) and max(x1, x2, ...) routines return minimum

and maximum values from any number of arguments. Appendix A gives a complete list of

built-in functions and operators.

Listing 1-1 shows a simple Unicon program that illustrates the use of variables in a

numeric computation. The line at the beginning is a comment for the human reader.

Comments begin with the # character and extend to the end of the line on which they

appear. The compiler ignores them.

1.5. STRINGS AND CSETS 15

Listing 1-1 Mystery program

What do I compute?
procedure main()

local i, j, old_r, r
i := read()
j := read()
old_r := r := min(i, j)
while r > 0 do {

old_r := r
if i > j then

i := r := i % j
else

j := r := j % i
}

write(old_r)
end

This example illustrates assignment ; values are assigned to (or "stored in") variables

with the := operator. As you saw in the previous section, the function read() reads a line

from the input and returns its value. The modulo operator (%) is an important part of this

program: i % j is the remainder when i is divided by j.

While loops can use a reserved word do followed by an expression (often a compound

expression in curly braces). The expression following the do is executed once each time the

expression that controls the while succeeds. Inside the while loop, a conditional if-then-else

expression is used to select from two possible actions.

The names of the variables in this example are obscure, and there are no comments in

it other than the one at the top. Can you guess what this program does, without running

it? If you give up, try running it with a few pairs of positive numbers.

In addition to arithmetic operators, there are augmented assignment operators. To

increment the value in a variable by 2, these two statements are equivalent:

i +:= 2
i := i + 2

Augmented assignment works for most binary operators, not just arithmetic. The

expression i op:= expr means the same as i := i op expr.

1.5 Strings and Csets

The non-numeric atomic types in Unicon are character sequences (strings) and character

sets (csets). Icon came from the domain of string processing, and from it Unicon inherits

16 CHAPTER 1. PROGRAMS AND EXPRESSIONS

many sophisticated features for manipulating strings and performing pattern matching.

This section presents the simple and most common operations. More advanced operations

and examples using strings and csets are given in Chapter 4.

String literals are enclosed in double quotes, as in "this is a string", while cset literals

are enclosed in single quotes, as in ’aeiou’. Although strings and csets are composed of

characters, there is no character type; a string (or cset) consisting of a single character is

used instead.

Current implementations of Unicon use eight-bit characters, allowing strings and csets

to be composed from 256 unique characters. ASCII representation is used for the lower 128

characters, except on EBCDIC systems. The appearance of non-ASCII values is platform

dependent. Like integers, strings can be arbitrarily large, constrained only by the amount

of memory you have on your system.

Several operators take string arguments. The *s operator gives the length of string s.

The expression s1||s2 produces a string consisting of the characters in s1 followed by s2.

The subscript operator s[i] produces a one-letter substring of s at the ith position. Indices

are counted starting from position 1. If i is nonpositive, it is from the end of the string, for

example s[-2] is the second to the last character in the string.

Csets support set operators. c1++c2 produces a cset that is the union of c1 and c2.

The expression c1**c2 is the intersection, while c1--c2 is the di�erence. In addition, several

keywords are commonly used csets. The keywords &letters, &lcase, and &ucase denote the

alphabetic characters, lower case characters a-z, and upper case characters A-Z, respec-

tively, while &digits is the set from 0-9, &ascii is the lower 128 characters, and &cset is the

set of all (256, on most implementations) characters.

Many built-in functions operate on strings and csets. Some of the simple string functions

are reverse(x), which produces the reverse of a string (or list) x, and trim(s,c), which produces

a substring of s that does not end with any character in cset c.

Functions and operators that require string arguments convert numeric values to strings

automatically, and halt execution with a run-time error if given a value that cannot be

converted to a string.

1.6 Goal-directed Evaluation

So far, the examples of how expressions are evaluated have included nothing you wouldn't

�nd in ordinary programming languages. It is time to push past the ordinary. In most

conventional languages, each expression always computes exactly one result. If no valid

result is possible, a sentinel value such as -1, NULL, EOF (end-of-�le) or INF (in�nity) is

returned instead. This means that the program must check the return value for this con-

dition. For example, while reading integers from the input and performing some operation

on them you might do something like this:

while (i := read()) ˜= -1 do

1.6. GOAL-DIRECTED EVALUATION 17

process(i)

This will work, of course, except when you really need to use -1 as a value! It is

somewhat cumbersome, however, even when a sentinel value is not a problem. Unicon

provides a much nicer way to write this type of code, developed originally in the Icon

language. In Unicon, expressions are goal-directed. This means that every expression when

evaluated has a goal of producing results for the surrounding expression. If an expression

succeeds in producing a result, the surrounding expression executes as intended, but if an

expression cannot produce a result, it is said to fail and the surrounding expression cannot

be performed and in turn fails.

Now take a look at that loop again. If it weren't for the termination condition, you

would not need the intermediate variable i. If you would like to say:

process(read())

your wishes are answered by Unicon; you can indeed write your program like this. The

expression read() tries to produce a value by reading the input. When it is successful,

process() is called with the value; but when read() cannot get any more values, that is,

at the end of the �le, it fails. This failure propagates to the surrounding expression and

process() is not called either. Here is the clincher: control expressions like if and while don't

check for Boolean (true/false) values, they check for success! So our loop becomes

while process(read())

The do clause of a while loop is optional; in this case, the condition does everything we

need, and no do clause is necessary.

Consider the if statement that was used in the earlier arithmetic example:

if i > j then ...

Comparison operators such as > succeed or fail depending on the values of the operands.

This leads to another question: if an expression like i < 3 succeeds, what value should it

produce? No "true" value is needed, because any result other than failure is interpreted as

"true." This allows the operator to return a useful value instead! The comparison operators

produce the value of their right operand when they succeed. You can write conditions like

if 3 < i < 7 then ...

that appear routinely in math classes. Other programming languages only dream about

being this elegant. First, Unicon computes 3 < i. If that is true, it returns the value i, which

is now checked with 7. This expression in fact does exactly what you'd expect. It checks

to see that the value of i is between 3 and 7. (Also, notice that if the �rst comparison fails,

the second one will not be evaluated.)

18 CHAPTER 1. PROGRAMS AND EXPRESSIONS

1.7 Fallible Expressions

Because some expressions in Unicon can fail to produce a result, you should learn to

recognize such expressions on sight. These fallible expressions control the �ow of execution

through any piece of Unicon code you see. When failure is expected it is elegant. When

it is unexpected in your program code, it can be disastrous, causing incorrect output that

you may not notice or, if you are lucky, the program may terminate with a run-time error.

Some fallible expressions fail when they cannot perform the required computation; oth-

ers are predicates whose purpose is to fail if a condition is not satis�ed. The subscript and

sectioning operators are examples of the �rst category. The expression x[i] is a subscript

operator that selects element i out of some string or structure x. It fails if the index i is out

of range. Similarly, the sectioning operator x[i:j] fails if either i or j are out of range.

The read() function is illustrative of a large number of built-in functions that can fail.

A call to read() fails at the end of a �le. You can easily write procedures that behave

similarly, failing when they cannot perform the computation that is asked. Unfortunately,

for an arbitrary procedure call p(), you can't tell if it is fallible without studying its source

code or reference documentation. The safest thing is to expect any procedure call is fallible

and check whether it failed, unless you know it is not fallible or its failure doesn't matter.

Following this advice may avoid many errors and save you lots of time. In this book we

will be careful to point out fallible expressions when we introduce them.

The less than operator < is a typical predicate operator, one that either fails or produces

exactly one result. The unary predicates /x and \x test a single operand, succeeding and

producing the operand if it is null, or non-null, respectively. The following binary predicates

compare two operands. The next section presents some additional, more complex fallible

expressions.

< <= > >= = ˜= numeric comparison operators

<< <<= >> >>= == ˜== lexical (alphabetic) comparison

=== ˜=== reference comparison

1.8 Generators

So far we have seen that an expression can produce no result (failure) or one result (success).

In general, an expression can produce any number of results: 0, 1, or many. Expressions

that can produce more than one result are called generators. Consider the task of searching

for a substring within a string:

find("lu", "Honolulu")

In most languages, this would return one of the substring matches, usually the �rst

position at which the substring is found. In Unicon, this expression is a generator, and

1.8. GENERATORS 19

can produce all the positions where the substring occurs. If the surrounding expression

only needs one value, as in the case of an if test or an assignment, only the �rst value of a

generator is produced. If a generator is part of a more complex expression, then the return

values are produced in sequence until the whole expression produces a value.

Let us look at this example:

3 < find("or", "horror")

The �rst value produced by find() is 2, which causes the < operation to fail. Execution

then resumes the call to find(), which produces a 5 as its next value, and the expression

succeeds. The value of the expression is the �rst position of the substring greater than 3.

The most obvious generator is the alternation operator |. The expression

expr1 | expr2

produces its left-hand side followed by its right-hand side, if needed by the surrounding

expression. This can perform many computations quite compactly. For example,

x = (3 | 5)

checks to see if the value of x is 3 or 5. More complex expressions follow logically:

(x | y) = (3 | 5)

checks to see if either x or y has the value 3 or 5. It is the Unicon equivalent of C's

(x == 3) || (x == 5) || (y == 3) || (y == 5)

In understanding Unicon code, it helps if you identify the generators, if there are any. In

addition to the alternation operator | and the function find(), there are a few other generators

in Icon's built in repertoire of operators and functions. We mention them brie�y here, so

you can be on the lookout for them when reading code examples.

The expression i to j is a generator that produces all the values between i and j. The

expression i to j by k works similarly, incrementing each result by k; i, j, and k must all be

integer or real numbers, and k must be non-zero. The expression i to j is equivalent to i

to j by 1. The unary ! operator is a generator that produces the elements of its argument.

This works on every type where it makes sense. Applied to a string, it produces all its

characters (in order). Sets, tables, lists, or records produce the members of the structure.

Generators get resumed for more results as needed in order for the surrounding ex-

pression to succeed, and this may propagate through many levels of nested enclosing ex-

pressions. However, special expressions called bounded expressions will never resume their

generator subexpressions. For example, the conditional expressions used in if and while are

never resumed if they succeed; if they produce a result the then-branch or the loop body

20 CHAPTER 1. PROGRAMS AND EXPRESSIONS

is executed, and if that code fails, it does not cause generators in the conditional to be

resumed. Those bounded conditional expressions are re-evaluated starting from scratch if

execution comes their way again. Another popular bounded expression is the semi-colon

operator. The expression expr1 ; expr2 evaluates the two expressions in order, and bounds

the �rst expression, so you don't have to worry about backtracking into it if the second

expression fails.

1.9 Iteration and Control Structures

You have already seen two control structures in Unicon: the if and the while loop, which

test for success. Unicon has several other control structures that vary in complexity and

usefulness. Unicon is expression-based, and all control structures are expressions that

can be used in surrounding expressions if desired. The big di�erence between control

structures and ordinary operators or procedures is that ordinary operators and procedures

don't execute until their arguments have been evaluated and produced a result; they don't

execute at all if an argument fails. In contrast, a control structure uses one of its arguments

to decide whether (or how many times) to evaluate its other arguments.

Since control structures are expressions, they may produce a result for a surrounding

expression. For example, the result of an if expression is the result of either its then part or

its else part, whichever one was selected. On the other hand, a loop executes until its test

fails, after which there is no meaningful result for it to produce; loops usually fail as far as

surrounding expressions are concerned.

The control structure every processes the entire sequence of values produced by a gen-

erator. The expression

every expr1 do expr2

evaluates expr2 for each result generated by expr1. This loop looks similar enough to a while

loop to confuse people at �rst. The di�erence is that a while loop re-evaluates expr1 from

scratch after each iteration of expr2, but every resumes expr1 for an additional result where

it left o� the last time through the loop. Using a generator to control a while loop makes

no sense; the generator will restart each iteration, which may give you an in�nite loop.

Similarly, not using a generator to control an every loop also makes no sense; if expr1 is not

a generator the loop body executes at most one time.

The classic example of every is a loop that generates the number sequence from a to

expression, assigning the number to a variable that can be used in expr2. In many languages

these are called �for� loops. A for loop in Unicon is written like this:

every i := 1 to 10 do write(i)

Of course, every and to are not limited to this BASIC-style for loop. Generators are more

�exible; the for loop above looks clumsy when compared with the equivalent

1.9. ITERATION AND CONTROL STRUCTURES 21

every write(1 to 10)

A generator operand to a non-generator forms a generator. The enclosing non-generator

(such as write()) is re-run each time the generator suspends and resumes.

Unicon's every keyword generalizes the concept of iterators found in other languages.

Iterators are special control structures that walk through a collection of data. Instead of

being a special feature, in Unicon iterators are just one of many ways to utilize generators.

The sequence of results from an expression does not have to be stored in a structure to

iterate over them. The sequence of results does not even have to be �nite; many generator

expressions produce an in�nite sequence of results, as long as the surrounding expression

keeps asking them for more. Here is another example of how every expressions are more

�exible than for loops. The expression

every f(1 | 4 | 9 | 16 | 25 | 36)

executes the function f several times, passing the �rst few square numbers as parameters.

A shorter equivalent that uses the power operator (ˆ) is every f((1 to 6)ˆ2). An example in

the next section shows how to generalize this to work with all the squares.

The if, while, and every expressions are Unicon's primary control structures. Several

other control structures are available that may be more useful in certain situations. The

loop

until expr1 do expr2

is while's evil twin, executing expr2 as long as expr1 fails; on the other hand

repeat expr

is an in�nite loop, executing expr over and over.

There are also variations on the if expression introduced earlier for conditional execution.

First, the else branch is optional, so you can have an if expression that does nothing if the

condition is not satis�ed. Second, there is a special control structure introduced for the

common situation in which several alternatives might be selected using a long sequence of

if ... else if ... else if ... expressions. The case expression replaces these chains of if expressions

with the syntax:

case expr of {
branch1: expr1
branch2: expr2
...
default: expr i

}

22 CHAPTER 1. PROGRAMS AND EXPRESSIONS

When a case expression executes, the expr is evaluated, and compared to each branch

value until one that matches exactly is found, as in the binary equality operator ===. Branch

expressions can be generators, in which case every result from the branch is compared with

expr . The default branch may be omitted in case expressions for which no action is to be

taken if no branch is satis�ed.

When we introduced the repeat loop, you probably were wondering how to exit from the

loop, since most applications do not run forever. One answer would be to call one of the

built-in functions that terminate the entire program when it is time to get out of the loop.

The exit(), stop(), and runerr() functions all serve this valuable purpose; their di�erences are

described in Appendix A.

A less drastic way to get out of any loop is to use the break expression:

break expr

This expression exits the nearest enclosing loop; expr is evaluated outside the loop and

treated as the value produced by executing the loop. This value is rarely used by the

surrounding expression, but the mechanism is very useful, since it allows you to chain

any number of breaks together, to exit several levels of loops simultaneously. The break

expression has a cousin called next that does not get out of a loop, but instead skips the

rest of the current iteration of a loop and begins the next iteration of the loop.

1.10 Procedures

Procedures are a basic building block in most languages. Here is an example of an ordinary

procedure. This one computes a simple polynomial, ax2 + bx+ c.

procedure poly(x,a,b,c)
return a * xˆ2 + b * x + c

end

Parameters

Procedure parameters are passed by value except for structured data types, which are

passed by reference. This means that when you pass in a string, number, or cset value,

the procedure gets a copy of that value; any changes the procedure makes to its copy will

not be re�ected in the calling procedure. On the other hand, structures that contain other

values, such as lists, tables, records, and sets are not copied. The procedure being called

gets a handle to the original value, and any changes it makes to the value will be visible to

the calling procedure. Structure types are described in the next chapter.

When you call a procedure with too many parameters, the extras are discarded. This

feature is valuable for prototyping but can be dangerous if you aren't careful! Similarly,

1.10. PROCEDURES 23

if you call a procedure with too few parameters, the remaining variables are assigned the

null value, &null. The null value is also passed as a parameter if you omit a parameter.

Now it is time to describe the unary operators \ and /. These operators test the expres-

sion against the null value. The expression /x succeeds and returns x if the value is the null

value. This can be used to assign default values to procedure arguments: Any arguments

that have a null value can be tested for and assigned a value. Here's an example:

procedure succ(x, i)
/i := 1
return x + i

end

If this procedure is called as succ(10), the missing second parameter, i, is assigned the

null value. The forward slash operator then tests i against the null value, which succeeds;

therefore the value 1 is assigned to i.

The backward slash checks if its argument is non-null. For example, this will write the

value of x if it has a non-null value:

write("The value of x is ", \x)

If x does in fact have the null value, then \x will fail, which will mean that the write()

procedure will not be called. If it helps you to not get these two mixed up, a slash pushes

its operand "up" for non-null, and "down" for a null value.

The procedure succ() shows one way to specify a default value for a parameter. The

built-in functions use such default values systematically to reduce the number of parameters

needed; consistent defaults for entire families of functions make them easy to remember.

Another key aspect of the built-in operations is implicit type conversion. Arguments to

built-in functions and operators are converted as needed.

Defaulting and type conversion are so common and so valuable in Unicon that they

have their own syntax. Parameter names may optionally be followed by a coercion function

(usually the name of a built in type) and/or a default value, separated by colons. These

constructs are especially useful in enforcing the public interfaces of library routines that

will be used by many people.

procedure succ(x:integer, i:integer:1)
end

This parameter declaration is a more concise equivalent of

procedure succ(x, i)
x := integer(x) | runerr(101, x)
/i := 1 | i := integer(i) | runerr(101, i)

end

24 CHAPTER 1. PROGRAMS AND EXPRESSIONS

Variables and scopes

Variable names used as parameters are fundamentally di�erent from procedure names. The

scope of parameters is limited to the body of a single procedure, while procedure names

are visible to the entire program. Parameters and procedures are special forms of two basic

kinds of variables in Unicon: local variables and global variables.

The scope of global variables, including procedure names, consists of the entire program.

Their value is stored in memory for the entire execution of the program. There are two

kinds of local variables; both introduce names that are de�ned only within a particular

procedure. Regular local variables are created when a procedure is called, and destroyed

when a procedure fails or returns a result; a separate copy of regular local variables is

created for each call. Static local variables are global variables whose names are visible

only within a particular procedure; a single location in memory is shared by all calls to the

procedure, and the last value assigned in one call is remembered in the next call.

Variables do not have to be declared, and by default they are local. To get a global

variable, you have to declare it outside any procedure with a declaration like this:

global MyGlobal

Such a declaration can be before, after, or in between procedures within a program

source �le, but cannot be inside a procedure body. Of course, another way to declare a

global variable is to de�ne a procedure; this creates a global variable initialized with the

appropriate procedure value containing the procedure's instructions.

Regular and static local variables may be declared at the top of a procedure body, after

the parameters and before the code starts, as in the following example:

procedure foo()
local x, y
static z
...

end

Each declared local variable name may be followed by a := and an initializer expression

that speci�es the variable's initial value. Without an initializer, variables start with the

value &null. Although you do not have to declare local variables, large programs, library

code or multi-person projects should declare all local variables. If you don't, and some

other part of the code introduces a global variable by the same name as your undeclared

local, your variable will be interpreted as a reference to the global. To help avoid this

problem, the -u command line option to the compiler causes undeclared local variables to

produce a compilation error message.

A procedure body can begin with an initial clause, which executes only the �rst time the

procedure is called. The initial clause is mainly used to initialize static variables in ways

1.10. PROCEDURES 25

that aren't handled by initializers. For example, the following procedure returns the next

number in the Fibonacci sequence each time it is called, using static variables to remember

previous results in the sequence between calls.

procedure fib()
static x,y
local z
initial {

x := 0
y := 1
return 1
}
z := x + y
x := y
y := z
return z

end

Writing your own generators

When a procedure returns a value, the procedure and its regular local variables cease to

exist. But there are expressions that don't disappear when they produce a value: genera-

tors! You can create your own generators by writing procedures that use suspend instead

of return. suspend is di�erent from return in that it saves the point of execution within the

procedure; if another value is required by the calling expression, the generator continues

execution from where it previously left o�.

Here is a procedure to generate all the squares. Instead of using multiplication, it

uses addition to demonstrate generators! The code uses the fact that if we keep adding

successive odd numbers, we get the squares.

procedure squares()
odds := 1
sum := 0
repeat {

suspend sum
sum +:= odds
odds +:= 2

}
end

To perform a computation on the squares, we can use it in an every statement:

every munge(squares())

26 CHAPTER 1. PROGRAMS AND EXPRESSIONS

Warning

This is an in�nite loop! (Do you know why? Whether munge() succeeds or fails, every

will always resume squares() for another result to try; squares() generates an in�nite result

sequence.)

The fail expression makes the procedure fail. Control goes to the calling procedure, re-

turning no value, and the procedure call ceases to exist; it cannot be resumed. A procedure

also fails implicitly when control �ows o� the end of the procedure's body.

Here is a procedure that produces all the non-blank characters of a string, but bails out

if the character # is reached:

procedure nonblank(s)
every c := !s do {

if c == "#" then fail
if c ˜== " " then suspend c

}
end

Recursion

A recursive procedure is one that calls itself, directly or indirectly. There are many cases

where it is the most natural way of solving the problem. Consider the famous "Towers of

Hanoi" problem. Legend has it that when the universe was created, a group of monks in

a temple in some remote place were presented with a problem. There are three diamond

needles, and on one of them is a stack of 64 golden disks all of di�erent sizes, placed in

order with the largest one at the bottom and the smallest on top. All the disks are to be

moved to a di�erent needle under the conditions that only one disk may be moved at a

time, and a larger disk can never be placed on a smaller disk. When the monks �nish this

task, the universe will come to an end.

How can you move the n smallest disks? If n is 1, just move it. Since it's the smallest,

this will not violate the condition. If n is greater than 1, here's what we can do: �rst,

move the n-1 upper disks to the intermediate needle, then transfer the nth disk, then move

the n-1 upper disks to the destination needle. This whole procedure does not violate the

requirements either (satisfy yourself that such is the case).

Now write the procedure hanoi(n) that computes this algorithm. The �rst part is simple:

if you have one disk, just move it.

procedure hanoi(n, needle1:1, needle2:2)
if n = 1 then write("Move disk from ", needle1, " to ", needle2)

Otherwise, perform a recursive call with n-1. First, to �nd the spare needle we have:

other := 6 - needle1 - needle2

1.10. PROCEDURES 27

Now move the n-1 disks from needle1 to other, move the biggest disk, and then move

the n-1 again. The needles are passed as additional parameters into the recursive calls.

They are always two distinct values out of the set {1, 2, 3}.

hanoi(n-1, needle1, other)
write("Move disk from ", needle1, " to ", needle2)
hanoi(n-1, other, needle2)

That's it! You're done. Listing 1-2 contains the complete program for you to try:

Listing 1-2 Towers of Hanoi

procedure main()
write("How many disks are on the towers of Hanoi?")
hanoi(read())

end
procedure hanoi(n:integer, needle1:1, needle2:2)
local other

if n = 1 then write("Move disk from ", needle1, " to ", needle2)
else {

other := 6 - needle1 - needle2
hanoi(n-1, needle1, other)
write("Move disk from ", needle1, " to ", needle2)
hanoi(n-1, other, needle2)

}
end

Turn on tracing see how this program works. To enable tracing, compile your program

with a -t option, or assign the keyword &trace a non-zero number giving the depth of calls

to trace. Setting &trace to -1 will turn on tracing to an in�nite depth.

To move n disks, 2 n - 1 individual disk movements will be required. If the monks move

one disk a second, it will take 2 64 - 1 seconds, or about 60 trillion years. Wikipedia has

listed the age of the universe at around 13.75 billion years. It seems unlikely that we need

worry about the monks �nishing their task!

Summary

In this chapter you have learned:

• Unicon is an expression-based language organized as a set of procedures starting from

a procedure called main().

• Unicon has four atomic types: arbitrary precision integers, real numbers, arbitrary

length strings of characters, and character sets.

28 CHAPTER 1. PROGRAMS AND EXPRESSIONS

• There is no Boolean concept in Unicon; instead, control is driven by whether an

expression succeeds in producing a result or fails to do so. This eliminates the need

for most sentinel values, shortening many expressions.

• Generator expressions can produce multiple results as needed by the surrounding

expression in order for it to produce results.

• Procedure parameters are passed by value for atomic types, and by reference for all

other data types. Unicon features extensive argument defaults and automatic type

coercion throughout its built-in function and operator repertoire.

• Unicon has two scope levels: global and local. Undeclared variables are implicitly

de�ned to be local.

Chapter 2

Structures

The examples in the previous chapter employed data types whose values are immutable.

For example, all operations that manipulate numbers and strings compute new values,

rather than modify existing values. This chapter presents structured types that organize

and store collections of arbitrary (and possibly mixed) types of values. When you complete

this chapter, you will understand how to use these types.

• Tables associate their elements with key values for rapid lookup.

• Lists o�er e�cient access by position as well as by stack or queue operations.

• Records store values using a �xed number of named �elds.

• Sets support operations such as union and intersection on groups of elements.

• Using structures to represent trees, graphs, and matrices.

There are several structure types that describe di�erent basic relationships between values.

The philosophy of structures in Unicon is to provide built-in operators and functions for

common organization and access patterns - the �exible "super glue" that is needed by nearly

all applications. Their functionality is similar to the C++ Standard Template Library or

generic classes in other languages, but Unicon's structure types are much simpler to learn

and use, and are well supported by the expression evaluation mechanism described in the

previous chapter.

All structure types in Icon share many aspects in common, such as the fact that struc-

tures are mutable. The values inside them may change. In that respect, structures are

similar to a collection of variables that are bundled together. In many cases, Unicon's

structure types are almost interchangeable! Operators like subscripts and built-in functions

such as insert() are de�ned consistently for many types. Code that relies on such operators

is polymorphic: it may be used with multiple structure types in an interchangeable way.

For both the structures described in this chapter and the strings described in the next

chapter, be aware that Unicon performs automatic storage management, also known as

29

30 CHAPTER 2. STRUCTURES

garbage collection. If you have used a language like C or C++, you know that one of the

biggest headaches in writing programs in these languages is tracking down bugs caused

by memory allocation, especially dynamic heap memory allocation. Unicon transparently

takes care of those issues for you.

Another big source of bugs in languages like C and C++ are pointers, values that

contain raw memory addresses. Used properly, pointers are powerful and e�cient. The

problem is that they are easy to use incorrectly by accident; this is true for students and

practicing software engineers alike. It is easy in C to point at something that is o�-limits,

or to trash some data through a pointer of the wrong type.

Unicon has no pointer types, but all structure values implicitly use pointer semantics.

A reference is a pointer for which type information is maintained and safety is strictly

enforced. All structure values are references to data that is allocated elsewhere, in a

memory region known as the heap. You can think of a reference as a safe pointer: the only

operations it supports are copying the pointer, or dereferencing it using an operation that

is de�ned for its type.

Assigning a structure to a variable, or passing it as a parameter, gives that variable

or parameter a copy of the reference to the structure but does not make a copy of the

structure. If you want a copy of a structure, you call the function copy(x), which makes a

�shallow� copy of a single table, list, record, or set. If that structure contains references to

other structures as its elements, those substructures are not copied by copy(). To copy a

�deep� structure (lists of lists, tables of records, etc.) you can use the procedure deepcopy()

that is given as an example later in this chapter.

2.1 Tables

Tables are unordered collections of values that are accessed using associated keys. They

are Unicon's most versatile type. All of the other structure types can be viewed as special

cases of tables, optimized for performance on common operations. Most operations that

are de�ned for tables are de�ned for other structure types as well.

Subscripts are used for the primary operations of associating keys with values that are

inserted into the table, and then using keys to look up objects in the table. The table()

function creates a new empty table. For example, the lines

T := table()
T["hello"] := "goodbye"

create a new table, and associate the key "hello" with the value "goodbye". The table() function

takes one optional argument: the default value to return when lookup fails. The default

value of the default value is &null, so after the above example, write(T["goodbye"]) would write

an empty line, since write() treats a null argument the same as an empty string, and write()

always writes a newline. Assigning a value to a key that is not in the table inserts a value

2.2. LISTS 31

into the table. This occurs in the second line of the example above, so write(T["hello"]) writes

out "goodbye".

Subscripts are the primary operation on tables, but there are several other useful oper-

ations. The insert(T, k1, x1, k2, x2, ...) function adds new key-value pairs to T. The delete(T, k1,

k2, ...) function deletes values from T that correspond to the supplied keys. Icon's unary *

operator produces the size of its argument; for a table, *T is the number of key-value pairs

in the table. Unary ! generates elements from a collection; for a table, !T generates the

values stored in the table. Unary ? is the random operator; for a table, ?T produces a

random value stored in the table. Both unary ! and ? produce values stored in a table,

not the keys used to lookup values.

Function member(T, k) succeeds if k is a key in T and fails otherwise. Function key(T)

generates the keys that have associated values. The following example prints word counts

for the input (assuming getword() generates words of interest):

wordcount := table(0)
every word := getword() do wordcount[word] +:= 1
every word := key(wordcount) do write(word, " ", wordcount[word])

The default value for the table is 0. When a new word is inserted, the default value

gets incremented and the new value (that is, 1) is stored with the new word. Tables grow

automatically as new elements are inserted.

Tables are closely related to the set data type (discussed later in this chapter). The

keys of a table are a set; the associated values accessed via the subscript operator are

sort of a bonus data payload. In any case, tables behave in certain set-like ways; when

their elements are generated by the ! operator, they come out in a pseudo random order.

Like sets, and csets in the previous chapter, the operators T1++T2, T1**T2, and T1--T2 are

the union, intersection, and di�erence of the tables T1 and T2 based on their keys. These

operators construct new tables and do not modify their operands. In union and intersection,

when duplicate table keys occur in the two operands, the associated values from the left

operand are what goes in the new table that holds the result.

2.2 Lists

Lists are dynamically sized ordered collections of values. They are accessed by subscripts,

with indexes starting at 1. You can also insert or remove elements from the beginning,

middle, or end of the list. Lists take the place of arrays, stacks, queues, and deques found

in other languages and data structures textbooks.

There are three ways to explicitly construct a list. In the most generic form, a list is

created by calling the function list(), which takes optional parameters for the list's initial

size and the initial value given to all elements of the list. The default size is 0 and the

default initial value is &null.

32 CHAPTER 2. STRUCTURES

The second form of list constructor is when you create a list by enclosing a comma-

separated sequence of 0 or more values in square brackets. For example

L := ["linux", 2.0, "unix"]

creates a list with three elements, a string, a real number, and another string.

A third form of list constructor, called comprehension, looks like the previous form,

except the square brackets contain adjacent colon characters and have an expression inside.

L := [: expr :]

In a comprehension the constructed list's initial values are obtained by fully evaluating

an expression and placing all of its results into the list, in order. The expression fails if

expr fails; if you wanted that to be an empty list you may need to append |[].

Lists are dynamic. Lists grow or shrink as a result of stack and queue operations. The

push() and pop() functions add and remove elements from the front of a list, while put() and

pull() add and remove elements at the end of the list. In addition, insert(L, i, x) inserts x at

position i, and delete(L, i) deletes the element at position i. The expression [] is another way

to create an empty list; it is equivalent to calling list() with no arguments. The previous list

could have been constructed one element at a time with the following code. put() accepts a

variable number of arguments .

L := []
put(L, "linux")
put(L, 2.0)
put(L, "unix")

Elements of the list can be obtained either through list manipulation functions or by

subscripting. Given the list L above, in the following code the �rst line writes "unix" while

the second line moves the �rst element to the end of the list.

write(L[3])
put(L, pop(L))

There is no restriction on the kinds of values that may be stored in a list. For example,

the elements of a list can themselves be lists. You can create lists like

L := [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

and index them with multiple subscripts. L[2][3] is equivalent to L[2,3] and yields the value

6 in this example.

Lists also support several common operators. The operator *L produces the size of list

L. The operators !L and ?L generate the elements of L in sequence, and produce a single

random element of L, respectively. The following procedure uses the unary ! operator to

sum the values in list L, which must be numbers.

2.3. RECORDS 33

procedure sum(L)
total := 0
every total +:= !L
return total

end

Comparing the two, lists are like tables with boring keys: the positive integers starting

from 1. Function member(L, k) succeeds if 0 < integer(k) <= *L, while key(L) is equivalent to the

expression 1 to *L. List indexes are contiguous, unlike table keys, and so lists can support a

slice operator to produce a sublist, given a pair of indexes to mark the bounds. The L[i:j]

expression produces a new list that contains a copy of the elements in L between positions

i and j. The L[i+:j] expression is equivalent to L[i:i+j]. List concatenation is another valuable

operator. The L1 ||| L2 expression produces a new list whose elements are a copy of the

elements in L1 followed by a copy of the elements in L2.

2.3 Records

A record is a �xed-sized, ordered collection of values whose elements are accessed using

user-de�ned named �elds. A record is declared as a global name that introduces a new

type with a corresponding constructor procedure, as in the following example. The �eld

names are a comma-separated list of identi�ers enclosed in parentheses.

record complex(re, im)

Record instances are created using a constructor procedure with the name of the record

type. The �elds of an instance are accessed by name using dot notation or string subscript,

or by integer index subscript. You can use records as records, or as special tables or lists

with a constant size and �xed set of keys.

member(R,s) tests whether s is a �eld in R; key(R) generates R's �eld names. Functions

like insert(), or push() are not supported on records, since they change the size of the structure

that they modify. Here is a demonstration of record operations.

a := complex(0, 0)
b := complex(1, -1)
if a.re = b.re then write("not likely")
if a["re"] = a[2] then write("a.re and a.im are equal")

Unicon provides a mechanism for constructing new record types on the �y, described in

Chapter 6, as well as the ability to declare classes, which are new data types that form the

building blocks for object-oriented programs, described starting in Chapter 9. Records are

closely related to classes and objects: they can be considered to be an optimized special

case of objects that have no methods.

34 CHAPTER 2. STRUCTURES

2.4 Sets

A set is an unordered collection of values with the uniqueness property: an element can

only be present in a set once. The function set(x...) creates a set containing its arguments.

For the sake of backward compatibility with Icon, list arguments to set() are not inserted;

instead, the list elements are inserted. As with other structures, the elements may be of

any type, and may be mixed. For example, the assignment

S := set("rock lobster", ’B’, 52)

creates a set with three members: a string, a cset, and an integer. The equivalent set is

produced by set(["rock lobster","B", 52]). To place a list in a set set constructor, wrap it in

another list, as in set([L]), or insert the list into the set after it is created. Because the set

constructor function initializes directly from a list argument, �set comprehension� follows

trivially from list comprehension. For example, set([: 2 to 20 by 2 :]) creates a set containing

the even integers from two to twenty.

The functions member(), insert(), and delete() do what their names suggest. As for csets in

the previous chapter, S1++S2, S1**S2, and S1--S2 are the union, intersection, and di�erence

of sets S1 and S2. Set operators construct new sets and do not modify their operands.

Because a set can contain any value, it can contain a reference to itself. This is one of several

di�erences between Unicon sets, which are mutable structures, and mathematical sets.

Another di�erence is that Unicon sets have a �nite number of elements, while mathematical

sets can be in�nite in size.

As a short example, consider the following program, called uniq, that �lters duplicate

lines in its standard input as it writes to its standard output. Unlike the UNIX utility of

this name, our version does not require the duplicate lines to be adjacent.

procedure main()
S := set()
while line := read() do

if not member(S, line) then {
insert(S, line)
write(line)
}

end

Sets are closely related to the table data type. They are very similar to an optimized

special case of tables that map all keys to the value &null. Unlike tables, sets have no default

value and do not support the subscript operator.

2.5 Using Structures

Structures can hold other structures, allowing you to organize information in whatever way

best �ts your application. Building complex structures such as a table of lists, or a list

2.5. USING STRUCTURES 35

of records that contain sets, requires no special trickery or new syntax. Examples of how

such structures are accessed and traversed will get you started. Recursion is often involved

in operations on complex structures, so it plays a prominent role in the examples. The

concept of recursion was discussed in Chapter 1.

A Deep Copy

The built-in function copy(x) makes a one-level copy of structure values. For a multi-level

structure, you need to call copy() for each substructure if the new structure must not point

into the old structure. This is a natural task for a recursive function.

procedure deepcopy(x)
local y
case type(x) of {
"table"|"list"|"record": {

y := copy(x)
every k := key(x) do y[k] := deepcopy(x[k])
}

"set": {
y := set()
every insert(y, deepcopy(!x))
}

default: return x
}
return y

end

This version of deepcopy() works for arbitrarily deep tree structures, but the program

execution will crash if deepcopy() is called on a structure containing cycles. It also does not

copy directed acyclic graphs correctly. In both cases the problem is one of not noticing

when you have already copied a structure, and copying it again. The Icon Program Library

has a deep copy procedure that handles this problem, and we present the general technique

that is used to solve it in the next section.

Representing Trees and Graphs

Since there is no restriction on the types of values in a list, they can be other lists too.

Here is an example of how a tree may be implemented with records and lists:

record node(name, links)
...

barney := node("Barney", list())
betty := node("Betty", list())
bambam := node("Bam-Bam", [barney, betty])

36 CHAPTER 2. STRUCTURES

The structure created by these expressions is depicted in Figure 2-1. The list of links

at each node allows trees with an arbitrary number of children at the cost of extra memory

and indirection in the tree traversals. The same representation works for arbitrary graphs.

Figure 2-1: A Record Containing a List of Two Records

To �nd every node related to variable bambam, follow all the links reachable starting

from bambam. Here is a procedure that performs this task.

procedure print_relatives(n)
local i
static relatives
initial relatives := set()
every i := n | !n.links do {

if not member(relatives, i.name) then {
write(i.name)
insert(relatives, i.name)
print_relatives(i)
}

}
end

Calling print_relatives(bambam) will print

Bam-Bam
Barney
Betty

Static variables and the initial clause are explained in Chapter 1. Can you guess what

purpose static variable relatives serves? For a proper tree structure, it is not needed at all,

but for more general data structures such as directed graphs this static variable is very

important! One defect of this procedure is that there is no way to reset the static variable

and call print_relatives() starting from scratch. How would you remove this defect?

2.5. USING STRUCTURES 37

The n-Queens Example

The 8-Queens problem is a classic backtracking problem. The goal is to place eight queens

on a chessboard so that none of the queens attack any other. Here is a solution to a more

general form of the problem, that of placing n queens on an n x n board. The solution we

present is by Steve Wampler, and it is in the Icon Program Library.

An array of size n stores the solutions, with each element representing a column. The

values in the array are integers specifying the row in each column that has the queen. (Since

the queens cannot attack each other, each column must contain exactly one queen.) The

problem size n and the array are declared global so that all procedures can see them; this

allows the program to avoid passing these variables in to every procedure call. Use globals

sparingly, and only where they are appropriate, as is the case here.

link options
global solution, n
procedure main(args)
local i, opts

The program starts by handling command-line arguments. In Unicon programs, main() is

called with a single parameter that is a list of strings whose elements are the command-line

arguments of the program.

The n-queens program recognizes only one thing on the command line: the option -n

followed by an integer speci�es the size of board to use. Thus the command line queens -n 9

will generate solutions on a 9x9 board. The default value of n is 6. The options() procedure

is an Icon Program Library procedure described in Appendix B; it removes options from the

command line and places them in a table whose keys are option letters such as "n". Library

procedures such as options() are incorporated into a program using the link declaration, as in

the link options that begins the code fragment above. A link declaration adds the procedures,

global variables, and record types in the named module (in this case, procedure options()

came from a �le options.icn) to the program.

opts := options(args,"n+")
n := \opts["n"] | 6
if n <= 0 then stop("-n needs a positive numeric parameter")

The value n gives the size for the solution array and also appears in a banner:

solution := list(n) # a list of column solutions
write(n,"-Queens:")
every q(1) # start by placing queen in first column

end

38 CHAPTER 2. STRUCTURES

Now comes the meat of the program, the procedure q(c). It tries to place a queen in

column c and then calls itself recursively to place queens in the column to the right. The q(c)

procedure uses three arrays: rows, up, and down. They are declared to be static, meaning

that their values will be preserved between executions of the procedure, and all instances

of the procedure will share the same lists. Since each row must have exactly one queen,

the rows array helps to make sure any queen that is placed is not on a row that already

has a queen. The other two arrays handle the diagonals: up is an array (of size 2n-1) of

the upward slanting diagonals, and down is an array for the downward slanting diagonals.

Two queens in positions (r_1, c_1) and (r_2, c_2) are on the same "up" diagonal if

n+r_1-c_1 = n+r_2-c_2 and they are on the same "down" diagonal if r_1+c_1-1 =

r_2+c_2-1. Figure 2-2 shows some of the �up� and �down� diagonals.

Figure 2-2: Up and Down Diagonals in the n-Queens Problem

#
q(c) - place a queen in column c.
#
procedure q(c)
local r
static up, down, rows
initial {

up := list(2*n-1,0)
down := list(2*n-1,0)
rows := list(n,0)
}

2.5. USING STRUCTURES 39

The next expression in q() is an every loop that tries all possible values for the queen in

row c. The variable r steps through rows 1 to 8. For any row at which the program places

a queen, it must ensure that

1. rows[r] is zero, that is, no other column has a queen in row r,

2. up[n+r-c] is 0, that is, there is not already a queen in the "up" diagonal, and

3. down[r+c-1] is 0, that is, there is not already a queen in the down diagonal.

If these conditions are met, then it is OK to place a queen by assigning a 1 to all those

arrays in the appropriate position:

every 0 = rows[r := 1 to n] = up[n+r-c] = down[r+c-1] &
rows[r] <- up[n+r-c] <- down[r+c-1] <- 1 do {

For assignment, instead of := this expression uses the reversible assignment operator <-.

This assigns a value just like in conventional assignment, but it remembers the old value;

if it is ever resumed, it restores the old value and fails. This causes the appropriate entries

in the row, up, and down arrays will be reinitialized between iterations.

When the every loop found a good placement for this column, either the program is

done (if this was the last column) or else it is time to try to place a queen in the next row:

solution[c] := r # record placement.
if c = n then show()
else q(c + 1) # try to place next queen.
}

end

That's it! The rest of the program just prints out any solutions that were found.

Printing the chess board is similar to other reports you might write that need to create

horizontal lines for tables. The repl() function is handy for such situations. The repl(s, i)

function returns i "replicas" of string s concatenated together. The show() function uses it

to create the chessboard.

#
show the solution on a chess board.
#
procedure show()
static count, line, border
initial {

count := 0
line := repl("| ",n) || "|"
border := repl("----",n) || "-"
}
write("solution: ", count+:=1, "\n ", border)
every line[4*(!solution - 1) + 3] <- "Q" do {

40 CHAPTER 2. STRUCTURES

write(" ", line, “\n ", border)
}

write()
end

2.6 Summary

Unicon's structures are better than sliced bread. To be fair, this is because Icon's inventors

really got things right. These structures are the foundations of complex algorithms and the

glue that builds sophisticated data models. They are every computer scientists' buzzword-

compliant best friends: polymorphic, heterogeneous, implicitly referenced, cycle-capable,

dynamically represented, and automatically reclaimed. They provide a direct implemen-

tation of the common information associations used in object-oriented design. But most

important of all, they are extremely simple to learn and use.

Chapter 3

String Processing

In addition to its groundbreaking expression evaluation, by combining compelling string

processing features from its ancestors Icon and SNOBOL4, Unicon provides some of the

most �exible and readable built-in string processing facilities found in any language. If you

are used to string processing in a mainstream language, hold on to your hat: things are

about to get interesting.

In this chapter you will learn

• How to manipulate strings and sets of characters

• the string scanning control structure, used to match patterns directly in code

• the pattern type, used to match patterns constructed as data

• How to write custom pattern matching primitives, with backtracking

• techniques for matching regular expressions and context free grammars

3.1 The String and Cset Types

All mainstream programming languages have a string type, but the details of Unicon's

string type set it apart from other languages. And almost no other mainstream languages

feature a data type dedicated to character sets, which are quite useful.

3.1.1 String Indexes

You have already seen string literals delimited by double quotes, and the most common op-

erators that work on strings: the size of a string is given by the unary * operator, substrings

can be picked out with square-bracketed indexes, and two strings can be concatenated with

the || operator. It is time for a deeper explanation of the meaning of indexes as they are

used with strings and lists.

41

42 CHAPTER 3. STRING PROCESSING

Indexes in a string refer to the positions between characters. The positions are numbered

starting from 1. The index 0 refers to the position after the last character in the string,

and negative indices count from the right side of the string:

Figure 3-1: Positive and Negative String Indices

The expression s[i:j] refers to the substring of s that lies between positions i and j. If

either i or j is not a valid index into s, the expression fails. The expression s[k] is short for

s[k:k+1] and refers to a single character at position k. The expression s[k+:n] is the substring

of length n starting at position k. If s is the string "hello, world!" then the expressions

s[7] := " puny "
s[13:18] := "earthlings"

change s into "hello, puny earthlings!", illustrating the ease with which insertions and substi-

tutions are made. The �rst assignment changes the string to "hello, puny world!", replacing a

single character with six characters and thereby increasing its length. The second assign-

ment operates on the modi�ed string, replacing "world" with "earthlings".

Strings are values, just like numbers; if you copy a string and then work on the copy,

the original will be left unchanged:

s := "string1"
new_s := s
new_s[7] := "2"

Now the value of new_s is "string2" but s is left unchanged.

As mentioned in Chapter 1, strings can be compared with string comparison operators

such as ==.

if line[1] == "#" then ...

If you �nd you are writing many such tests, the string processing you are doing may be

more cleanly handled using the string scanning facilities, described below. But �rst, here

is some more detail on the character set data type, which is used in many of the string

scanning functions.

3.1. THE STRING AND CSET TYPES 43

3.1.2 Character Sets

A cset is a set of characters. It has the usual properties of sets: order is not signi�cant, and

a character can only occur once in a cset. A cset literal is represented with single quotes:

c := ’aeiou’

Since characters can only occur once in a cset, duplicates in a cset literal are ignored;

for example, ’aaiiee’ is equivalent to ’aie’. Strings can be converted to csets and vice versa.

Since csets do not contain duplicates, when a string is converted to a cset, all the duplicates

are removed.

Therefore to see if a string is composed of all the vowels and no consonants:

if cset(s) == ’aeiou’ then ...

Or, to �nd the number of distinct characters in a string:

n := *cset(s)

The ! operator generates the members of a cset in sorted order; this is also useful in

some situations.

3.1.3 Character Escapes

Both strings and csets rely on the backslash as an escape character within string literals.

A backslash followed by an escape code of one or more characters speci�es a non-printable

or control character. Escape codes may be speci�ed by a numeric value given in hex or

octal format - for example, "\x41". Alternatively, any control character may be speci�ed

with an escape code consisting of the caret (ˆ) followed by the alphabetic letter of the

control character. A cset containing control-C, control-D, and control-Z could be speci�ed

as ’\ˆc\ˆd\ˆz’. For the most common character escapes, a single-letter code is de�ned, such

as "\t" for the tab character, or "\n" for the newline. For all other characters, the character

following the backslash is the character; this is how quotes or backslashes are included in

literals. The escape codes are summarized in Table 3-1.

Table 3-1

Escape Codes and Characters

Code Character Code Character Code Character Code Character

\b backspace \d delete \e escape \f form feed

44 CHAPTER 3. STRING PROCESSING

\l line feed \n newline \r carriage return \t tab

\v vertical tab \' quote \" double quote \\ backslash

\ooo octal \xhh hexadecimal \�x Control-x

3.2 String Scanning

Strings are ordered sequences of symbols. A string's vital information is conveyed both in

its individual elements and in the number and order in which the symbols appear. There

is a fundamental duality between writing the code to analyze a string, and writing down

some data that describes or abstracts that string. The same duality is seen in Unicon's

string scanning control structure described in this section, and the pattern data type used

in matching operators, which is described in this next section.

Unicon's main building block for string analysis is a control structure called string

scanning. A scanning environment consists of a string subject and an integer position

within the subject at which scanning is to be performed. These values are held by the

keyword variables &subject and &pos. Scanning environments are created by an expression

of the form

s ? expr

The binary ? operator sets the subject to its left argument and initializes the position

to 1; then it executes the expression on the right side.

The expression usually has an interesting combination of various matching functions in

it. Matching functions change the position, and return the substring between the old and

new positions. For example: move(j) moves the position j places to the right and returns

the substring between the old and new position. This string will have exactly j characters

in it. When the position cannot move as directed, for example because there are less than

j characters to the right, move() fails. Here is a simple example:

text ? {
while move(1) do

write(move(1))
}

This code writes out every other character of the string in variable text.

Another function is tab(i), which sets the position &pos to its argument and returns the

substring that it passed over. So the expression tab(0) will return the substring from the

current position to the end of the string, and set the position to the end of the string.

Several string scanning functions examine a string and generate the interesting positions

in it. We have already seen find(), which looks for substrings. In addition to the other

parameters that de�ne what the function looks for, these string functions end with three

optional parameters: a string to examine and two integers. These functions default their

3.2. STRING SCANNING 45

string parameter to &subject, the string being scanned. The two integer positions specify

where in the string the processing will be performed; they default to 1 and 0 (the entire

string), or &pos and 0 if the string defaulted to &subject. Here is a generator that produces

the words from the input:

procedure getword()
local wchar, line

wchar := &letters ++ &digits ++ ’\’-’
while line := read() do

line ? while tab(upto(wchar)) do {
word := tab(many(wchar))
suspend word
}

end

Variable wchar is a cset of characters that are allowed in words, including apostrophe

(which is escaped) and hyphen characters. upto(c) returns the next position at which a

character from the cset c occurs. The many(c) function returns the position after a sequence

of characters from c, if one or more of them occur at the current position. The expression

tab(upto(wchar)) advances the position to a character from wchar; then tab(many(wchar)) moves

the position to the end of the word and returns the word that is found. This is a generator,

so when it is resumed, it takes up execution from where it left o� and continues to look for

words (reading the input as necessary).

Notice the �rst line: the cset wchar is the set union of the upper- and lowercase letters

(the value of the keyword &letters) and the digits (the keyword &digits). This cset union is

performed each time getword() is called, which is ine�cient if getword() is called many times.

The procedure could instead calculate the value once and store it for all future calls to

getword().

Declaring the variable to be static will cause its value to persist across calls to the

procedure. Normal local variables are initialized to the null value each time a procedure is

entered. To do this, add these two lines to the beginning of the procedure:

static wchar
initial wchar := &letters ++ &digits ++ ’\’-’

The match(s) function takes a string argument and succeeds if s is found at the current

position in the subject. If it succeeds, it produces the position at the end of the matched

substring. This expression

if tab(match("-")) then sign := -1 else sign := 1

looks to see if there is a minus sign at the current position; if one is found, &pos is moved past

it and the variable sign is assigned a -1; otherwise, it gets a 1. The expression tab(match(s))

46 CHAPTER 3. STRING PROCESSING

occurs quite often in string scanning, so it is given a shortcut: =s. The section on pat-

tern matching later in this chapter will explain that this �unary equals� operator has an

additional, more powerful use.

The last two string scanning functions to round out Icon's built-in repertoire are any(c)

and bal(c1,c2,c3). any(c) is similar to many(), but only tests a single character being scanned

to see if it is in cset c. The bal() function produces positions at which a character in c1

occurs, similar to upto(), with the added stipulation that the string up to those positions is

balanced with respect to characters in c2 and c3. A string is balanced if it has the same

number of characters from c2 as from c3 and there are at no point more c3 characters

present than c2 characters. The c1 argument defaults to &cset. Since c2 and c3 default to

’(’ and ’)’, bal() defaults to �nd balanced parentheses.

The restriction that bal() only returns positions at which a character in c1 occurs is a

bit strange. Consider what you would need to do in order to write an expression that tells

whether a string s is balanced or not.

You might want to write it as s ? (bal() = *s+1) but bal() will never return that position.

Concatenating an extra character solves this problem:

procedure isbalanced(s)
return (s || " ") ? (bal() = *s+1)

end

If string s is very large, this solution is not cheap, since it creates a new copy of string

s. You might write a version of isbalanced() that doesn't use the bal() function, and see if

you can make it run faster than this version. An example later in this chapter shows how

to use bal() in a more elegant manner.

File Completion

Consider the following gem, attributed to Jerry Nowlin and Bob Alexander. Suppose you

want to obtain the full name of a �le, given only the �rst few letters of a �lename and a

list of complete �lenames. The following one line procedure does the trick:

procedure complete(prefix, filenames)
suspend match(prefix, p := !filenames) & p

end

This procedure works �ne for lists with just a few members and also for cases where

prefix is fairly large.

Backtracking

The matching functions we have seen so far, (tab() and move()), are actually generators.

That is, even though they only produce one value, they suspend instead of returning. If

3.2. STRING SCANNING 47

expression evaluation ever resumes one of these functions, they restore the old value of

&pos. This makes it easy to try alternative matches starting from the same position in the

string:

s ? (="0x" & tab(many(&digits ++ ’abcdefABCDEF’))) |
tab(many(&digits))

This expression will match either a hexadecimal string in the format used by C or

a decimal integer. Suppose s contains the string "0xy". The �rst part of the expression

succeeds and matches the "0x"; but then the expression tab(many(&digits ++ ’abcdef’)) fails;

this causes Unicon to resume the �rst tab(), which resets the position to the beginning of

the string and fails. Unicon then evaluates the expression tab(many(&digits)) which succeeds

(matching the string "0"); therefore the entire expression succeeds and leaves &pos at 2.

Warning

Be careful when using tab() or move() in a surrounding expression that can fail! The fact

that tab() and move() reset &pos upon expression failure causes confusion and bugs when it

happens accidentally.

Concordance Example

Listing 3-1 illustrates the above concepts and introduces a few more. Here is a program to

read a �le, and generate a concordance that prints each word followed by a list of the lines

on which it occurs. Short words like "the" aren't interesting, so the program only counts

words longer than three characters.

Listing 3-1 A simple concordance program

procedure main(args)
(*args = 1) | stop("Need a file!")
f := open(args[1]) | stop("Couldn’t open ", args[1])
wordlist := table()
lineno := 0

while line := map(read(f)) do {
lineno +:= 1
every word := getword(line) do

if *word > 3 then {
if word isn’t in the table, set entry to empty list
/wordlist[word] := list()
put(wordlist[word], lineno)
}

}
L := sort(wordlist)

48 CHAPTER 3. STRING PROCESSING

every l := !L do {
writes(l[1], "\t")
linelist := ""
Collect line numbers into a string
every linelist ||:= (!l[2] || ", ")
trim the final ", "
write(linelist[1:-2])
}

end

procedure getword(s)
s ? while tab(upto(&letters)) do {

word := tab(many(&letters))
suspend word
}

end

If we run this program on this input:

Half a league, half a league,
Half a league onward,
All in the valley of Death
Rode the six hundred.

the program writes this output:

death 3
half 1, 2
hundred 4
league 1, 1, 2
onward 2
rode 4
valley 3

First, note that the main() procedure requires a command-line argument, the name of

a �le to open. Also, we pass all the lines read through the function map(). This is a

function that takes three arguments, the �rst being the string to map; and the second and

third specifying how the string should be mapped on a character by character basis. The

defaults for the second and third arguments are the uppercase letters and the lowercase

letters, respectively; therefore, the call to map() converts the line just read in to all lowercase.

3.3 Pattern Matching

Pattern matching in Unicon is like string scanning on steroids. Patterns encode as data

what sort of strings to match, instead of writing string scanning code to perform the match

3.3. PATTERN MATCHING 49

directly. A pattern data type allows complex patterns to be composed from pieces. The

patterns can then be used in the middle of string scans to give that notation a boost, or

used on their own. Arguably, you don't need patterns because anything that can be done

to strings, can be done using string scanning. But when the pattern solution is usually

shorter, more readable, and runs faster, why wouldn't everyone use them?

Patterns are understood in terms of two di�erent points in time, the point when the

pattern is constructed, and the times at which it is used to match a string. Most of the

programming work for patterns involves formulating the pattern construction, but most of

the computation occurs later on during the pattern matches. The next two subsections

describe ways to create many and various complex patterns, while the two notations for

using patterns are relatively simple and require little space. All of this only becomes clear

with numerous examples that will follow.

3.3.1 Regular Expressions

The literal values of the pattern type are regular expressions, enclosed in less than (<) and

greater than (>) symbols. The notation of regular expressions is very old and very famous

in computer science, and readers already familiar with them may wish to skim this section.

Within < and > symbols, the normal Unicon interpretation of operators does not

apply; instead a set of regular expression operators is used to express simple string patterns

concisely. The following are examples of regular expressions.

regular expression is a pattern that...

<abc> matches abc

<a|b|c> matches a or b or c

<[a-c]> matches a or b or c

<ab?c> matches a followed optionally by b followed by c

<ab*c> matches a followed by 0 or more b's followed by c

<a*b*c*> matches a's followed by b's followed by c's

3.3.2 Pattern Composition

Regular expressions are awesome, but there are many patterns that they cannot express.

Unicon has many pattern functions and operators that construct new patterns, often from

existing pattern arguments. Sometimes, they simply make it convenient to store parts of

patterns in variables that can then be used at various places in larger patterns. Other

times, they make it possible to write patterns are not easily written as regular expressions.

50 CHAPTER 3. STRING PROCESSING

composer constructs a pattern that...

p1 || p2 matches if pattern p1 is followed by pattern p2

p1 .| p2 matches if pattern p1 or pattern p2 matches

p -> v assigns s to v if an entire pattern match succeeds

p => v assigns s to v if a pattern match makes it here

.> v assigns the current position in the match to v

‘v‘ evaluates v at pattern match time

Abort() causes an entire pattern match to fail immediately

Any(c) matches a character in cset c

Arb() matches anything

Arbno(p) matches pattern p as few (zero or more) times as possible

Bal() matches the shortest non-null substring with balanced parentheses

Break(c) matches the substring until a character in cset c occurs

Breakx(c) matches the substring until a character in cset c occurs

Fail() fails to match, triggering any alternative(s)

Fence() fails to match, preventing alternative(s)

Len(i) matches any i characters

NotAny(c) matches any one character not in cset c

Nspan(c) matches 0 or more characters in cset c, as many as possible

Pos(i) sets the cursor to position i

Rem() matches the remainder of the string

Span(c) matches 1 or more characters in cset c, as many as possible

Succeed() causes the entire pattern match to succeed immediately

Tab(i) matches from the current position to position i, moving to that location

Rpos(i) sets the position i characters from the right end of the string

Rtab(i) matches from the current position to i characters from the right end.

This table summarizes a facility for which an entire chapter could be written. Besides

what extra information you �nd on these functions in this chapter and in Appendix A,

Unicon Technical Report 18 covers these constructors in more detail. The concepts gener-

ally are translated directly from SNOBOL4, so consulting SNOBOL4 books may also be

of use.

Most operands and arguments are required to be of type pattern, with the exception

of those marked as type integer (i) or cset (c), and those which are variables (v). If a

pattern is required, a cset may be supplied, with semantics equivalent to the pattern which

will match any member of the cset. Otherwise if the argument is not a pattern it will be

converted to a string; strings are converted to patterns that match the string.

Variable operands may be simple variables or references with a subscript or �eld op-

erator. The translator may not currently handle arbitrarily complex variable references

within patterns. The unevaluated expression (backquotes) operator does handle function

calls and simple method invocations in addition to variables.

3.4. STRING SCANNING AND PATTERN MATCHING MISCELLANY 51

3.3.3 Pattern Match Operators

A pattern match is performed within a string scanning environment using the unary equals

operator, =p. If p is matched at the current position, =p produces the substring matched

and moves the position by that amount.

There is also a pattern match control structure, s ?? p, which creates a new string

scanning environment for s and looks for pattern p within s, working from left to right.

3.3.4 Scopes of Unevaluated Variables

Since a pattern can be passed as a parameter, variables used in patterns might get used

outside of the scope where the pattern was constructed, potentially anywhere in the pro-

gram. In SNOBOL4 this was not an issue mostly because all variables were global. In

Unicon variables are not global by default, and the variables used during pattern matching

are evaluated in the scope of the pattern match, not references to locals that existed back

during pattern construction time.

To make things more fun, it is impractical to apply the usual rules for implicit variable

declaration to variables that do not appear in a procedure body because they are referenced

in a pattern that was constructed elsewhere. If you use a variable in a pattern and pass

that pattern into a di�erent scope, you must declare that variable explicitly, either as a

global or in the scope where it is used in a pattern match.

3.4 String Scanning and Pattern Matching Miscellany

Many topics related to string scanning and pattern matching do not easily �t into one of

the preceding sections, but are nevertheless important.

3.4.1 Grep

Grep, an acronym de�ned variously, is one of the oldest UNIX utilities, which searches �les

for occurrences of a pattern de�ned by a regular expression.

Listing 3-2 A simple grep-like program

link regexp
procedure main(av)

local f, re, repl
every (f|re|repl) := pop(av)
f := open(f) | stop("can’t open file named: ", f)
while line := read(f) do

write(re_sub(line, re, repl))
end

52 CHAPTER 3. STRING PROCESSING

procedure re_sub(str, re, repl)
result := ""
str ? {

while j := ReFind(re) do {
result ||:= tab(j) || repl
tab(ReMatch(re))
}

result ||:= tab(0)
}

return result
end

To replace all occurrences of "read|write" with "IO operation" you could type

igrep mypaper.txt "read|write" "IO Operation"

Since the program has access to the pattern matching operation at a �ner grain, more

complex operations are possible, this search-and-replace is just an example.

3.4.2 Grammars

Grammars are collections of rules that describe syntax, the combinations of words allowed

in a language. Grammars are used heavily both in linguistics and in computer science.

Pattern matching using a grammar is often called parsing, and is one way to match pat-

terns more complex than regular expressions can handle. This section presents some simple

programming techniques for parsing context free grammars. Context free grammars uti-

lize a stack to recognize a fundamentally more complex category of patterns than regular

expressions can; they are de�ned below.

For linguists, this treatment is elementary, but introduces useful programming tech-

niques. If you are not interested in grammars, you can skip the rest of this chapter.

A context-free grammar or CFG is a set of rules or productions. Here is an example:

S -> S S
| (S)
| ()

This grammar has three productions. There are two kinds of symbols, non-terminals

like S that can be replaced by the string on the right side of a rule, and terminals like (

and). An application of a production rule is called a derivation. One special non-terminal

is called the start symbol ; a string is accepted by the grammar if there is a sequence of

derivations from the start symbol that leads to the string. By convention the start symbol

is the �rst non-terminal in the de�nition of the grammar. (This grammar only has one

non-terminal, and it is also the start symbol.)

This grammar matches all strings of balanced parentheses. The string (()(()())) can be

matched by this derivation:

3.4. STRING SCANNING AND PATTERN MATCHING MISCELLANY 53

S -> (S) -> (SS) -> (()S) -> (()(S)) ->
(()(SS)) -> (()(()S)) -> (()(()()))

Parsing

This section is a discussion of parsers written by hand in Unicon. It would not be right

to talk about parsing context free grammars without mentioning the standard tool, iyacc,

that the Unicon language translator itself is written in. Iyacc is an industrial strength

parser generator, derived from the open source "Berkeley yacc", that generates parsers as

.icn source �les compatible with Icon and Unicon. Iyacc comes with Unicon distributions

and is documented in Unicon Technical Report 3 at http://unicon.org/utr/utr3.pdf.

Unicon can parse grammars in a natural way using matching functions. A production

A -> B a D
| C E b

can be mapped to this matching function:

procedure A()
suspend (B() & ="a" & D()) | (C() & E() & ="b")

end

This procedure �rst tries to match a string matched by B, followed the character a, followed

by a string matched by D. If D fails, execution backtracks across the ="a" (resetting &pos)

and resume B(), which will attempt the next match.

If the sub-expression to the left of the alternation fails, then execution will try the sub-

expression on the right, C() & E() & ="b" until something matches - in which case A succeeds,

or nothing matches - which will cause it to fail.

Parsers for any CFG can be written in this way. However, this is an expensive way

to do it! Unicon's expression evaluation will try all possible derivations trying to match a

string. This is not a good way to parse, especially if the grammar is amenable to lookahead

methods.

Doing It Better

Many grammars can be parsed more e�ciently using well-known techniques - consult a

book on compilers for details. Here is one way of parsing a grammar using some of the

built-in functions. Consider this grammar for an arithmetic expression:

E -> T | T + E
T -> F | F * T
F -> a | b | c | (E)

54 CHAPTER 3. STRING PROCESSING

Listing 3-3 is an Unicon program that recognizes strings produced by this grammar:

Listing 3-3 Expression parser

procedure main()
while line := read() do

if expr(line) == line then write("Success!")
else write("Failure.")

end
procedure expr(s)

s ? {
while t := tab(bal(’+’)) do {

term(t) | fail ; ="+"
}

term(tab(0)) | fail
}

return s
end
procedure term(s)

s ? {
while f := tab(bal(’*’)) do {

factor(f) | fail ; ="*"
}

factor(tab(0)) | fail
}

return s
end
procedure factor(s)

s ? suspend ="a" | ="b" | ="c" | (="(" || expr(tab(bal(’)’))) || =")")
end

The interesting procedure here is bal(). With ’)’ as its �rst argument, bal() scans to

the closing parenthesis, skipping over any parentheses in nested subexpressions, which is

exactly what is needed here.

The procedure factor() is written according to the rule in the previous section. The

procedures expr() and term() have the same structure. The expr() procedure skips any subex-

pressions (with balanced parentheses) and looks for a +. We know that this substring is a

well-formed expression that is not a sum of terms, therefore, it must be a term. Similarly

term() looks for * and it knows that the expression does not contain any * operators at the

same nesting level; therefore it must be a factor.

Notice that the procedures return the strings that they matched. This allows us to

check if the whole line matched the grammar rather than just an initial substring. Also,

notice that factor() uses string concatenation instead of conjunction, so that it can return

the matched substring.

3.4. STRING SCANNING AND PATTERN MATCHING MISCELLANY 55

Summary

Unicon's string processing facilities are extensive. Simple operations are very easy, while

more complex string analysis has the support of a special control structure, string scan-

ning. String scanning is not as concise as regular expression pattern matching, but it is

fundamentally more general because the code and patterns are freely intermixed.

56 CHAPTER 3. STRING PROCESSING

Chapter 4

Advanced Language Features

The previous chapters described a wide range of built-in computational facilities that help

to make Unicon a great language. This chapter delves into interesting features that make

Unicon more than just the sum of its parts. This chapter demonstrates:

• Controlling expressions more precisely

• Using list structures and procedure parameter lists interchangeably

• Holding a generator expression in a value so that its results can be used in di�erent

locations throughout the program

• De�ning your own control structures

• Evaluating several generator expressions in parallel

• Permuting strings using sophisticated mappings

• Using a more e�cient list representation

4.1 Limiting or Negating an Expression

Chapter 1 described generators and the expression mechanism without mentioning many

methods for using them, other than every loops. Suppose you wish to generate �ve elements

from a table. If the table has thousands of elements, then you may want to generate just

�ve elements precisely in a situation where generating all the table elements with !T is

infeasible. You could write an every loop that breaks out after �ve iterations, but this

solution isn't easy to use within some more complex expressions. The binary backslash

operator expr \ i limits expr to at most i results. If expr has fewer results, the limitation

operator has no e�ect; once i results have been obtained, limitation causes the expression

to fail even if it could produce more results.

Unicon does not have a boolean type, so Chapter 1 downplayed the standard logical

operators. The alternation operator (|) resembles a short-circuit OR operator, since it

57

58 CHAPTER 4. ADVANCED LANGUAGE FEATURES

generates its left operand and only evaluates its right operand if the left operand or the

surrounding expression fails. The conjunction operator (&) resembles a short-circuit AND

operator; it evaluates its left operand, and if that operand succeeds, the result of the

conjunction is the result of its right operand. The reserved word not rounds out the boolean-

like operators. If expr produces no results, then not expr will succeed (and produce a null

value); if expr produces any results, then the not expression fails. The not operator can

remedy certain forms of generator confusion. Compare the following two expressions:

if not (s == ("good"|"will"|"hunting")) then write("nope")
if (s ˜== ("good"|"will"|"hunting")) then write("uh huh")

The �rst expression uses not to ensure that string s is none of the three words. The

second expression always writes "uh huh", because any string s that you pick will be not

equal (˜==) to at least one of the three strings in the alternation. The then part will always

execute, which is probably not what was intended.

Note

Negating an == operator is not the same as using a �== operator!

The conjunction operator expr 1 & expr 2 has an alternate syntax, a comma-separated list

of expressions in parentheses: (expr 1 , expr 2). Any number of expressions may be present; the

whole expression succeeds if they all succeed. This looks similar to procedure call syntax

because it is similar: a procedure call mutually evaluates all the actual parameters before

the procedure is invoked. Invocation allows a string or integer in the �procedure� slot in

front of a parenthesized argument list. For a string, as in s(x), a procedure by the name

given in s is called; if s had the value "foo", then s(x) is the same as foo(x). For an integer

value i, after all arguments are evaluated, the value of the entire expression is the value of

the i'th argument.

4.2 List Structures and Parameter Lists

The functions write() and put() take any number of arguments; this �exibility is powerful

and convenient. You can write variable argument procedures of your own by ending the

last parameter in your procedure declaration with empty square brackets:

procedure myfunc(x, y, z[])

In this case, instead of throwing away all arguments after the third, the third parameter

and all parameters that follow are placed into a newly-constructed list. A call to the above

procedure with myfunc(1, 2, 3, 4, 5) causes z to have the value [3, 4, 5].

It is also useful to do the opposite and construct a list of dynamic (or user-supplied)

length, and then call a procedure with that list as its parameter list. The apply operator,

binary ! performs this feat. If you call write ! L, then all the elements of L are written

contiguously on a single line (unless they contain newline characters).

4.3. CO-EXPRESSIONS 59

4.3 Co-expressions

A co-expression is an independent, encapsulated thread-like context, where the results of

an expression (hopefully a generator!) can be picked o� one at a time. Suppose you are

writing a program that generates code, and you need something that will generate unique

variable names. This expression will generate names:

"name" || seq()

Function seq() produces a progressive sequence of integers, by default starting at 1, so

the whole expression generates "name1", "name2", "name3", ... You can use this expression

anywhere in your code; but you may need it in several di�erent places.

There are times when you need to separate the evaluation of an expression from its

location in the program. The normal way to do this would be a procedure. You can make

separate calls to a procedure from di�erent locations in your program, but there is no easy

way to use the results from a single instance of a generator in multiple locations. You can

put all the results in a list (not a good idea for generators with in�nite result sequences) or

rewrite the procedure to produce the sequence using separate calls, but this requires static

or global variables, and is awkward at best:

procedure nameseq()
static i
initial i := 0

return "name" || (i+:= 1)
end

Now, consider the code generating program again. It may need not one name sequence,

but two kinds of names: statement labels and temporary variables. It would be poor

engineering to write a di�erent procedure for each such sequence. The nameseq() procedure

was already cumbersome for so simple a task, but generalizing it for multiple kinds of names

makes it really messy. By creating a pair of co-expressions, you can capture exactly what

is needed with a lot less code:

labelname := create ("_L" || seq())
varname := create("_V" || seq())

In both cases, create expr allocates and initializes an evaluation context plus the memory

needed to evaluate expression expr, but does not start to evaluate it. Since the co-expression

value may be used outside the procedure call where it is created, the evaluation context

includes a copy of the local variables and parameters used in the expression. When a co-

expression is activated, it produces the next value. A co-expression is activated by the @

operator. Each activation of labelname produces the next string in the sequence "_L0", "_L1",

"_L2", and so on. Similarly, each activation @varname produces the next in the sequence

"_V0", "_V1", "_V2", and so on.

60 CHAPTER 4. ADVANCED LANGUAGE FEATURES

loop_name := @labelname
tempvar_name := @varname

After a co-expression has produced all its results, further evaluation with @ will fail.

The ˆ operator produces a new co-expression with the same expression as its argument, but

"rewound" to the beginning.

c := ˆc

4.4 User-De�ned Control Structures

Control structures are language elements that determine in what order, and how many

times, expressions are executed. Co-expressions are used to implement new control struc-

tures when procedures that take co-expression parameters control the order and number

of times they are activated. Consider a control structure that selects values from the �rst

expression at positions speci�ed by the second. This could be called as:

seqsel([create fibonacci(), create primes()])

Assuming that you have a pair of generator procedures that produce the Fibonacci

numbers (1, 1, 2, 3, 5, 8, 13, ?) and the primes (2, 3, 5, 7, 11, ?), this expression produces

the numbers 1, 2, 5, 13, 89, Here is the implementation of seqsel():

procedure seqsel(a)
(*a = 2) | stop("seqsel requires a list of two arguments")
e1 := a[1]; e2 := a[2]

position in the first stream we are looking at
index := 1
repeat {

Get the next index
(i := @e2) | fail

Keep getting values from the second expression until
we get to the i’th one. If e1 cannot produce that
many values, we fail.

every index to i do
(value := @e1) | fail

suspend value
index := i+1
}

end

Unicon provides a syntactic short-cut for this kind of usage:

proc([create e1, create e2, ..., create en])

can also be written with curly brackets, as

proc{e1, e2, ..., en}

4.5. PARALLEL EVALUATION 61

4.5 Parallel Evaluation

Co-expressions can be used to evaluate expressions "in parallel". This program writes a

table of ASCII characters with the hex, decimal, and octal equivalents:

procedure main()
dec := create(0 to 255)
hex_dig := "0123456789abcdef"
hex := create(!hex_dig || !hex_dig)
oct := create((0 to 3) || (0 to 7) || (0 to 7))
char := create image(!&cset)
while write(@dec, "\t", @oct, "\t", @hex, "\t", @char)

end

Co-expression dec produces the sequence 0, 1, 2, ... 255; hex the sequence "00", "01",

"03", ... "ff"; oct the sequence "001", "002", ... "377"; and char the sequence ..., " ", "!", ..., "A",

... "Z", ..., "a", ... "z", and so forth.

Every invocation of write() results in all the co-expressions being activated once, so they

are all run in lock-step, producing this table:

0 000 00 "\x00"

1 001 01 "\x01"

2 002 02 "\x02"

...

45 055 2d "-"

46 056 2e "."

47 057 2f "/"

48 060 30 "0"

49 061 31 "1"

50 062 32 "2"

...

90 132 5a "Z"

91 133 5b "["

92 134 5c "\\"

93 135 5d "]"

94 136 5e "�"

95 137 5f "_"

96 140 60 "'"

97 141 61 "a"

...

255 377 � "\x�"

Parallel evaluation can also be used to assign to a set of variables:

62 CHAPTER 4. ADVANCED LANGUAGE FEATURES

ce := create !stat(f)
every (dev | ino | mode | lnk | uid | gid) := @ ce

Note

stat() returns �le information. It is presented in the next chapter.

Co-expressions can be expensive. This is probably not a good way to assign a series of

values to a group of variables but it demonstrates an interesting technique.

4.6 Coroutines

In conventional invocation, procedures have an asymmetric relationship; when control is

transferred from the caller to the callee, the callee procedure starts execution at the top.

Coroutines have an equal relationship: when control is transferred from one coroutine to

another, execution starts from the point that execution was suspended. This process is

called resumption. The producer/consumer problem is a good example of procedures that

have an equal relationship. Figure 4-1 shows how the control �ow between coroutines is

di�erent from that of conventional procedures.

Figure 4-1: The Di�erence Between Procedures and Coroutines

Can you tell what the next example computes from its integer command-line argument?

Listing 4-1

Producer and Consumer Coroutines

4.7. PERMUTATIONS 63

procedure main(args)
C1 := create consumer(args[1])
C2 := create producer(C1)
@C2

end

procedure producer(ce)
x := 1
repeat {

val := x ˆ 2
ret := val @ ce | break
x +:= 1
}

@ &main
end

procedure consumer(limit)
value := @ &source
repeat {

process value
if value > limit then break
if value % 2 = 0 then write(value)
value := retval @ &source
}

end

When producer resumes consumer, it passes value; the consumer passes a return code

(retval) back. &source is the coexpression that activated the current co-expression.

Note

This example doesn't mean the producer/consumer problem should always be done with

coroutines!

4.7 Permutations

We have seen one usage of map(), where it transformed mixed-case strings to all lowercase.

In that type of usage, the �rst string is the one that we are manipulating, and the other

two arguments tell it how the string is to be modi�ed. Interesting results can be achieved

by treating the third argument as the string to manipulate. Consider this code:

s := "abcde"
write(map("01234", "43201", s))

What does this code example do? The transformation is: "4" should be mapped to "a",

"3" to "b", "2" to "c", "0" to "d", and "1" to "e". When this mapping is applied to "01234", we

64 CHAPTER 4. ADVANCED LANGUAGE FEATURES

get "decba" - a permutation of the string s! It is exactly the permutation that is suggested

by the �rst two arguments of map(). To arrange this sort of permutation, all three strings

must be the same size, and there must be no repeated letters in the second string.

Figure 4-2: Permuting a string with the map() function

Here is an example: In the USA, dates are represented with the month coming �rst, as

in 12/25/1998, but in many other places the day comes �rst: 25/12/1998. This conversion

is, of course, just a permutation; we can do this with a simple map:

map("Mm/Dd/XxYy", "Dd/Mm/XxYy", date)

Here is another example. Unicon has a built-in random facility, the ? operator. Applied

to a string or cset, it returns a random character from the argument; applied to a structure,

a random member of that structure; and applied to an integer, a random integer between 1

and that number. This is a very useful feature and allows us to write programs that shu�e

cards or run simulations of things like rolling dice.

By default in Unicon, the random sequence generated by ? is di�erent for each run of

the program. This is one of the few areas where Unicon is deliberately di�erent from Icon,

which uses the same seed each run by default. Icon's semantics is good when debugging,

because we want the program to behave predictably while it is broken! However, in most

applications that use random numbers, such as games, di�erent runs of the program should

create di�erent numbers. The random number seed is keyword &random. It can be assigned

a value at the start of main() in order to get Icon-style repeatability. Here's how to assign

it a number based on the current date and time. Unicon's default semantics do something

similar.

&random := map("sSmMhH", "Hh:Mm:Ss", &clock) +
map("YyXxMmDd", "YyXx/Mm/Dd", &date)

The calls to map() remove punctuation characters from the �xed-format strings produced

by &clock and &date. The resulting strings of digits are converted to integers, added, and

stored as a seed in &random. Now every time the program is run, the random number

facility will be initialized with a di�erent number.

4.8. SIMULATION 65

4.8 Simulation

A Galton Box demonstrates how balls falling through a lattice of pegs will end up dis-

tributed binomially. A simulation of a Galton box combines several of the techniques

described previously. Figure 4-3 is an illustration of the program's screen.

Figure 4-3: A Galton Box Simulation

The simulation's output window is a good example of Unicon's high-level graphics facil-

ities. Graphics is a broad area, discussed in Chapter 7 of this book; the on-line references or

the Icon graphics book (Griswold, Je�ery, Townsend 1998) contain substantial additional

details. Graphics are part of the system interface. Some of the graphics functions used in

this example include:

• FillArc(x,y,width,height) �lls an ellipse de�ned by a bounding rectangle. The shape is

�lled by the current foreground color and/or �ll pattern. The height defaults to be

the same as the width, producing a circle. Given additional arguments, FillArc() �lls

parts of an ellipse similar to pieces of a pie in shape.

• WAttrib("attr") or WAttrib("attr=value"), the generic getter/setter for window attributes. In

this case the attributes fg (foreground color) and drawop (raster drawing operation)

are set to various colors and reversible output.

• Window("attr=value", ...) opens a window with characteristics speci�ed by string at-

tribute values. The WDelay(t) function waits until t milliseconds have passed. The

66 CHAPTER 4. ADVANCED LANGUAGE FEATURES

WDone() function waits for the user to dismiss the output window by pressing "q" and

then terminates the program and closes the window.

Listing 4-2 contains the code for a simpli�ed version of the simulation. A couple elements

of the image above are omitted in order to make the example easy to follow. (Both this

program and the one that created the screen shot above are included on the book's web

site, http://unicon.org/book/)

Listing 4-2 A Simple Galton Box Simulation

link graphics
global pegsize, height, width, pegsize2

procedure main(args)
local n, steps := 10

pegsize := 10
pegsize2 := pegsize * 2
n := integer(args[1]) | 100
setup_window(steps)
every 1 to n do galton(steps)
WDone()

end

procedure setup_window(n)

local max, xpos, ypos, i, j
Draw the n levels of pegs
Pegboard size is 2n-1 square
Expected max value of histogram is (n, n/2)/2ˆn
... approximate with something simpler?
max := n*n/pegsize
width := (2*n+1)*pegsize
height := width + n*n/2*pegsize
Window("size=" || width || "," || height, "fg=grayish-white")
WAttrib("fg=dark-grey")
every i := 1 to n do {

ypos := i * pegsize2
xpos := width/2 - (i - 1) * pegsize - pegsize/2
every j := 1 to i do {

FillArc(xpos, ypos, pegsize, pegsize)
xpos +:= pegsize2
}

}
Set up drawing mode to draw the falling balls
WAttrib("fg=black")

4.8. SIMULATION 67

WAttrib("drawop=reverse")
end
Do it!
procedure galton(n)
local xpos, ypos, oldx, oldy

xpos := oldx := width/2 - pegsize/2
ypos := oldy := pegsize
For every ball...
every 1 to n do {

if ?2 = 1 then xpos -:= pegsize
else xpos +:= pegsize
ypos +:= pegsize2
animate(oldx, oldy, xpos, ypos)
oldx := xpos; oldy := ypos
}

Now the ball falls to the floor
animate(xpos, ypos, xpos, ypos + 40)
animate(xpos, ypos+40, xpos, ypos + 200)
Record this ball
draw_ball(xpos)

end
procedure animate(xfrom, yfrom, xto, yto)

animate_actual(xfrom, yfrom, xto, yfrom, 4)
animate_actual(xto, yfrom, xto, yto, 10)

end
Drawing op is already set to "reverse", and fg colour is black.
procedure animate_actual(xfrom, yfrom, xto, yto, steps)
local x := xfrom, y := yfrom, xstep, ystep, i, lastx, lasty

xstep := (xto - xfrom)/steps
ystep := (yto - yfrom)/steps
every i := 1 to steps do {

lastx := x; lasty := y
FillArc(x, y, pegsize, pegsize)
WDelay(1)
FillArc(x, y, pegsize, pegsize)
x +:= xstep; y +:= ystep
}

end
procedure draw_ball(x)
static ballcounts
initial ballcounts := table(0)

ballcounts[x] +:= 1
FillArc(x, height-ballcounts[x]*pegsize, pegsize, pegsize)

end

68 CHAPTER 4. ADVANCED LANGUAGE FEATURES

4.9 Arrays

Unicon uses two di�erent representations for a list: one of them, an array, is optimized

for fast access to the list-elements or for interfacing with another language that expects

a contiguous vector of values. The size of an array is �xed when it is �rst created and

consists entirely of integer elements (or entirely of reals). If any of the array elements is

assigned a value of a di�erent type, or the size of the array changes (e.g. by using delete

or push etc.), the array is automatically converted into the other form � the more general

representation of a list.

The general list representation occupies approximately twice as much storage as an

array of the same size and type on most implementations of Unicon.
To create an array, call list(n, x), where x is an integer or real value and n > 0. If you want

to create a more general list, rather than an array (perhaps you know the list will change
its size in the future and you wish to avoid the cost of converting the array when it does)
then use list comprehension: i.e. instead of

l := list(20000, 0)

use

l := [: (| 0) \ 20000 :]

list comprehension never produces an array.

Although the conversion from the array form to the more general representation is

automatic, when it is required, the conversion in the other direction is not. To convert a

general list into an array it may be supplied as the only parameter to the list function. If

the list meets the requirements (either all the elements are integers or all of them are reals)

the function will return a new array that consists of the values in the list. If the list does

not meet the requirements, the function returns the list parameter unchanged.

Summary

Unicon is particularly powerful when language features are combined. The ability to

combine features in interesting ways is the result of its novel expression semantics. Co-

expressions add substantial value to the concept of generators, although most programs

use them only sparingly. They �t well into a philosophy that says that simple things

should be easy to do . . . and complex things should be easy to do as well.

Chapter 5

The System Interface

The system interface is Unicon's connection to the outside world, de�ning input/output

interactions with the operating system. This chapter shows how to

• Manipulate �les, directories, and access permissions

• Launch and interact with other programs

• Handle abnormal events that would otherwise terminate your program

• Write Internet client and server applications.

5.1 The Role of the System Interface

Unicon's predecessor Icon is highly portable; it runs on everything from mainframes to

Unix machines to Amigas and Macs. This platform independence is both a virtue and a

limitation. Icon takes a greatest common denominator approach to the system interface.

Icon programs run with no source modi�cations across platforms, but with little access to

the underlying system. Icon historically could not be used easily for many tasks such as

system administration or client/server programming. Both the Icon graphics facilities, and

now the Unicon system interface, "raise the bar" of what portable facilities programmers

can expect to be provided by their programming language, at the cost of making it more

di�cult to port the language to new platforms.

The interface described in this chapter relies on underlying standards including ANSI

C's standard library, and the IEEE Portable Application Standards Committee's POSIX

operating system standard (http://www.pasc.org). Unicon relies on standards, but is sim-

pler and higher level. It is also less platform-speci�c than the POSIX standard. The goal

was to de�ne facilities that can be implemented to a great extent on all modern operating

systems. Non-POSIX Unicon implementations may provide a subset of the functionality

described in this chapter, but important facilities such as TCP/IP Internet communica-

tions are ubiquitous and warrant inclusion in the language de�nition. So far the complete

69

70 CHAPTER 5. THE SYSTEM INTERFACE

Unicon system interface is implemented for Linux, Solaris, and Windows; the challenge to

port these facilities to all platforms on which they are relevant and useful now rests with

Unicon's user community.

5.2 Files and Directories

The �le type is used for any connection between a program and an external piece of hard-

ware. In reality, a �le is a reference to resources allocated by the operating system for the

purpose of input or output. Di�erent kinds of �les support di�erent operations, but most

�les support the basic functions given in this section.

Files are commonly used to manipulate named repositories of data on a storage device.

The contents of �les exist independent of the program that creates them, and persist after

that program �nishes. To read data from a �le or save data to a �le, the functions read()

and write() are often used. These functions by default use special �les denoted by the

keywords &input and &output, respectively. There is a third �le keyword, &errout, that refers

to the location to which the program should write any error messages. Unless the �les were

redirected, they refer to the keyboard and the display. If you pass read() or write() a value

of type �le as an argument, the operation is performed on that �le. The function open()

creates a value of type �le:

f := open("myfile.txt", "w")
write(f, "This is my text file.")

The open() function takes two parameters: a �le name and a mode. The default mode is "r"

for reading; the example above uses mode "w" for writing. Other modes denote other kinds

of system interfaces. They are described in later sections.

The read() function reads and returns a line of text, removing the line terminator(s).

Function write() similarly adds a line terminator after writing its arguments. Another way

to read lines is via the generate operator, unary !. The expression !f generates the lines of

�le f, so every put(L, !f) puts the lines of f into list L.

On systems with multi-character line terminators, appending an extra letter to the

mode parameter of open() indicates whether newlines are to be translated (mode "t") or

untranslated (mode "u"). Text �les should be translated, while binary �les should not. The

default is to translate newlines to and from operating system format.

Besides read() and write(), which always process a single line of text, the functions reads(f,

i) and writes(f, s, ...) read (up to i characters) and write strings to a �le. These functions are

not line-oriented and do no newline processing of their own, although they still observe the

translation mode on systems that use one.

When operations on a �le are complete, close the �le by calling close(f). The only

exceptions are the standard �les, &input, &output, and &errout; since you didn't open them,

don't close them. For the rest, most operating systems have a limit on the number of �les

5.2. FILES AND DIRECTORIES 71

that they can have open at any one time, so not closing your �les can cause your program

to fail in strange ways if you use a lot of �les.

Directories

A directory is a special �le that contains a collection of named �les. Directories can

contain other directories to form a hierarchical structure. The chdir() function returns the

current working directory as an absolute path name. Called with a string argument, the

chdir(dirname) function sets the current working directory to dirname. The call open(dirname)

opens a directory to read its contents. Directories can only be opened for reading, not for

writing. Every read() from a directory returns the name of one �le. Directory entries are

not guaranteed to be in any order. The expression every write(!open(".")) writes the names of

the �les in the current directory, one per line. It is not good practice to call an open() that

you don't close().

The mkdir(s) function creates a directory. An optional second parameter speci�es access

permissions for the directory; controlling �le ownership and access is discussed below. Files

or directories can be renamed with rename(s1,s2). Renaming does not physically move the

�le, so if s1 and s2 denote locations on di�erent hardware devices or �le systems then

rename() will fail, and you will need to "copy and then delete" the �le. Individual �les or

directories are removed with remove(s). Only empty directories may be removed. To remove

an entire directory including its contents:

procedure deldir(s)
f := open(s)
every remove(s || "/" || ("." ˜== (".." ˜== !f)))
close(f)
remove(s)

end

How would you change this function to delete subdirectories? You might be able to

devise a brute force approach using what you know, but what you really need is more

information about a �le, such as whether it is a directory or not.

Obtaining �le information

Metadata is information about the �le itself, as opposed to information stored in the �le.

Metadata includes the owner of the �le, its size, user access rights, and so forth. This

information is produced by the stat() system call. Its argument is the name of a �le or (on

UNIX systems only) an open �le. The stat() function returns a record with the information

about the �le. Here is a subset of ls, a UNIX program that reads a directory and lists

information about its �les. Keyword &errortext contains information about the most recent

error that resulted in an expression failure; it is written if opening the directory fails. This

72 CHAPTER 5. THE SYSTEM INTERFACE

version of ls only works correctly if its arguments are the names of directories. How would

you modify it, using stat(), to take either ordinary �le names or directory names as command

line arguments?

link printf
procedure main(args)

every name := !args do {
f := open(name) | stop(&errortext, name)
L := list()
while line := read(f) do

push(L, line)
every write(format(stat(n := !sort(L)), n))
}

end
procedure format(p, name)

s := sprintf("%-7d %-5d %s %-4d %-9d %-9d %-8d %s %s",
p.ino, p.blocks, p.mode, p.nlink, p.uid, p.gid, p.size,
ctime(p.mtime)[5:17], name)

if p.mode[1] == "l" then
s ||:= " -> " || \(p.symlink)

return s
end

The record returned by stat() contains many �elds. Not all �le systems support all of

these �elds. Two of the most important portable �elds are size, the �le size in bytes, and

mtime, the �le's last modi�ed time, an integer that is converted into a human readable string

format by ctime(i). Another important �eld is mode, a string that indicates the �le's type

and access permissions. Its �rst letter (mode[1]) is "-" for normal �les, "d" for directories,

and some �le systems support additional types. The other characters of the mode string

are platform dependent. On UNIX there are nine letters to encode read, write, and execute

permissions for user, group, and world, in the format: "rwxrwxrwx". On a classic Windows

FAT �le system, there is only "rwa" to indicate the status of hidden, read-only, and archive

bits (if it is set, the system bit is indicated in mode[1]).

Some �le systems support duplicate directory entries called links that refer to the same

�le. In the record returned by stat(), a link is indicated by a mode[1] value of "l". In addition,

�eld nlinks ("number of links") will be > 1 and/or �eld symlink may be the string �lename

of which this �le is an alias. Appendix E includes information on each platform's support

for the mode �eld, as well as stat()'s other �elds.

Controlling �le ownership and access

The previous section shows how di�erent platforms' �le systems vary in their support for

the concepts of �le ownership and access. If the system supports ownership, the user and

5.3. PROGRAMS AND PROCESS CONTROL 73

group that own a �le are changed by calling chown(fname, user, group). The chown() function

only succeeds for certain users, such as the super user. User and group may be string

names, or integer user identity codes on some platforms.

File access rights are changed with chmod(fname, mode). The chmod() function only

succeeds for the owner of a given �le. The mode is a nine-letter string similar to stat()'s

mode �eld, or an octal encoding of that information (see Appendix E).

Another piece of information about �les is called the umask. This is a variable that

tells the system what access rights any newly created �les or directories should have. The

function call umask("rwxr-xr-x") tells the system that newly created directories should have

a permission of "rwxr-xr-x" and �les should have permissions of "rw-r--r--". The mkdir(s, mode)

function takes an optional mode parameter, which can override the umask for for newly

created directories. Ordinary �les are never given execute permission by the system, it

must be set explicitly with chmod().

File locks

Files can be locked while a program is updating some information. If the contents of the �le

are in an inconsistent state, other programs may be prevented from reading (or especially

writing) the �le. Programs can cooperate by using �le locks:

flock(filename, "x")

The �rst call to flock() creates a lock, and subsequent calls by other programs will block,

waiting till the writing program releases its lock. The �ag "x" represents an exclusive lock,

which should be used while writing; this means no other process can be granted a lock.

For reading, "s" should be used to create a shared lock so that other programs that are also

just reading can do so. In this way you can enforce the behavior that only one process

may open the �le for writing, and all others will be locked out; but many processes can

concurrently open the �le for reading.

5.3 Programs and Process Control

Unicon's system interface is similar but higher level than the POSIX C interface. An

include �le posix.icn de�nes constants used by some functions. Include �les are special code,

consisting mainly of de�ned symbols, intended to be textually copied into other code �les.

They are handled by the preprocessor, described in Appendix A. To include posix.icn in a

program, add this line at the top of your program:

$include "posix.icn"

When a system call fails, the integer keyword &errno indicates the error that occurred.

As seen earlier, a human-readable string is also available in &errortext. Error codes (such

74 CHAPTER 5. THE SYSTEM INTERFACE

as EPERM, or EPIPE) are de�ned in posix.icn; &errno can be compared against constants like

ENOENT. In general, however, human readers will prefer to decipher &errortext.

In the discussion to follow, a program is the code, while a process is such a program

in execution. This distinction is not usually important, but for network applications it

matters, since the same program can run in multiple processes, and a process can change

the program that it is running.

Signals

A signal is an asynchronous message sent to a process either by the system (usually as a

result of an illegal operation like a �oating point error) or by another process. A program

has two options to deal with a signal: it can allow the system to handle it in the default

manner (which may include termination of the process) or it can register a function, called

a signal handler, to be run when that signal is delivered.

Signals are trapped or ignored with the trap(s, p) function. Argument s is the string

name of the signal. The signal names vary by platform; see Appendix E. You can trap any

signal on any machine; if it is not de�ned it will be ignored. For example, Linux systems

don't have a SIGLOST. Trapping that signal has no e�ect when a program runs on Linux.

The trap() function's second argument is the procedure to call when the signal is received.

The previous signal handler is returned from trap() so it can be restored by a subsequent call

to trap(). The signal handler defaults to the default provided by the system. For instance,

SIGHUP is ignored by default but SIGFPE will cause the program to terminate.

Here is an example that handles a SIGFPE (�oating point exception) by printing out a

message and then runs the system default handler:

global oldhandler
...
trap("SIGFPE", sig_ignore)
oldhandler := signal("SIGSEGV", handler)
...

restore the old handler
trap("SIGSEGV", oldhandler)

end

procedure sig_ignore(s); end
procedure handler(s)

write(&errout, "Got signal ", s)
(\oldhandler)(s)

propagate the signal
end

5.3. PROGRAMS AND PROCESS CONTROL 75

Launching programs

Many applications execute other programs and read their results. In many cases, the best

way to do this is to call open() with mode "p" (pipe) to launch a command. In mode "p"

the string argument to open() is not a �lename, it is an entire command string. Piped

commands opened for reading (mode "p" or "pr") let your program read the command's

standard output, while piped commands open for writing (mode "pw") allow your program

to write to the command's standard input.

The more general function system(x,f1,f2,f3,mode) runs an external command (argument

x) with several options. If x is a list, x[1] is the command to execute and the remaining

list elements are its command line arguments. If x is a string, it is parsed into arguments

separated by spaces. Arguments with spaces in them may be escaped using double quotes.

A program that calls system() normally waits for the launched program to complete before

continuing, and system() returns the integer status of the completed command. If s ends

in an ampersand (&) or the optional mode argument is 1 or "nowait", system() does not wait

for the command to complete, but instead launches the command in the background and

returns an integer process id. The system() function takes three optional �le arguments that

specify redirected standard input, output, and error �les for the launched program.

Using �le redirection and pipes

One common scenario is for a program to run another program but with the input and

output redirected to �les. On command-line systems like the Unix shells or the MS-DOS

command prompt, you may have used redirection:

prog < file1

File redirection characters and other platform-dependent operations are supported in the

command string passed to system(), as in the following system() call:

system("prog < file1")

Pipes to and from the current program are nicely handled by the open() function, but

sometimes the input of one program needs to be connected to the output of another pro-

gram. You may have seen uses like this:

prog1 | prog2

The pipe() function returns a pair of open �les in a list, with the property that anything

written to the second �le will appear on the �rst. Here's how to hook up a pipe between

two programs:

76 CHAPTER 5. THE SYSTEM INTERFACE

L := pipe() | stop("Couldn’t get pipe: ", &errortext)
system("prog1 &", , L[2])
system("prog2 &", L[1])
close(L[1])
close(L[2])

Process information

The integer process identity can be obtained with getpid(). The user id of the process can

be obtained with getuid() if the platform supports it. Calls to obtain additional information

such as group identity on some platforms are described in Appendix E.

A parent process may want to be noti�ed when any of its children quit (or change

status). This status can be obtained with the function wait(). When a child process changes

state from �running� to either �exited� or �terminated� (and optionally �stopped�), wait()

returns a string of the form

pid:status:arg:core

The ":core" will only be present if the system created a core �le for the process. The

status can be any of “exited”, “terminated” or “stopped”. The arg �eld is either: a) the exit

status of the program if it exited; or b) the signal name if it was terminated. Typically

wait() will be used in the handler for the SIGCHLD signal which is sent to a process when

any of its children changes state.

The arguments to wait() are the pid of the process to wait for and any options. The

default for pid is to wait for all children. The options may be either "n", meaning wait()

should not wait for children to block but should return immediately with any status that's

available, or "u", meaning that any processes that stopped should also be reported. These

options may be combined by using "nu".

The select() system call

Some programs need to be able to read data from more than one source. For example,

a program may have to handle network tra�c and also respond to the keyboard. The

problem with using read() is that if no input is available, the program will block and will

not be able to handle the other stream that may in fact have input waiting on it. To handle

this situation, you can use the function select(x1,x2,...i). The select() function tells the system

which �les you are interested in reading from, and when input becomes available on any

of those sources, the program will be noti�ed. The select() function takes �les or lists of

�les as its arguments, and returns a list of all �les on which input is waiting. If an integer

argument is supplied, it is a timeout that gives the maximum milliseconds to wait before

input is available. If the timeout expires, an empty list is returned. If no timeout is given,

the program waits inde�nitely for input on one of the �les.

5.4. NETWORKING 77

while *(L := select(f1, f2, f3, timeout)) = 0 do
handle_timeout()

(&errno = 0) | stop("Select failed: ", &errortext)
every f := !L do {

Dispatch reads pending on f
...
}

When using select() to process input from multiple �les, you may need to pay some

attention to avoid blocking on any one of your �les. For example the function read() waits

until an entire line has been typed and then returns the whole line. Consider this code,

which waits for input from either a �le (or network connection) or a window designated by

keyword &window:

while L := select(f, &window) do
if !L === f then c := read(f)

Just because select() has returned doesn't mean an entire line is available; select() only

guarantees that at least one character is available. The command shell log application

in Chapter 14 shows the usage of select(). Another primary application area for select()

is network programming, described later in this chapter. For network connections, the

function reads(f, i) will return as soon as it has some input characters available, rather than

waiting for its maximum string size of i. But if no input is available, reads() blocks.

Non-blocking input and the ready() function

The function ready(f, i) is like reads(f, i) except that it is non-blocking, that is, it returns

immediately with up to i bytes if they are available, but it does not wait around. It is

ideal for use with select() and in situations where a server or client needs to interact with

multiple remote connections.

5.4 Networking

Unicon provides a very high-level interface to Internet communications. Applications with

custom communications use one of the major Internet applications protocols, TCP and

UDP. An higher level interface to several popular Internet protocols such as HTTP and

POP is provided by means of Unicon's messaging facilities.

TCP

A TCP connection is a lot like a phone call: to make a connection you need to know the

address of the other end, just like a phone number. For TCP, you need to know the name

78 CHAPTER 5. THE SYSTEM INTERFACE

of the machine to connect to, and an address on that machine, called a port. A server

listens for connections to a port; a client sends requests to a port. Also, there are two

kinds of ports, called "Internet Domain" and "Unix Domain." The distinction is beyond

the scope of this book; we will just mention that Internet Domain ports are numbers, and

Unix Domain ports look like �les. Also, a connection to a Unix domain port can only be

made from the same machine, so we will not consider the Unix domain further here.

A call to open() with mode "n" (network) requests a network connection. The �rst

argument to open() is the network address, a host:port pair for Internet domain connections,

and a �lename for Unix domain sockets. If the address contains no host name and therefore

starts with ":", the socket is opened on the same machine. The value returned by open() is

a �le that can be used in select() and related system functions, as well as normal reading

and writing.

A client uses mode "n" with open() to open a connection to a TCP server. Here is a

simple version of the Internet "�nger" program:

procedure main(argv)
local fserv := getserv("finger") |

stop("Couldn’t get service: ", &errortext)
name := argv[1]
host := ""
argv[1] ? {

name := tab(find("@")) & ="@" & host := tab(0)
}

if *host > 0 then write("[", host, "]")
f := open(host || ":" || fserv.port, "n") |

stop("Couldn’t open connection: ", &errortext)

write(f, name) | stop("Couldn’t write: ", &errortext)
while write(read(f))

end

Notice the use of getserv(). The posix_servent record it returns includes �elds for the

name, aliases, port, and protocol used by the Internet service indicated in getserv()'s argu-

ment. The Internet protocols specify the ports to be used for various services; for instance,

email uses port 25. Instead of having to remember port numbers or hard-coding them in

our program, we can just use the name of the service and have getserv() translate that into

the port number and protocol we need to use.

To write a server, all we need to do is add "a" (accept) to the mode after the "n" in

open(). Here is a simple TCP server that listens on port 1888:

procedure main()
while f := open(":1888", "na") do {

system("myserverd -servicerequest &", f, f)

5.4. NETWORKING 79

close(f)
}

(&errno = 0) | stop("Open failed: ", &errortext)
end

The call open(":1888", "na") blocks until a client connects. The returned value is a �le that

represents the network connection. This example server responds to requests by launching

a separate process to handle each request. The network connection is passed to myserverd

as its standard input and output, so that process had better be expecting a socket on its

standard I/O �les, and handle it appropriately. This works on UNIX; on other platforms

a di�erent approach is needed.

Launching a separate process to handle requests is standard operating procedure for

many Internet servers, but besides the portability concerns, it uses a lot of memory and

CPU time. Many servers can be implemented in a single process. Chapter 15 includes

an example of such a server. Mode "na" is less than ideal for one-process servers: it only

supports one connection at a time. When waiting for a new connection, the process is not

doing any computation, and when servicing a connection, the program is not listening for

any other connection requests. Unless each connection is of short duration, the server will

appear to be down, or appear to be unacceptably slow, to anyone trying to connect while

an existing request is being processed.

Determining IP numbers

Many programs need the IP number of the machine they are talking to. Given a network

connection f, image(f) will show the IP address and port of the client machine that is

connected (this is sometimes called the peername).

Some programs need to know their own IP number, but each machine can have several

IP numbers, one for each kind of physical network hardware in operation. To obtain a

list of local IP numbers, a program can read the output of /sbin/ifconfig (UNIX) or ipconfig

(Windows). To �nd the IP number used for a particular network connection n, on some

platforms you can call gethost(n), which returns a string with the IP number and port used

by the local machine for a given connection.

If you do determine your IP number in one of these ways, it is usually not the number

seen by the world, because most devices are connecting through some form of network

address translation. To see the number that the world sees, you have to connect to someone

else and ask them to tell you what IP number they see you at.

procedure main(argv)
n := open(argv[1],"n") |

stop("can’t connect to ", argv[1]|"missing host")
write("connected to: ", image(n)[6:-1])
write("using: ", gethost(n))

end

80 CHAPTER 5. THE SYSTEM INTERFACE

Non-blocking network opens

Servers need to never block. The call open(":port","nl") creates a listener on the speci�ed port,

without waiting around for someone to actually connect to it. The network �le returned

from open() is not open for reading or writing, so it is not good for much...yet. About

the only thing you can do with such a �le is include it (along with any other network

connections you have going) as an argument in a call to select(). If a listener matches a

current connection request, select() converts it into a regular network connection as per

mode "na".

In addition to non-blocking servers' listener connections, in the real-world clients need a

way to do an almost non-blocking connection as well. TCP connections over long distances

take a highly variable amount of time, but most clients do not want to �freeze� for a couple

of minutes while the connection attempt times out. The network client versions of open()

allows an optional third parameter to supply it with a timeout value, in milliseconds.

UDP

UDP is another protocol used on the Internet. TCP is like a phone call: all messages you

send on the connection are guaranteed to arrive in the same order they were sent. UDP

on the other hand is more like the postal service, where messages are not guaranteed to

reach their destination and may not arrive in the same order they were sent in. Messages

sent via UDP are called datagrams. It's a lot cheaper (faster) to send UDP messages than

TCP, though, especially if you are sending them across the Internet rather than to a local

machine. Sending a postcard is usually cheaper than a long distance phone call!

UDP datagrams can be sent either with an open()/writes() pair, or with send(). Typically

a server sends/receives on the same socket so it will use open() with read() and write(). A

client that only sends one or two datagrams uses send()/receive().

The following example provides a service called "rdate" that allows a program to ask a

remote host what time it has. The server waits for request datagrams and replies with the

date and time. The "u" �ag added to the mode in the call to open() signi�es that a UDP

connection should be used. The function receive() waits for a datagram to arrive, and then

it constructs a record having the address the message came from and the message in it.

The server uses the address to send the reply.

f := open(":1025", "nua")
while r := receive(f) do {

Process the request in r.msg
...
send(r.addr, reply)
}

The record returned by receive() has two �elds: the addr �eld contains the address of

the sender in "host :port" form, and the msg �eld contains the message.

5.4. NETWORKING 81

To write a UDP client, use mode "nu" Since UDP is not reliable, the receive() is guarded

with a select(); otherwise, the program might hang forever if the reply is lost. The timeout of

�ve seconds in the call to select() is arbitrary and might not be long enough on a congested

network or to access a very remote host. Notice the second argument to getserv(); it restricts

the search for Internet service information to a particular network protocol, in this case

UDP.

procedure main(args)
(*args = 1) | stop("Usage: rdate host")
host := args[1]
s := getserv("daytime", "udp")
f := open(host||":"||s.port, "nu") |

stop("Open failed: ", &errortext)
writes(f, " ")
if *select(f, 5000) = 0 then

stop("Connection timed out.")
r := receive(f)
write("Time on ", host, " is ", r.msg)

end

From these examples you can see that it is relatively easy to write programs that

use Internet communication. But TCP and UDP are very general, somewhat low-level

protocols; most programs employ a higher-level communication protocol, either by de�ning

their own, or using a standard protocol. If you need to de�ne your own Internet protocol,

you can do it on top of TCP or UDP; if your program needs to use a standard Internet

protocol, you should check �rst to see if the protocol is built-in to the language as part of

the messaging facilities, described in the next section.

Secure Sockets

Unicon o�ers secure sockets to encrypt data when using the TCP/UDP protocols.
Example server code:

procedure main()
sock := open("localhost:6600", "nae", "key=server.key", "cert=server.crt", "ca=ca.crt") |

stop(&errortext)
select(sock) # wait for input
msg := ready(sock)
write("Message from client:", msg)
writes(sock, msg) # echo back the same message to the client
close(sock)

end

Example client code:

82 CHAPTER 5. THE SYSTEM INTERFACE

procedure main()
sock := open("localhost:6600", "ne") | stop(&errortext)
writes(sock, "Hello SSL Socket")
select(sock) # wait for input
msg := ready(sock)
write("Message from server:", msg)
close(sock)

end

5.5 Messaging Facilities

Unicon's messaging facilities provide higher level access to many popular Internet protocols.

A call to open() using mode "m" establishes a messaging connection. The �lename argument

to a messaging connection is a URI (Uniform Resource Indicator) that speci�es the protocol,

host machine, and resource to read or write. The protocols implemented thusfar are HTTP,

HTTPS, Finger, SMTP, and POP. Extra arguments to open() are used to send headers

de�ned by the protocol. For example, the call

open("mailto:unicon-group", "m", "Reply To: jeffery@cs.uidaho.edu")

supplies a Reply To �eld as a third parameter to open() on an SMTP connection.

Header �elds from the server's response to a connection are read by subscripting the

message connection value with a string header name; an example is in the next section.

HTTP and HTTPS

HTTP is used to read or write to Web servers; the content read or written typically consists

of HTML text. The following program, httpget.icn, fetches a remote �le speci�ed by a URI on

the command line, and saves it as a local �le. The Icon Program Library module basename

is used to extract the �lename from the URI.

link basename

procedure main(argv)
f1 := open(argv[1],"m")
f2 := open(basename(argv[1]),"w")
while write(f2, read(f1))

end

This example retrieves the actual data for a successful HTTP request; for a failed

request the connection returns no data, appearing to be an empty �le. Programs can check

the HTTP status code in order to determine the nature of the problem. Status codes and

other metadata from HTTP header lines are inspected by subscripting the connection with

5.5. MESSAGING FACILITIES 83

the desired header. For example, in the previous program, checking f1["Status-Code"] would

allow us to detect HTTP errors, and f1["Location"] would allow us to �nd the new location

of the �le, if the HTTP server had informed us that the �le had moved. You can retrieve

this status information on a remote �le without retrieving the �le itself. If you open a URI

with mode "ms" instead of "m", an HTTP request for header information is made, but no

data is retrieved.

HTTPS is HTTP communicated over a secure-socket encryption layer. The encryption

requires the use of encryption keys and certi�cates to validate the authenticity of the remote

site. Certi�cates are typically stored in a directory or a database of some kind. Mode "m-"

may be used in open() to skip the validation of the certi�cate provided by the remote site.

SMTP and POP

SMTP is used to send a mail message. Mail is delivered via an SMTP server machine

on which the user must have a valid account. These default to the current user on the

current host machine. Two environment variables UNICON_SMTPSERVER and UNI-

CON_USERADDRESS can be set to override the default behavior.

POP is used to read mail messages. POP is the least �le-like of these protocols. A POP

connection feels like a list of strings, each string containing an entire mail message, rather

than a simple sequence of bytes. Function read() and operator ! produce entire messages

which in general contain many newline characters. POP messages may be removed by

either delete() or pop(); messages are bu�ered in such a way that message removal on the

server occurs when the connection is explicitly and successfully closed.

Here's a simple program that illustrates the use of messaging to get email from a POP

server. It gets messages from the server without deleting them and, for every message,

prints out who the message is from as well as the subject line.

procedure main(argv)
user := argv[1] | getenv("USER") | stop("no user")
passwd := argv[2] | getenv("PASSWD") | stop("no password")
server := argv[3] | getenv("MAILHOST") | "mailhost"
conn := open("pop://"||user||":"||passwd||"@"||server, "m") |

stop("couldn’t connect to the POP server ", server)
every msg := !conn do msg ?

while line := tab(find("\n")) do
if =("From: " | "Subject: ") then write(line)

close(conn)
end

You should improve the password handling in this program if you use it! Chapter 14

includes another example use of Unicon's POP messaging facilities: a spam �lter.

84 CHAPTER 5. THE SYSTEM INTERFACE

5.6 Tasks

A task is an executing program within the Unicon virtual machine. A single task called

the root is created when the interpreter starts execution. Additional tasks are created

dynamically as needed.

The tasking facilities allow Unicon programs to load, execute, communicate with, and

control one another, all within a single instantiation of the Unicon interpreter.

Although Unicon programs can use the tasking facilities to load and execute any number

of other programs within the same interpreter space, the tasking facilities do not introduce

a concurrent programming construct nor do they include special support for multiprocessor

hardware. Their domain is that of high-level language support for programs that bene�t

from or require a tighter coupling than that provided by inter-process communication; that

is, programs that access each other's state extensively.

Co-expressions provide the tasking facilities' program execution model, and co-

expression activation serves as the communication mechanism. The extensions are gen-

eral enough to be useful in a wide variety of contexts. For example, programs that use

the multi-tasking interface can communicate directly without resorting to external �les or

pipes.

At the language level, the tasking facilities include several built-in functions and key-

words, but no new types, declarations, or control structures. Several existing functions

have been extended to o�er additional support for the multi-tasking environment. Sepa-

rate memory allocation regions are established for each task.

Preliminary terminology

Before describing the task model, a few de�nitions are needed. These de�nitions pertain

to regions of memory referenced by programs during execution.

A name space is a mapping from a set of program source-code identi�ers to a set of

associated memory locations [Abelson85]. Icon programs have a global name space shared

across the entire program and various name spaces associated with procedures. Procedures

each have a static name space consisting of memory locations shared by all invocations of the

procedure and local name spaces private to each individual invocation of the procedure.

When a co-expression is created, a new local name space is allocated for the currently

executing procedure, and the current values of the local variables are copied into the new

name space for subsequent use by the co-expression.

An Icon program has an associated program state consisting of the memory associated

with global and static name spaces, keywords, and dynamic memory regions. Similarly, a

co-expression has an associated co-expression state consisting of an evaluation stack that

contains the memory used to implement one or more local name spaces. Co-expressions in

an Icon program share access to the program state and can use it to communicate.

5.6. TASKS 85

Tasks as extended co-expressions

A task consists of a main co-expression and zero or more child co-expressions that share

a program state consisting of the global and static name spaces, keywords, and dynamic

memory regions. At the source-language level, tasks are loaded, referenced, and activated

solely in terms of one of their member co-expressions; the task itself is implicit. Co-

expressions share access to the program state and can use it to communicate. Unicon

provides the task model as a mechanism for multi-tasking, but does not prede�ne the policy;

matters such as the scheduling algorithm used and whether multi-tasking is co-operative

or pre-emptive are programmable at the user level in terms of co-expression activations.

Task creation

A task can create other tasks. The function

load(s, L, f1, f2, f3, i1, i2, i3)

loads an icode �le [Gris86] speci�ed by the �le name s, creates a task for it and returns a

co-expression corresponding to the invocation of the procedure main(L) in the loaded icode

�le. L defaults to the empty list. Unlike conventional Icon command-line argument lists,

the argument list passed to load() can contain values of any type, such as procedures, lists,

and tables in the calling task.

The task being loaded is termed the child task, while the task calling load() is termed

the parent. The collection of all tasks forms a tree of parent-child relationships.

f1, f2, and f3 are �le arguments to use as &input, &output, and &error in the loaded task;

&input, &output, and &error default to those of the loading task. i1, i2, and i3 are three integer

arguments that supply initial region sizes for the task's block, string, and stack memory

areas, respectively. i1 and i2 default to 65000, while i3 defaults to 20000 (the defaults may

be changed by the environment variables BLKSIZE, STRSIZE, and MSTKSIZE).

Running other programs

A co-expression created by load() is activated like any other co-expression. When activated

with the @ operator, the child task begins executing its main procedure. Unless it suspends

or activates &source, the child task runs to completion, after which control is returned to

the parent. Chapter 5 presents an alternative means of executing a child with which the

parent retains control over the child as it executes.

This default behavior is illustrated by the program seqload, which loads and executes

each of its arguments (string names of executable Unicon programs) in turn. Each of the

strings passed on the command line and extracted from the list using the element-generation

operator, !) is passed in turn to load(), which reads the code for each argument and creates

a task in which to execute the loaded program. The tasks are then executed one-by-one

86 CHAPTER 5. THE SYSTEM INTERFACE

by the co-expression activation operator, @. There is nothing special about this example

except the semantics of the load() function and the independent execution environment

(separate global variables, heaps, and so forth), that load() provides to each task.

seqload.icn
procedure main(arguments)

every @load(!arguments)
end

For example, if three Icon programs whose executable �les are named translate, assem-

ble, and link are to be run in succession, the command

seqload translate assemble link

executes the three programs without reloading the interpreter for each program.

Data access

Although tasks have separate program states, they reside in the same address space and

can share data; values can be transmitted from task to task through main()'s argument

list, through co-expression activation, or by use of event monitoring facilities described in

Chapter 10. In the following pair of programs, the parent receives a list value from the

child and writes its elements out in reverse order.

parent.icn
procedure main()

L := @ load("child")
while write(pull(L))

end

child.icn
procedure main()

L := []
while put(L, read())
return L

end

Access Through Task Argument Lists

The following program takes its �rst argument to be an Icon program to load and execute

as a child, sorts its remaining arguments, and supplies them to the child program as its

command-line arguments (pop() and sort() are Icon built-in functions that extract the �rst

list element and sort elements, respectively):

5.6. TASKS 87

procedure main(arguments)
@load(pop(arguments), sort(arguments))

end

Argument lists allow more sophisticated data transfers; the seqload example presented

earlier can be extended to transmit arbitrary structures between programs using argument

lists in the following manner. As in seqload, each string naming an executable Icon program

is passed into load(), and the resulting task is activated to execute the program. In this case,

however, any result that is returned by one of the programs is assigned to local variable L

and passed to the next program in the list via the second argument to load().

seqload2.icn
procedure main(arguments)

every program := !arguments do
L := @load(program, L)

end

The net e�ect of seqload2.icn is similar to a UNIX pipe, with an important di�erence:

Arbitrary Icon values can be passed from program to program through the argument lists.

This capability is more interesting in substantial multipass tools such as compilers, where

full data structures can be passed along from tool to tool instead of writing out text

encodings of the structures to a �le.

Inter-task Access Functions

Several built-in functions provide inter-task access to program data. These functions are

usable in any multi-task Unicon context, but are especially useful in program execution

monitoring, discussed in Chapter 9.

For example, the variable() function takes a co-expression value as an optional second

argument denoting the task from which to fetch the named variable. variable(s, C) is useful

for assigning to or reading from another task's variables. In the following seqload example,

the parent initializes each child's Parent global variable (if there is one) to refer to the

parent's &main co-expression. A child task can then use Parent to determine whether it is

being run standalone or under a parent task. The variable() function is useful in inspecting

values, especially at intermediate points during the monitored execution of a TP.

seqload3.icn
procedure main(arguments)

every arg := !arguments do {
Task := load(arg)
variable("Parent", Task) := &main
@Task
}

end

88 CHAPTER 5. THE SYSTEM INTERFACE

In addition to extending existing functions for monitoring, several new functions have

been added. The use of these monitoring functions are illustrated in many example monitors

in Unicon's ipl/mprogs directory. Some of the intertask access functions are listed in Figure

5-1. In these functions, parameter C refers to a co-expression that may be from a task other

than the one being executed. Functions that generate values can produce more than one

result from a given call.

cofail(C) transmit failure to C.

fieldnames(r) generate �eldnames of record r.

globalnames(C) generate the names of C's global variables.

keyword(s, C) produces keyword s in C.

Keywords are special global variables that have

special semantics in certain language facilities.

localnames(C,i) generates the names of C's local variables,

i calls up from the current procedure call.

paramnames(C,i) generates the names of C's parameters.

staticnames(C,i) generates the names of C's static variables.

structure(C) generates the values in C's block region, or heap.

The heap holds structure types such as lists and tables.

variable(s,C,i) produces variable named s, interpreted i levels

up within C's procedure stack.

Figure 5-1: Unicon interprogram access functions.

Shared icode libraries

Programs that are written to take advantage of the multi-tasking environment gain in space

e�ciency and modularity. Code sharing is one natural way to achieve space e�ciency in

a collection of programs. Since procedures are �rst-class data values in Icon, code sharing

can be implemented via data sharing. Programs executing in a single invocation of the

interpreter can share code easily if the code is not required to produce side e�ects on global

variables in the calling task's program state. If side-e�ects to the calling task's program

state are required, the shared code must generally be written with care to explicitly reference

the calling task's state. Side e�ects in the client task can also be achieved through the

parameters passed in and results obtained by calling the shared procedure.

Loading shared code

Consider a collection of applications that make extensive use of procedures found in the

Icon program library (IPL) [Griswold90c]. If those applications are run using MT Icon, the

IPL routines need be loaded only once, after which they may be shared.

5.6. TASKS 89

In order to reference shared code from a loaded task, two additional considerations

must be satis�ed: the shared code must be loaded, and the client tasks must be able to

dynamically link shared routines into their generated code.

Both of these problems can be solved entirely at the source level: In order to introduce

a shared Icon procedure into the name space, a global variable of the same name must

be declared. Managing the loading of shared libraries is itself a natural task to assign to

an Icon procedure that uses a table to map strings to the pointers to the procedures in

question.

Code sharing example

The following collection of three programs illustrate one schema that allows code sharing.

Other conventions can certainly be devised, and much of the sharing infrastructure pre-

sented here can be automatically generated. Program calc.icn consists of a shared library

procedure named calc() and a main procedure that exports a reference to calc() for sharing:

calc.icn
procedure calc(args...)

code for calc
(may call other routines in calc.icn if there are any)

end

procedure main()
initialization code, if any
return calc

end

Note that a module exporting shared procedures can also have global variables (possibly

initialized from other command-line arguments). Shared modules can export other values

besides procedures using the same mechanism.

The parent task that loads the various shared library clients implements a procedural

encapsulation (loadlib() in this example) of an Icon table to store references to shared rou-

tines. The parent passes this procedure to clients. Each client calls the procedure for each

shared routine. Routines that are already loaded are returned to requesting tasks after a

simple Icon table lookup. Whenever a routine is requested that has not been loaded, the

load() function is called and the shared library activated.

procedure main(arguments)
@load("client",put(arguments,loadlib))

end

procedure loadlib(s, C)
static sharedlib

90 CHAPTER 5. THE SYSTEM INTERFACE

initial sharedlib := table()
sharedlib[s] := @load(s)
variable(s, C) := sharedlib[s]

end

A client of calc declares a global variable named calc, and assigns its value after inspect-

ing its argument list to �nd the shared library loader:

global loadlib
global calc
procedure main(arguments)

if /loadlib then stop("no shared libraries present")
loadlib("calc", ¤t)
... remainder of program may call shared calc

end

Sharing procedure collections

The primary de�ciency of the previous example is that it requires one shared library pro-

cedure per Icon module, that is, separate compilation. In practice it is more convenient to

have a collection of related procedures in a given Icon compilation unit. Shared libraries

can employ such a mechanism by resorting to a simple database that maps procedure names

to load modules.

5.7 Summary

Unicon's system facilities provide a high-level interface to the common features of modern

operating systems, such as directories and network connections. This interface is vital to

most programs, and it also presents the main portability challenges, since a Unicon design

goal is for applications to require no source code changes and no conditional code needed

to run on most operating systems. Of course some application domains such as system

administration are inevitably platform dependent.

There are two major areas of the system interface that are whole application domains

extensive enough to warrant an entire chapter of their own: databases and graphics.

Databases can be viewed as a hybrid of the �le and directory system interface with some

of the data structures described in Chapter 2. Since many databases are implemented us-

ing a client/server architecture, the database interface also includes aspects of networking.

Databases are presented in the Chapter 6.

Graphics is another crucial component of the system interface, rich enough to warrant

special features built-in to the language, and deep enough to warrant an entire book. Like

databases, graphics can be viewed as an extension of the �le data type described in this

chapter. Unicon's powerful 2D and 3D graphics facilities are discussed in Chapter 7.

Chapter 6

Databases

Databases are technically part of the system interface described in the last chapter, but

they are an important application area in their own right. Di�erent kinds of databases

are appropriate in di�erent situations depending on how much information is to be stored

and what kinds of accesses to the information are supported. This chapter describes three

kinds of databases for which Unicon provides direct support, enabling you to:

• Read and write memory-based structures to data �les.

• Use DBM databases as a persistent table data type.

• Manipulate SQL databases through the ODBC connection mechanism or the SQLite

plugin (discussed on page 527).

6.1 Language Support for Databases

Unicon provides transparent access to databases stored in local �les and on remote servers.

The term transparent means that the built-in functions and operators used to access infor-

mation in a database are the same as those used to access information in the memory-based

structures presented in Chapter 2. To do this, connections to databases are represented by

new built-in types that are extensions of the �le and table data types.

Some people might prefer a di�erent syntax for databases from what is used for data

structures. A di�erent syntax, such as one based purely on function calls, would be conso-

nant with the di�erence in performance the programmer can expect to see when accessing

data in �les as opposed to memory-based data structures. However, the performance of

operators already depends on the type of the operands. Consider the expression !x. If x is a

structure, its elements are generated from memory, but if x is a �le, !x reads and generates

lines from the �le. The goal for Unicon is to make databases just as easy to learn and use

as the rest of the language, and to minimize the introduction of new concepts.

91

92 CHAPTER 6. DATABASES

The word �database� means di�erent things to di�erent people; for some, it is the short

form of �relational database.� This chapter uses the term database to refer to any method

of providing persistent structures that store information from one program run to the next.

The operators used to access a database determine whether one element at a time is read

or written, or whether many operations are bu�ered and sent to the database together.

6.2 Memory-based Databases

If the entire database �ts in memory at once, you can achieve vast speed-ups by avoiding the

disk as much as possible. For example, all queries to read the database can be performed

from memory. The database may be modi�ed in memory immediately, and updated on

the disk later on. Memory-based databases become increasingly feasible as main memories

grow larger. They are an excellent choice for many applications.

One way to implement a memory-based database is to build up your arbitrary structure

in memory, and then use the Icon Program Library module xcodes to write them out and

read them in. The xcodes procedures convert structures to a string format that can be

written to a �le, and convert such strings back into the corresponding structure. The

following sequence saves the contents of structure db to a �le named db.dat.

db := table()
db["Ralph"] := "800-USE-ICON"
db["Ray"] := "800-4UN-ICON"
dbf := open("db.dat","w")
xencode(db, dbf)
close(dbf)

The converse operation, reading in a structure from a �le is also simple:

dbf := open("db.dat")
db := xdecode(dbf)
close(dbf)
write(db["Ralph"])

This approach works great for databases that do not need to be written to disk on

an on-going basis and for which the queries can readily be expressed as operations on

structure types. For example, a telephone rolodex application would be well-served by this

type of database. The data �ts comfortably in memory, updates often occur in batches, and

simple queries (such as a student's name) provide su�cient access to the data. The other

two kinds of databases in this chapter use traditional database technologies to e�ciently

address situations where this type of database is inadequate.

6.3. DBM DATABASES 93

6.3 DBM Databases

A classic database solution on the UNIX platform is provided by the DBM family of library

functions. DBM stands for Data Base Manager, and the functions maintain an association

between keys and values on disk, which is very similar to the table data type. DBM

was eventually followed by compatible superset libraries called NDBM (New Data Base

Manager) and GDBM (GNU Data Base Manager). Unicon uses GDBM on all platforms.

DBM databases are accessed via the open() function using mode "d" to open a database

for reading and writing, or mode "dr" for read-only access. Once opened, DBM databases

resemble the table data type and are manipulated using table operations. For example, if d

is a DBM �le, d[s] performs a database insert/update or lookup, depending on whether the

expression is assigned a new value, or dereferenced for its current value. Values can also

be inserted into the database with insert(d, k, v) and read from it with fetch(d, k). delete(d,

k) similarly deletes key k from the database. DBM databases are closed using the close()

function. The following example program takes a database and a key on the command line,

and writes out the value corresponding to that key.

procedure main(args)
d := open(args[1], "d") | stop("can’t open ", args[1])
write(d[args[2]])

end

If you are wondering why the call to open() isn't followed by a call to close(), you are

right, it is proper to close �les explicitly, although the system closes all �les when the

program terminates. How would you generalize this program to accept a third command-

line argument, and insert the third argument (if it is present) into the database with the

key given by the second argument? You might easily wind up with something like this:

procedure main(args)
d := open(args[1], "d") | stop("can’t open ", args[1])
d[args[2]] := args[3]
write(d[args[2]])
close(d)

end

DBM databases are good for managing data sets with a simple organization, when the

size of the database requires that you update the database a record at a time, instead of

writing the entire data set. For example, if you wrote a Web browser, you might use a

DBM database to store the user's set of bookmarks to Web pages of interest.

There is one basic limitation of DBM databases when compared with the table data

type that you should know about. DBM databases are string-based. The keys and values

you put in a DBM database get converted and written out as strings. This makes the

94 CHAPTER 6. DATABASES

semantics of DBM databases slightly di�erent from tables. For example, a table can have

two separate keys for the integer 1 and the string "1", but a DBM database will treat both

keys as the string "1". This limitation on DBM databases also means that you cannot use

structure types such as lists as keys or values in the database. If the type is not convertible

to string, it won't work. You can use the functions xencode() and xdecode(), described in

the previous section, to manually convert between strings and structures for storage in a

DBM database if you really need this capability.

6.4 SQL Databases

DBM is great for data that is organized around a single key, but it is inadequate for

complex databases. The industry standard choice for enterprise-level data organization is

the Structured Query Language (SQL). SQL is supported by every major database vendor.

Unlike DBM, a SQL database can contain multiple tables, and those tables are accessed

by walking through a set of results to a query, rather than by accessing individual elements

directly. SQL is designed for industrial-strength relational databases.

The SQL language

The SQL language was invented by IBM and based on relational database theory developed

by E.F. Codd. A database is a collection of tables, and each table is a collection of rows.

The rows in a table contain information of various types in a set of named columns. Rows

and columns are similar to records and �elds, except that they are logical structures and do

not describe the physical form or layout of the data. There is an ANSI standard de�nition

of SQL, but many vendors provide extensions, and most vendors are also missing features

from the ANSI standard. Unicon allows you to send any string you want to the database

server, so you can write portable �vanilla SQL� or you can write vendor-speci�c SQL as

needed.

SQL was originally intended for text-based interactive sessions between humans and

their databases. Nowadays, SQL is primarily used �under the covers� by database applica-

tions that accommodate novice users with a graphical interface that does not require any

knowledge of SQL, while supporting a SQL �escape hatch� for advanced users who may

wish to do custom queries. Such an escape hatch is also a major potential security and

stability hole, so be cautious about allowing a user to type SQL commands themselves.

The duality of pre-cooked GUI-supported SQL versus arbitrary SQL strings for power

users is paralleled in the Unicon language by the fact that Unicon's built-in database

operators and functions duplicate a subset of the capabilities of SQL. There are often two

ways to do things: using Unicon operations or using SQL statements.

SQL statements can be divided into several categories, the most prominent of which are

data de�nition and data manipulation. When using SQL within a Unicon program, you

6.4. SQL DATABASES 95

build up string values containing SQL statements. In the following examples, the SQL is

given unadorned by double quotes or other Unicon artifacts.

New tables are created with a CREATE TABLE statement, such as

create table addresses (name varchar(40), address varchar(40),
phone varchar(15))

Tables have a primary key that must be unique among rows in the table. By default

the primary key is the �rst one listed, so name is the primary key in table addresses above.

SQL's data manipulation operations include SELECT, INSERT, UPDATE, and DELETE.

SELECT determines the data set being operated on, picking rows and columns that form

some projection of the original table. SELECT also allows you to combine information

from multiple tables using relational algebra operations. Most databases are long-lived

and evolve to include more columns of information over time. SQL's ability to select and

operate on projections is an important feature, since code that works with a certain set of

columns continues to work after the database is modi�ed to include additional columns.

INSERT, UPDATE, and DELETE all modify the table's contents. INSERT adds new rows

to a table. For example:

insert into addresses (name, address, phone)
values (’Nick K’, ’1 Evil Empire’, ’(123)456-7890’)

insert into addresses (name, address, phone)
values (’Vic T’, ’23 Frozen Glade’, ’(900)888-8888’)

UPDATE and DELETE can modify or remove sets of rows that match a particular criterion,

as in

update addresses set address = ’666 RTH, Issaquah’
where name = ’Nick K’

delete from addresses where name = ’Vic T’

This section presented only a few aspects of the SQL language. For simple database

tasks you can in fact ignore SQL and use the Unicon facilities described in the rest of this

chapter. However, for more complex operations the best solution is to formulate some SQL

commands to solve the problem. A full discussion of SQL is beyond the scope of this book.

For more information on this topic you might want to read one of the following books:

Ramez Elmasri and Shamkant Navanthe's Fundamentals of Database Systems, C.J. Date

and Hugh Darwen's A Guide to the SQL Standard.

Database architectures and ODBC

SQL databases are accessed through an underlying Open DataBase Connectivity (ODBC)

transport mechanism. This mechanism allows the programmer to ignore the underly-

ing architecture. Hiding this complexity from application programmers is important.

96 CHAPTER 6. DATABASES

The database architecture may vary from a single process accessing a local database, to

client/server processes, to three or more tiers spanning multiple networks. Figure 6-1 il-

lustrates the role played by ODBC in providing Unicon with database access in one- and

two-tier con�gurations. While this chapter cannot present a complete guide to the construc-

tion of database systems, it provides concrete examples of writing Unicon client programs

that access typical database servers.

Figure 6-1: Unicon and ODBC hide underlying architecture from applications

To use Unicon's SQL facilities, you must have several software components in place.

First, you need a SQL database server that supports ODBC. You can buy a commer-

cial SQL server, or use a free server such as MySQL (www.mysql.com) or PostgreSQL

(www.postgresql.org).

Second, you need an account, password, and permissions on the SQL server in order to

connect to it. The details are server-dependent and outside the scope of this book.

Third, your client machine needs an ODBC driver manager, and an ODBC driver for

your SQL server; these must be con�gured properly. The driver manager is a component

that connects applications to various databases; ODBC drivers are dynamic link libraries

that database vendors supply to talk to their database. Figure 6-2 shows database con�gu-

ration for MySQL via the MyODBC GUI dialog box on Windows (left), and in a ∼/odbc.ini

�le on Linux (right). In both cases, con�guration involves knowing the internet server name

or IP address, the port, and the database to connect to. For that triplet, you get to de�ne

a name called a DSN or data source name, which is the name that Unicon will pass in to

open(). In the Windows dialog, this name is a text �eld explicitly named as a DSN, while

in the Linux odbc.ini �le, it is at the top, inside the square brackets.

In both cases, there are a lot of additional options which are beyond the scope of this

book. On Windows, each ODBC driver may have its own custom dialogs for con�guration,

while on Linux the odbc.ini �le is more the property of the driver manager and is used to

con�gure all the various drivers. As a fair warning, the details required in the dialogs or

6.4. SQL DATABASES 97

the exact syntax of the odbc.ini and its required entries for a given driver change slightly

from time to time and are beyond the scope of this book. Consult current ODBC docu-

mentation for the driver manager on your platform and the speci�c database to which you

are connecting.

[phones]

Driver = /usr/lib64/libmyodbc5.so

Description = phone example

Server = localhost

Database = phonebook

Port = 3306

Figure 6-2: Con�guring ODBC on Windows (left) and Linux (right)

Once you have the ODBC software set up, writing the Unicon client program to connect

to your database is straightforward.

Opening a SQL database

To connect to a SQL database, call open() with mode "o". This establishes a session with

a data source. The �lename argument to open() is the data source name to which you are

connecting; it is associated with a particular ODBC driver, remote database server machine

or IP number, and port within the ODBC driver manager.

Mode "o" is followed by additional string arguments to open(). The �rst is an optional

default table name used in the various functions that take a table name. Applications

that send their own custom SQL strings via the sql() function may �nd that their SQL

strings always specify what table they are operating on, rendering this optional parameter

unnecessary. The next two arguments are the user name and password to use in connecting

to the speci�ed data source. Here is an example that establishes connections to a database

(unicondb) as user scott with password tiger, with and without specifying an initial table

98 CHAPTER 6. DATABASES

mydbtable. Most applications will not need two open connections to their database, but

see below for an example that does.

db := open("unicondb", "o", "mydbtable", "scott", "tiger")
db2 := open("unicondb", "o", "scott", "tiger")

The open() function returns a value that supports many of the operations of both a

�le and a table, or fails if the connection cannot be established. The underlying session

information is shared by multiple calls to open() the same database. In addition to the

network connection and SQL session information that is retained, each database �le value

maintains a current selection consisting of a set of rows corresponding to the current query,

and a cursor position within that selection. When a database is �rst opened, the selection

consists of a null set containing no rows and no columns.

Querying and modifying a SQL database

Subsequent queries to the database can be made by calling sql(db, sqlcmd). The sql() function

sets the current selection within the database and places the cursor at the beginning of the

set of selected rows. For example, to obtain Vic T's phone number you might say

sql(db, "select phone from addresses where name=’Vic T’")

Vic's phone number is included if you use the original select * query, but the more

speci�c your query, the less time and network bandwidth is wasted sending data that your

client application must �lter out. You should do as much work on the server (in SQL) as

possible to make the client more e�cient.

Since the function sql() transmits arbitrary SQL statements to the server, it can be used

for many operations besides changing the current selection. The sql() function returns a null

value when there is no return value from the operation, such as a create table statement. Its

return value can be of varying type for other kinds of queries, and it can fail, for example

if the SQL string is malformed or requests an impossible operation.

Traversing the selected rows

To walk through the rows of your current database selection, you call fetch(db). The value

returned is a row that has many of the operations of a record or a table, namely �eld access

and subscripting operators. For example, if fetch(db) returns a row containing columns

Name, Address, and Phone, you can write

row := fetch(db)
write(row.Name)
write(row["Address"])

6.4. SQL DATABASES 99

Called with one argument, fetch(db) advances the cursor one position. With two arguments,

fetch(db, col) produces a column by name from the current row, without advancing the

cursor. The preceding example could have been written

write(fetch(db,"Name"))
write(fetch(db,"Address"))

A SQL example application

A human resources database might include two tables. One table might maintain employee

information, such as names, identi�cation numbers, and phone numbers, while another

table maintains entries about speci�c jobs held, including employee's ID, the pay rate, a

code indicating whether pay is hourly or salaried, and the job title. Note that the SQL is

embedded within a string literal.

sql(db, "create table employees (id varchar(11), name varchar(40),
phone varchar(15))")

sql(db, "create table jobs (id varchar(11), payrate integer, is_salaried char,
title varchar(40))")

Inserting rows into the database looks like

sql("insert into employees (id, name, phone) values(32, ’Ray’, ’274-2977’)")

Now, how can you print out the job title for any particular employee? If you have the

employee's identi�cation number, the task is easy, but let's say you just have their name.

These are the kinds of jobs for which SQL was created. Information from the employees

table is e�ortlessly cross-referenced with the jobs table by the following SQL. The string

is long so it is split into two lines. A Unicon string literal spans multiple lines when the

closing double quotes has not been found and the line ends with an underscore character.

sql(db, "select name,title from employees,jobs _
where name=’Ray’ and employees.id = jobs.id")

while write(fetch(db).Title)

SQL types and Unicon types

SQL has many data types, most of which correspond to Unicon types. CHAR and VARCHAR

correspond to Icon strings; INTEGER and SMALLINT correspond to integers; FLOAT and

REAL correspond to reals, and so on. The philosophy is to convert between Icon and SQL

seamlessly and with minimal changes to the data format, but you should be aware that

these are not exact matches. For example, it is possible to de�ne a FLOAT with more

precision than an Icon real, and it is easy to produce an Icon string that is longer than the

100 CHAPTER 6. DATABASES

maximum allowed VARCHAR size on most SQL servers. Unicon programmers writing SQL

clients must be aware of the limitations of the SQL implementations they use.

Unicon has structure types for which there is no SQL equivalent. Values of these types

cannot be inserted into a SQL database unless you explicitly convert them to a SQL-

compatible type (usually a string) using a function such as xencode(). SQL also has types

not found in Unicon such as bit strings, timestamps, and BLOBS; they are represented by

strings, and strings are used to insert such values into SQL databases. Strings are also used

to represent out-of-range values when reading SQL columns into Unicon.

More SQL database functions

SQL databases are feature-rich enough to warrant a suite of functions in addition to those

they share with other kinds of �les and databases. These functions are described in detail in

Appendix A, but some of them deserve special mention. The function dbtables(db) is useful

to obtain a listing of the data objects available within a particular database. Function

dbcolumns(db) provides detailed information about the current table that is useful in writing

general tools for viewing or modifying arbitrary SQL databases.

The functions dbproduct(db) and dbdriver(db) produce information about the DBMS on

which db resides, and the ODBC driver software used in the connection. The function

dblimits(db) produces the upper bounds for many DBMS system parameters, such as the

maximum number of columns allowed in a table. These functions return their results as a

record or list of records whose �eld names and descriptions are given in Appendix A.

6.5 Tips and Tricks for SQL Database Applications

In addition to the complexity of learning SQL itself, SQL database applications have a

characteristic �avor which may or may not seem natural to the Unicon programmer.

Operating on large �les

Asking for 200MB of data in a remote SQL database is a good way to bring a computer to

its knees. Some SQL operations are slow due to an ine�cient query on the remote server,

while others are slow because large amounts of data are transmitted over a limited network

connection. For a �xed amount of data, operation time will vary radically depending on

how it is organized; fewer, larger tuples are transmitted faster than many smaller tuples.

Use multiple connections to nest queries

It is common to use more than one table at once. Some times this is using SQL's JOIN

operation, but sometimes it is not. If you try to nest a second query inside a �rst one, you

6.5. TIPS AND TRICKS FOR SQL DATABASE APPLICATIONS 101

will quickly �nd that on a given connection, only one SELECT and one row set is maintained

at a time. The second SELECT replaces the �rst, so for example:

db := open("mydsn", "o", ...)
sql(db, “SELECT ...”)
while r := fetch(db) do {

sql(db, “SELECT ...”)
while r2 := fetch(db) do write(r2.foo)
}

does not work. Within your operating system and database server's limits, the easy solution

is to open multiple connections to your database:

db1 := open("mydsn", "o", ...)
db2 := open("mydsn", "o", ...)
sql(db, “SELECT ...”)
while r := fetch(db) do {

sql(db2, “SELECT ...”)
while r2 := fetch(db2) do write(r2.foo)
}

Dynamic records

Rows are represented as a special kind of Unicon record whose �elds are determined at

run-time from the names of selected columns. Record types introduced at runtime are

called dynamic records, and they are useful in other contexts besides databases.

The function constructor(rname, field, field, ...) produces a procedure that constructs

records named rname with the given �elds. The �eld names can be arbitrary strings,

but only legal identi�ers will be subsequently accessible via the �eld operator (.)

The db library

The declaration link db provides simpli�ed SQL access routines for non-SQL programmers.

This library will not allow you to avoid learning SQL for long, but may ease the conversion

from Unicon structure values into SQL strings for transmission over the network. The most

useful of these procedures is dbupdate(), which sends a record (tuple) to the database. The

following example updates two columns within a row returned by fetch().

row := fetch(db)
row.Name := "Bill Snyder"
row["Address"] := "6900 Tropicana Blvd"
dbupdate(db, row)

102 CHAPTER 6. DATABASES

Of course, before a fetch can be performed, a row set must have been selected. The pro-

cedure dbselect(db, columns, filter, order) selects tuples containing columns from the database,

with optional �lter(s) and ordering rule(s). Inserting and deleting rows is performed by

procedures dbinsert() and dbdelete(). The dbinsert() function takes two parameters for each

column being inserted, the column name and then the value.

Unwritable tuples

Many SQL selections are read-only. The relational combination of columns from di�erent

tables is powerful, but the resulting selections are non-updatable. Another example of a

read-only query is a GROUP BY query, which is usually applied before an aggregate count.

Executing a SELECT * on a single table is updatable, but if you do something fancier, you

will have to know the semantics of SQL to tell whether the result may be modi�ed.

6.6 Summary

Databases are a standard form of persistent storage for modern applications. The notation

for manipulating a database looks like a sequence of table and record operations, comprising

a combination of Unicon and SQL statements. Database facilities give programmers direct

access and control over the information �ow to and from permanent storage.

Chapter 7

Graphics

Unicon provides a rich high level interface to 2D and 3D raster graphics, text fonts, col-

ors, and mouse input facilities provided by an underlying system, such as the X Window

System. Unicon's graphics are portable across multiple platforms. The most important

characteristics of the graphics facilities are:

• Simplicity, ease of learning

• Windows are integrated with Unicon's existing I/O functions

• Straightforward input event model

This chapter presents Unicon's 2D and 3D graphics facilities. Some material on 2D graphics

comes from University of Arizona CS TR93-9. The 3D graphics sections come from Unicon

TR 9, whose original author is Naomi Martinez. The de�nitive reference for the 2D graphics

facilities is �Graphics Programming in Icon� by Griswold, Je�ery, and Townsend, and this

book is of value for writing 3D programs. Online references for the graphics facilities also

come with the software distributions.

Because di�erent platforms have radically di�erent capabilities, there is a trade-o�

between simplicity, portability, and full access to the underlying machine. Unicon aims for

simplicity and ease of programming rather than full low-level access.

7.1 2D Graphics Basics

Unicon's 2D facilities provide access to graphics displays without enforcing a particular

user interface look-and-feel. Events other than keystrokes and mouse events are handled

automatically by the runtime system. Chapter 17 describes the standard class library and

user interface builder for Unicon applications.

Graphic interfaces are event driven; an event reading loop is the control mechanism

driving the application. For example, if an application must be ready to redraw the con-

tents of its window at all times, it may not compute for long periods without checking

103

104 CHAPTER 7. GRAPHICS

for window events. This event driven paradigm used in the underlying implementation

is optional at the Unicon application level. Since Unicon windows handle many events

automatically and �take care of themselves�, applications follow the event driven paradigm

only when it is needed. Unicon's extensive use of default values make simple graphics ap-

plications extremely easy to program, while providing �exibility where it is needed in more

sophisticated applications.

A window is a special �le opened with mode "g", appearing on-screen as a rectangular

space for text and/or graphics. Windows support text I/O, much as one uses a text

terminal. A simple Unicon graphics program might look like this:

procedure main()
w := open("hello", "g")
write(w, "hello, world")
do processing ... use w as if it were a terminal
close(w)

end

Windows are open for both reading and writing, and support the usual �le operations

with the exceptions of seek() and where(). Unlike regular �les, the type() of a window is

"window". Like other �les, windows close automatically when the program terminates, so

the call to close() in the above example is optional.

Bit-mapped, or raster, graphics constitute a second programming model for windows.

There are no programming �modes� and code that uses graphics may be freely intermixed

with code that performs text operations. There are many graphics functions and library

procedures, detailed in Appendices A and B.

&window: the Default Window Argument The keyword &window is a default win-

dow for graphics. &window starts with a null value; only window values (and &null) may be

assigned to &window. &window is a default argument to most graphics functions and is used

implicitly by various operations. If a program uses &window, the argument can be omitted

from calls to functions such as EraseArea() and WAttrib(). The window argument is required

for calls to �le functions such as write() and writes() since these functions default to &output,

not &window. The default window shortens the code for graphics-oriented programs and

makes it faster.

2D Graphics Coordinates The 2D graphics functions use an integer coordinate system

based on pixels (picture elements). Like the text coordinate system, 2D graphics coordi-

nates start in the upper-left corner of the screen. From that corner the positive x direction

lies to the right and the positive y direction moves down. Unlike text coordinates, the

graphics coordinate axes are zero-based, which is to say that the very top leftmost pixel is

(0,0) by default.

7.1. 2D GRAPHICS BASICS 105

Angles are real numbers given in radians, clockwise starting at the 3 o'clock position.

Many functions operate on rectangular regions speci�ed by x, y, width, and height compo-

nents. Width and height may be negative to extend the rectangle left or up from x and y.

Screen output may be limited to a rectangle within the window called the clipping region.

The clipping region is set or unset using the function Clip().

Window Attributes A window's state has many attributes with associated values. Some

values are de�ned by the system, while others are under program control, with reasonable

defaults. When opening a window, open() allows string arguments after the �lename and

mode that specify initial values of attributes when the window is created. For example, to

say hello in italics on a blue background one may write:

procedure main()
w := open("hello", "g", "font=sans,italics", "bg=blue")
write(w, "hello, world")
processing ...

end

After a window is created, its attributes are read and set using the function WAt-

trib(w,s1,s2,...). Arguments to WAttrib() that have an equals sign are assignments that set

the given value if possible; WAttrib() fails otherwise. open() only allows such attribute as-

signments. Some attributes can only be read by WAttrib() and not set.

String arguments to WAttrib() that have an attribute name but no value are queries which

return the attribute value. WAttrib() generates a string result for each argument; a query on

a single argument produces just the value of that attribute; for multiple arguments and in

the case of assignment, the result is the attr=val form attribute assignments take. Attributes

are also frequently set implicitly by the user's manipulation of the window; for instance,

cursor or mouse location or window size.

Table 7-1 lists attributes that are maintained on a per-window basis. Attribute values

are string encodings. Usage refers to whether the attribute may be read, written or both.

RWO and WO attributes can be assigned only when the window is opened. Although all

attribute values are encoded as strings, they represent a range of window system features.

The attribute pointer refers to mouse pointer shapes that may be changed by the applica-

tion during di�erent operations. The attribute pos refers to the position of the upper-left

corner of the window on the screen. Screen position is speci�ed by a string containing x,y

coordinates, e.g. "pos=200,200".

106 CHAPTER 7. GRAPHICS

Table 7-1

Canvas Attributes

Name Type / Example Description Usage

size pixel pair Size of window RW
pos pixel pair Position of window on screen RW
canvas normal, hidden Canvas state RW

windowlabel string Window label (title) RW

inputmask string select categories of input events RW

pointer arrow, clock Pointer (mouse) shape RW
pointerx,

pointery
pixel Pointer (mouse) location RW

display device / "my.cs.esu.edu:0" (X11) device window resides on RWO

depth # of bits Display depth R
displaywidth,

displayheight
pixel Display size R

image string Initial window contents WO

7.2 Graphics Contexts

Some attributes are associated with the window itself, while others are associated with the

graphics context, a set of resources used by operations that write to windows. This distinc-

tion is unimportant in simple applications but is useful in more sophisticated applications

that use multiple windows or draw many kinds of things in windows. A graphics context

has colors, patterns, line styles, and text fonts and sizes.

Although they are called graphics contexts, text operations use these attributes. Text

is written using the foreground and background colors and font de�ned in the graphics

context. Table 7-2 lists the attributes associated with a graphics context.

Table 7-2

Context Attributes

Name Type / Example Description : Default Usage

fg color / "red" Foreground color : black RW

bg color / "0,65535,0" Background color : white RW

font font name Text font : �xed RW

fheight, fwidth integer Text font max char height and width R

leading integer Vertical # pixels between text lines RW

7.2. GRAPHICS CONTEXTS 107

Name Type / Example Description : Default Usage

ascent, descent integer Font height above/below baseline R

drawop logical op / reverse Drawing operation: copy RW

�llstyle
stippled, opaquestip-

pled
Graphic �ll style : solid RW

pattern "4,#5A5A" Fill pattern RW

linestyle ono�, doubledash Drawing line style : solid RW

linewidth integer Drawing line width RW
clipx, clipy,

clipw, cliph
integer Clip rectangle position and extent: 0 RW

dx, dy integer Output coordinate translation : 0 R

image string / "flag.xpm" Initial window contents WO

Binding Windows and Graphics Contexts Together Graphics contexts can be

shared among windows, and multiple graphics contexts can be used on the same win-

dow. An Unicon window value is a binding of a canvas (an area that may be drawn upon)

and a graphics context. A call open(s,"g") creates both a canvas, and a context, and binds

them together, producing the binding as its return value.

Clone(w) creates a binding of the canvas and attributes of w with a new graphics context

that is manipulated independently. Clone() also accepts any number of string attributes

to apply to the new window value, as in open() and WAttrib(). After calling Clone(), two

or more Unicon window values write to the same canvas. The cursor location is stored

in the canvas, not the graphics context. Writing to the windows produces concatenated

(rather than overlapping) output. Closing one of the window values removes the canvas

from the screen but does not destroy its contents; the remaining binding references an

invisible pixmap. The canvas is destroyed after the last binding associated with it closes.

Use of Clone() can signi�cantly enhance performance for applications that require frequent

graphics context manipulations.

Subwindows The function Clone() can also be used to create subwindows, which are

canvases that reside within other windows. Clone(w, "g", ...) opens a 2D subwindow within

w, and Clone(w, "gl", ...) opens a 3D subwindow within w. Applications must supply position

and size attributes when they create a subwindow. Input events to a subwindow are not

seen on the enclosing parent window and vice versa; both windows must be polled or

supplied to WActive() or select() in order to handle input.

Coordinate Translation In 2D, context attributes dx and dy perform output coordinate

translation. dx and dy take integer values and default to zero. These integers are added

into the coordinates of all output operations that use the context; input coordinates in &x

and &y are not translated.

108 CHAPTER 7. GRAPHICS

7.3 Events

User input such as keystrokes and mouse clicks are called events. Many events are handled

by Unicon automatically, including window redrawing and resizing, etc. Other events are

put on a queue in the order they occur, for processing by the Unicon program. When

reading from a window using �le input functions such as reads(w, 1), only keyboard events

are produced; mouse and other events are dropped.

The primary input function for windows is Event(w), which produces the next event

for window w and removes it from the queue. If the event queue is empty, Event() waits

for an event. Keyboard events are returned as strings, while mouse events are returned

as integers. Special keys, such as function and arrow keys, are also returned as integers,

described below. Event() also removes the next two elements and assigns the keywords &x

and &y the pixel coordinates of the mouse at the time of the event. The values of &x, &y

remain available until a subsequent call to Event() again assigns to them. Event() sets the

keyword &interval to the number of milliseconds that have elapsed since the last event (or to

zero for the �rst event). Keywords &control, &shift, and &meta are set by Event() to return the

null value if those modi�er keys were pressed at the time of the event; otherwise they fail.

For resize events, &interval is set to zero and modi�er keywords fail. Keywords associated

with event processing on windows are summarized in Table 7-3:

Table 7-3

Window Input Event Keywords
Keyword Description

&x Mouse location, horizontal

&y Mouse location, vertical

&row Mouse location, text row

&col Mouse location, text column

&interval Time since last event, milliseconds

&control Succeeds of Control key pressed

&shift Succeeds if Shift key pressed

&meta Succeeds if Alt (meta) key pressed

Keyboard Events The regular keys that Unicon returns as one-letter strings correspond

approximately to the lower 128 characters of the ASCII character set. These characters

include the control keys, the escape key, and the delete key. Modern keyboards have many

additional keys, such as function keys, arrow keys, "page down", etc. Unicon produces

integer events for these special keys. A collection of symbol de�nitions for special keys is

available in the library include �le keysyms.icn. The most common of these are Key_Down,

Key_Up, Key_Left, Key_Right, Key_Home, Key_End, Key_PgUp, Key_PgDn, Key_F1...Key_F12, and

Key_Insert.

7.3. EVENTS 109

Mouse Events Mouse events are returned from Event() as integers indicating the type

of event, the button involved, etc. Keywords allow the programmer to treat mouse events

symbolically. The event keywords are:

Table 7-4

Window Input Event Codes

Keyword Event

&lpress Mouse press left

&mpress Mouse press middle

&rpress Mouse press right

&lrelease Mouse release left

&mrelease Mouse release middle

&rrelease Mouse release right

&ldrag Mouse drag left

&mdrag Mouse drag middle

&rdrag Mouse drag right

&resize Window was resized

The following program uses mouse events to draw a box that follows the mouse pointer

around the screen when a mouse button is pressed. The attribute drawop=reverse allows

drawing operations to serve as their own inverse; see [Griswold98] for more about the drawop

attribute. Function FillRectangle() draws a �lled rectangle on the window and is described

in the reference section. Each time through the loop the program erases the box at its old

location and redraws it at its new location; the �rst time through the loop there is no box

to erase so the �rst call to FillRectangle() is forced to fail by means of Unicon's \ operator.

procedure main()
&window := open("hello", "g", "drawop=reverse")
repeat if Event() === (&ldrag | &mdrag | &rdrag) then {

erase box at old position, then draw at new position
FillRectangle(\x, \y, 10, 10)
FillRectangle(x := &x, y := &y, 10, 10)
}

end

The program can inspect the window's state using WAttrib(). Between the time the mouse

event occurs and the time it is produced by Event(), the mouse may have moved. In order

to get the current mouse location, use QueryPointer() (see below).

When more than one button is depressed as the drag occurs, drag events are reported

on the most recently pressed button. This behavior is invariant over all combinations of

presses and releases of all three buttons.

110 CHAPTER 7. GRAPHICS

Resize events are reported in the same format as mouse events. In addition to the event

code, &x, &y, &col and &row are assigned integers that indicate the window's new width and

height in pixels and in text columns and rows, respectively. Resize events are produced

when the window manager (usually at the behest of the user) resizes the window; no event

is generated when an Unicon program resizes its window.

Key Release, Mouse Motion, and Window Closure Events The canvas attribute

inputmask allows programs to request three kinds of additional input events on windows.

These events pose enough performance or portability obstacles that they are not produced

by default. An "m" in the inputmask requests mouse motion events when no mouse button is

depressed; by default only drag events are reported. If the inputmask contains a "k", events

will be generated when keyboard keys are released. An inputmask attribute containing a

"c" requests an event when a window closure is externally triggered, as in the case when a

titlebar x button is pressed.

Event Queue Manipulation The event queue is an Unicon list that stores events until

the program processes them. When a user presses a key, clicks or drags a mouse, or resizes

a window, three values are placed on the event queue: the event itself, followed by two

integers containing associated event information.

Pending(w) produces the event queue for window w. If no events are pending, the list is

empty. The list returned by Pending() is attached to the window. Additional events may

be added to it at any time during program execution. It is an ordinary list and can be

manipulated using Unicon's list functions and operators.

When several windows are open, the program may need to wait for activity on any of

the windows. Each pending list could be checked until a nonempty list is found, but such

a busy-waiting solution is wasteful of CPU time. The function Active() waits for window

activity, relinquishing the CPU until an event is pending on one of the open windows, and

then returns a window with a pending event. A window is said to starve if its pending

events are never serviced. Active() cycles through open windows on repeated calls in a way

that avoids window starvation.

7.4 Colors and Fonts

Unicon recognizes a set of string color names based loosely on a color naming system found

in [Berk82]. The color names are simple English phrases that specify hue, lightness, and

saturation values of the desired color. The syntax of colors is

[lightness] [saturation] [hue[ish]] hue

where lightness is one of: pale, light, medium, dark, or deep; saturation is one of weak,

moderate, strong, or vivid; and where hue is any of black, gray, grey, white, pink, violet, brown,

7.5. IMAGES, PALETTES, AND PATTERNS 111

red, orange, yellow, green, cyan, blue, purple, or magenta. A single space or hyphen separates

each word from its neighbor. When two hues are supplied (and the �rst hue has no ish

su�x), the resulting hue is halfway in between the two named hues. When a hue with an

ish su�x precedes a hue, the resulting hue is three-fourths of the way from the ish hue to

the main hue. When adding ish to a word ending in e, the e is dropped (for example, purple

becomes purplish); the ish form of red is reddish. Mixing radically di�erent colors such

as yellow and purple does not usually produce the expected results. The default lightness

is medium and the default saturation is vivid. Note that human perception of color varies

signi�cantly, as do the actual colors produced from these names on di�erent monitors.

Color Coordinate Systems and Gamma Correction In addition to the standard

color names, platform-speci�c color names may be supported. Colors may also be speci�ed

by strings encoding the red, green, and blue components of the desired color. Unicon

accepts the hex formats "#rgb" in which r, g, and b are 1 to 4 hex digits each. Red,

green, and blue may also be given in decimal format, separated by commas, using a linear

scale from 0 to 65535 ("0,0,0" is black; "65535,65535,65535" is white), although displays

typically o�er far less precision and nonlinear colors. For example, "bg=32767,0,0" requests

a medium red background; if the display is incapable of such, it approximates it as closely

as possible from the available colors. "fg=0,65000,0" requests a vivid green foreground.

If colors appear darker than they should, the window system is not providing linear

colors. Unicon can be told to perform the correction by means of the gamma attribute; 1.0

is a default (no gamma correction), and experimenting with values between 2 and 3 usually

provides satisfactory results.

Fonts

Fonts are speci�ed by a comma-separated string of up to four �elds supplying the font's

family name, followed by optional size or italic or bold designations in any order. The

fonts available vary widely from system to system. Four font family names available on

all Unicon systems include serif, sans, typewriter, and mono. These families map onto the

system's closest approximation of Times, Helvetica, Courier, and a monospaced console

font. Font sizes are given in pixel height.

7.5 Images, Palettes, and Patterns

DrawImage(x, y, s) draws a rectangular area using an image string. String s has the form

"width,palette,data". width is the width of the rectangle drawn, palette is a code that

de�nes the colors corresponding to data values, and the rest of the data supplies pixel

values. Prede�ned palettes and palette functions help to provide this capability. Image

and palette functions are described fully in [Griswold98].

112 CHAPTER 7. GRAPHICS

The context attribute fillstyle determines the pixels used by draw and �ll functions like

FillPolygon(). If the fillstyle is not solid, a pattern in the �lled area is drawn in the foreground

color; other pixels are drawn in the background color ("fillstyle=textured"). The function

Pattern(w,s) associates a pattern denoted by s with w's context. String s is a built-in pattern

name, or a representation of bits that de�ne the pattern. Pattern representations are of the

form "width,#bits" where 1 <= width <= 32. The window system may limit the pattern's

width and height to as little as 8.

The height of the pattern is de�ned by the number of rows in the bits component of the

pattern string. Bits consists of a series of numbers, each supplying one row of the pattern,

in hexadecimal format. Each digit de�nes four bits and each row is de�ned by the number

of digits required to supply width bits. For example, the call

Pattern("4,#5A5A")

de�nes a 4x4 pattern where each row is de�ned by one hex digit.

pme: a pixmap editor

A simple image editor called pme demonstrates event processing including mouse events.

pme displays both a small and a "magni�ed" display of the image being edited, allows the

user to set individual pixels, and allows the user to save the image; it is well-suited for

constructing and hand-editing small images such as icons and textures for use in larger 2D

or 3D scenes. pme consists of four procedures and employs several graphics functions. A

sample screen image of pme is presented in Figure 7-1. The "real" image is in the upper

left corner; underneath it is a mouse icon which shows what color is drawn by each of the

mouse buttons.

Figure 7-1 pme editing a 32x32 image

pme starts by declaring and initializing several variables.

link dialog, file_dlg
global lmargin, colors, colorbinds
procedure main(argv)

local i := 1, j, s, e, x, y, width := 32, height := 32

7.5. IMAGES, PALETTES, AND PATTERNS 113

The image width and height can be speci�ed on the command line with a -size option,

for example, pme -size 16,64.

if argv[1]=="-size" then {
i +:= 1
argv[2] ? {

width := integer(tab(many(&digits))) | stop("bad -size")
="," | stop("bad -size")
height := integer(tab(0)) | stop("bad -size")
i +:= 1
}

}

Following the size arguments, pme checks for a �lename specifying the bitmap to edit.

If one is found, it is read into the regular scale image, and then the magni�ed scale image

is constructed by reading each pixel using the function Pixel(), and �lling an 8x8 rectangle

with the corresponding color.

i := j := 0
every p := Pixel(0, 0, width, height) do {

Fg(p)
FillRectangle(j * 8 + lmargin + 5, i * 8, 8, 8)
j +:= 1
if j = width then { i +:= 1; j := 0 }
}

After the images are loaded with their initial contents, if any, a grid is drawn on the

magni�ed image to delineate each individual pixel's boundary. The user's mouse actions

within these boxes change the colors of corresponding pixels in the image. An list of

three bindings to the window, each with an independently-set foreground color, is used to

represent the color settings of the mouse buttons.

colors := [Clone("fg=red"),Clone("fg=green"),Clone("fg=blue")]

The main event processing loop of pme is simple: Each event is fetched with a call to

Event() and immediately passed into a case expression. The keystroke "q" exits the program;

the keystroke "s" saves the bitmap in a �le by calling WriteImage(), asking for a �le name if

one has not yet been supplied.

case e := Event() of {
"q"|"\e": return
"s"|"S": {

if /s | (e=="S") then s := getfilename()
write("saving image ", s, " size ", width,",", height)
WriteImage(s, 0, 0, width, height)
}

114 CHAPTER 7. GRAPHICS

Mouse events result in drawing a single pixel in both the magni�ed and regular scale

bitmaps using one of the colors depicted on the mouse icon.

&lpress | &ldrag | &mpress | &mdrag | &rpress | &rdrag : {
x := (&x - lmargin - 5) / 8
y := &y / 8
if (y < 0) | (y > height-1) | (x > width) then next
if x >= 0 then dot(x, y, (-e - 1) % 3)

To change the color drawn by a mouse button, you click on it.

else { # x < logical 0. User clicked in mouse area
if &x < 21 then getacolor(1, "left", height)
else if &x < 31 then getacolor(2, "middle", height)
else getacolor(3, "right", height)
until Event() === (&mrelease | &lrelease| &rrelease)
}

}

Pixel drawing is handled by procedure dot(), whose third argument speci�es which but-

ton, and therefore which color to draw. The dot is drawn using FillRectangle() in the mag-

ni�ed window; in the regular scale window DrawPoint() su�ces.

procedure dot(x, y, c)
if (x|y) < 0 then fail
FillRectangle(colors[c+1], x*8 + lmargin + 5, y*8, 8, 8)
DrawPoint(colors[c+1], x, y)
DrawRectangle(x*8 + lmargin + 5, y*8, 8, 8)

end

pme illustrates several aspects of the Unicon graphics facilities. Note the event-handling:

a case expression handles various keystrokes and mouse events with simpler control struc-

ture than in most languages' GUI event processing.

Listing 7-1 pme: a Unicon bitmap editor

link dialog
link file_dlg
global lmargin, colors
procedure main(argv)

local i := 1, j, s, e, x, y, width := 32, height := 32
if argv[1]=="-size" then {

i +:= 1
argv[2] ? {

width := integer(tab(many(&digits))) | stop("bad -size")

7.5. IMAGES, PALETTES, AND PATTERNS 115

="," | stop("bad -size")
height := integer(tab(0)) | stop("bad -size")
i +:= 1
}

}
lmargin := max(width, 65)
if s := argv[i] then {

&window := open("pme", "g", "image="||s) | stop("cannot open window")
width <:= WAttrib("width")
height <:= WAttrib("height")
lmargin := max(width, 65)
WAttrib("size="||(width*8+lmargin+5)||","||(height*8))
i := j := 0
every p := Pixel(0, 0, width, height) do {

Fg(p)
FillRectangle(j * 8 + lmargin + 5, i * 8, 8, 8)
j +:= 1
if j = width then { i +:= 1; j := 0 }
}

}
else {

&window := open("pme", "g", "size=" || (lmargin+width*8+5)||","||(height*8+5)) |
stop("cannot open window")
}

colors := [Clone("fg=red"),Clone("fg=green"),Clone("fg=blue")]
every i := 1 to 3 do {

DrawArc(4+i*10, height+68, 7, 22)
FillArc(colors[i], 5+i*10, height+70, 5, 20)
}

DrawRectangle(5, height+55, 45, 60, 25, height+50, 5, 5)
DrawCurve(27, height+50, 27, height+47, 15, height+39,

40, height+20, 25, height+5)
Fg("black")
every i := 0 to height-1 do

every j := 0 to width-1 do
DrawRectangle(j*8+lmargin+5, i*8, 8, 8)

DrawLine(0, height, width, height, width, 0)
repeat {

case e := Event() of {
"q"|"\e": return
"s"|"S": {

if /s | (e=="S") then s := getfilename()
write("saving image ", s, " size ", width,",", height)
WriteImage(s, 0, 0, width, height)

116 CHAPTER 7. GRAPHICS

}
&lpress | &ldrag | &mpress | &mdrag | &rpress | &rdrag : {

x := (&x - lmargin - 5) / 8
y := &y / 8
if (y < 0) | (y > height-1) | (x > width) then next
if x < 0 then {

if &x < 21 then getacolor(1, "left", height)
else if &x < 31 then getacolor(2, "middle", height)
else getacolor(3, "right", height)
until Event() === (&mrelease | &lrelease| &rrelease)
}

else dot(x, y, (-e-1)%3)
}

}
}

end
procedure dot(x, y, c)

if (x|y) < 0 then fail
FillRectangle(colors[c+1], x*8 + lmargin + 5, y*8, 8, 8)
DrawPoint(colors[c+1], x, y)
DrawRectangle(x*8 + lmargin + 5, y*8, 8, 8)

end
procedure getacolor(n, s, height)

if ColorDialog(["Set "||s||" button color"],Fg(colors[n]))=="Okay" then {
Fg(colors[n], dialog_value)
FillArc(colors[n], 5 + n * 10, height + 70, 5, 20)

}
end
procedure getfilename()

f := FileDialog()
f.show_modal()
return f.file.contents

end

7.6 3D Graphics

Three-dimensional graphics are provided in Unicon on platforms which support the industry

standard OpenGL libraries. Unicon provides the basic primitives, transformations, lighting,

and texturing elements of 3D computer graphics in a simpli�ed fashion, providing a good

basis to rapidly construct 3D scenes. The Unicon 3D interface consists of sixteen new

functions and six functions that were extended from the 2D graphics facilities, compared

with OpenGL's 250+ functions. While Unicon's 3D interface vastly simpli�es some aspects

of 3D programming compared with the OpenGL C interface, it does not currently provide

7.6. 3D GRAPHICS 117

access to several features of OpenGL including blending, fog, anti aliasing, display lists,

selection, and feedback.

This section explains in detail how to use Unicon's 3D facilities, for programmers who

already have some idea of how 3D graphics work. A 3D window is opened using mode "gl"

and is very similar to a 2D window, so many ideas earlier in this chapter are needed for 3D

programming. 3D graphics use the 2D windowing functions and attributes and introduce

several new ones.

A primary di�erence between 2D and 3D is that graphics operations in 2D windows

use (x,y) integer pixel coordinates relative to the upper left corner of the window, while

3D windows use (x,y,z) real number coordinates in an abstract geometric world. A mobile

viewer's position, and the direction they are looking, determine what is visible. Coordinates

of 3D objects go through a series of translations, scalings, and rotations to determine their

�nal location; these matrix transformations are used to compose aggregate objects from

their parts. In addition to the coordinate system di�erence, 3D scenes usually employ a

rich lighting model, and use materials and textures to draw objects more frequently than

a solid foreground color. For this reason, the fg attribute is extended in the 3D realm to

denote a foreground material, including color as well as how the object appears in di�erent

types of lighting.

Opening windows for 3D graphics

To open a 3D graphics window, call the built in function open(), passing in the title of the

window to be opened and mode "gl".

W := open("win", "gl")

As in the 2D facilities, if a window is assigned to the keyword variable &window, it is a

default window for subsequent 3D function calls.

3D attributes

Features such as lighting, perspective, textures, and shading give a scene the illusion of

being three-dimensional. A Unicon programmer makes use of context attributes to control

these features. By assigning new values to various attributes, the programmer controls

many aspects of the scene. Attributes to control the coordinate system, �eld of view,

lighting and textures are included in the Unicon 3D graphics facilities.

Some of the most basic context attributes concern the coordinate system. In 3D graph-

ics, x-, y-, and z-coordinates determine where to place an object. The objects that are

visible on the screen depend on several things, the eye position, the eye direction, and the

orientation of the scene. If these items are not taken into account, the scene desired by the

user and the scene drawn may be two very di�erent things.

118 CHAPTER 7. GRAPHICS

To think about these attributes, imagine a person walking around a 3D coordinate

system. What the person sees becomes the scene viewed on the screen. The eye position

speci�es where the person is standing. Things close to the person appear larger and seem

closer than objects further away. The eye direction speci�es where the person is looking. If

the person is looking toward the negative z-axis, only the objects situated on the negative

z-axis are viewed in the scene. Anything on the positive z-axis is behind the viewer. Finally,

the up direction can be described by what direction is up for the person.

The eye position is given by the attribute eyepos. By default this is set to be at the

origin or (0, 0, 0). The eye direction is given by the attribute eyedir. By default this is

set to be looking at the negative z-axis. The up direction can be speci�ed by the attribute

eyeup and by default is (0, 1, 0). The attribute eye allows the user to specify eyepos, eyedir,

and eyeup with a single value. Changing any of these attributes causes the scene to redraw

itself with the new eye speci�cations.

Table 7.5 lists the added context attributes used on 3D windows.

Table 7-5

3D Attributes

Name Type / Example Description : Default Usage

bu�er boolean / "on" Bu�er mode : o� RW

dim integer / 3 Dimension : 2 RW

eye
xyz nonuple /

"0,0,0,0,0,0,0,0,0"

Eye position,direction,up :

"0,0,0,0,0,-1,0,1,0"
RW

eyedir xyz triple / "0,0,0" Eye direction/target : "0,0,-1" RW
eyepos xyz triple / "0,0,0" Eye position : "0,0,0" RW
eyeup xyz triple / "0,0,0" Eye up vector : "0,1,0" RW

meshmode string / "triangles" Polygon mesh mode : "polygon" RW

normals real array Normal vectors: n/a RW

rings integer
Number of rings in spheres/cylinders

: 10
RW

selection boolean / "off" Selection RW

slices integer
Number of slices in spheres, cylinders

: 15
RW

texcoord vector of reals Texture (u,v) coordinates RW

texture image Texture RW

3D drawing primitives

In 2D, programs draw points, lines, polygons, and circles. Functions that have been ex-

tended for 3D include DrawPoint(), DrawLine(), DrawSegment(), DrawPolygon(), and FillPolygon().

The 3D facilities introduce many new primitives, including cubes, spheres, tori, cylinders,

and disks. These are described in Table 7-6 below.

7.6. 3D GRAPHICS 119

Many scenes are drawn using a mixture of 2D, 3D and 4D objects. The context attribute

dim allows the program to switch between the di�erent dimensions when specifying the

vertices an objects. A user can draw 2D, 3D, or 4D objects by assigning dim the values

of 2, 3, or 4. For primitives that take x, y, and z coordinates, specifying only x and y

coordinate is not su�cient. For this reason, "dim = 2" disallows the use of these primitives.

These functions are DrawSphere(), DrawTorus(), DrawCube(), and DrawCylinder(). By default

the value of dim is three.

Table 7-6

Types of 3D Primitives

Primitive Function Parameters Picture

Cube DrawCube()
x, y, and z coordinates of the lower left

front corner, and the length of the sides.

Cylinder DrawCylinder()

x, y, and z coordinates of the center, the

height, the radius of the top, the radius of

the bottom. If one radius is smaller than

the other, a cone is formed.

Disk DrawDisk()

x, y, and z coordinates of center, the ra-

dius of the inner circle, and the radius of

the outer circle. An additional two angle

values specify a partial disk.

Solid

Polygon
FillPolygon()

x, y, and z coordinates of each vertex of

the polygon.

Line DrawLine() x, y, and z coordinates of each vertex.

120 CHAPTER 7. GRAPHICS

Polygon DrawPolygon() x, y, and z coordinates of each vertex.

Point DrawPoint() x, y, and z coordinates of each point.

Segment DrawSegment() x, y, and z coordinates of each vertex.

Sphere DrawSphere()
x, y, and z coordinates of center and the

radius of the sphere.

Torus DrawTorus()
x, y, and z coordinates of the center, an

inner radius and an outer radius.

Coordinate transformations

Matrix multiplications are used to calculate transformations such as rotations on objects

and the �eld of view. Functions to perform several matrix operations in support of coordi-

nate transformation are available. The main transformation functions are Translate(dx,dy,dz),

Scale(mx,my,mz), and Rotate(a,x,y,z).

In many 3D graphics applications, transformations are composed as the pieces of an

object are drawn relative to one another. Transformations are saved and restored as objects

are traversed. Unicon uses the system's matrix stacks to keep track of the current matrix

with a stack of matrices, where the top of the stack is the current matrix. Several functions

manipulate the matrix stack. The function PushMatrix() pushes a copy of the current matrix

onto the stack. By doing this the user can compose several di�erent transformations. The

function IdentityMatrix() changes the current matrix to the identity matrix. To discard the

top matrix and to return to the previous matrix, the function PopMatrix() pops the top

matrix o� the matrix stack.

There are di�erent matrix stacks for the projection and model view. The projection

stack contains matrices that perform calculations on the �eld of view, based on the current

eye attributes. If these eye attributes are changed, previous manipulations of the projection

matrix stack are no longer valid. The maximum depth of the projection matrix stack is

two. Trying to push more than two matrices onto the projection matrix stack will gener-

ate a runtime error. The model view stack contains matrices to perform calculations on

objects within the scene. Transformations on the model view stack a�ect the subsequently

drawn objects. The maximum depth of this stack is 32; pushing more than 32 matrices

on the model view stack results in an error. Furthermore, only one matrix stack can be

7.6. 3D GRAPHICS 121

manipulated at any given time. The function MatrixMode() switches between the two matrix

stacks.

Lighting and materials

Lighting is important in making a graphics scene appear to be 3D. Adding lighting to

a scene can be complicated and the hardware support for lighting is at present a very

crude approximation. Light sources emit di�erent types of light. Ambient light has been

scattered so much that is di�cult to determine the source; backlighting in a room is an

example. Di�use light comes from one direction and is central in de�ning what color the

object appears to be. Finally, specular light not only comes from one direction, but also

tends to bounce o� the objects in the scene.

Applications control lighting using context attributes set using WAttrib(). For a 3D scene

in Unicon, eight lights are available. Attributes light0 - light7 control the eight lights. Each

light can be turned on or off and has a position and lighting value.A lighting value is a string

which contains one or more semi-colon separated lighting properties. A lighting property

is of the form

[diffuse|ambient|specular] color name

A new lighting value can be speci�ed without turning the light on or o�. The following

call turns light1 on and gives it di�use yellow and ambient gold lighting properties.

WAttrib(w, "light1=on, diffuse yellow; ambient gold")

The following expression sets light0 to the default values for the lighting properties.

WAttrib(w, "light0=diffuse white; ambient black; _
specular white; position 0.0, 1.0, 0.0")

Interacting with the lights, the objects in a scene may have several material properties.

The material properties are ambient, di�use, and specular, which are similar to the light

properties, plus emission, and shininess. If an object has an emission property, it emits

light of a speci�c color. Using combinations of these material properties one can give an

object the illusion of being made of plastic or metal.

In 2D, the foreground color is controlled using the context attribute fg and set with

Fg() or WAttrib(). In 3D, the attribute fg is extended to allow a semi-colon separated list of

material properties with the color that property should have. A programmer can specify a

material property as a simple color value or by providing comma-separated red, green, and

blue intensities as real numbers between 0.0 and 1.0. More general material properties are

of the form

[diffuse | ambient | specular | emission] color name

122 CHAPTER 7. GRAPHICS

or "shininess n", where n is some integer in the range 0 <= n <= 128.

The default material property type is di�use, so the call Fg("red") is equivalent to

Fg("diffuse red"). For shininess, a value of 0 spreads specular light broadly across an ob-

ject and a value of 128 focuses specular light at a single point. The following line of code

changes the current material property to di�use green and ambient orange.

WAttrib(w, "fg=diffuse green; ambient orange")

The default values of the material properties are given in the following example.

Fg(w, "diffuse light grey; ambient grey; specular black; emission black; _
shininess 50")

Using lights and materials in Unicon was simpli�ed by extending the design of the 2D

graphics facilities. The fg attribute greatly reduces the number of lines of code needed for

a scene. Thanks to this design along with the extensive use of defaults, a programmer can

use lighting in a 3D graphics application without much e�ort.

7.7 Textures

Another important area of 3D graphics is textures. Adding textures to a scene can give a

scene a realistic feel. There are several aspects to using textures. A texture is a rectangular

image that is "glued" onto objects in a scene. The appearance of the textured objects in

the scene depends on several pieces of information supplied by the programmer. These

include the texture image and what parts of the texture image is mapped to what parts of

the object.

The attribute texmode enables or disables textures, which are disabled by default. WAt-

trib("texmode=on") enables textures. When textures are enabled and a texture image is given,

the texture is applied to the objects drawn in the scene.

Unicon provides several formats to specify a texture image. A texture can be a Unicon

window, an image �le, or a string. String textures are encoded in one of the language

standard formats "width,pallet,data" or "width,#data" described in the 2D graphics facilities.

In the �rst case the pallet will determine what colors appear in the texture image. In

the second case, the foreground color and background color are used. The ability to use

another Unicon window as a texture provides great �exibility for texture images, allowing

programs to create texture images dynamically.

Textures must have a height of 2n pixels and width of 2m pixels where n and m are

integers. If not, the texture dimensions are automatically scaled down to the closest power

of 2. Rescaling a�ects application performance and may cause visual artifacts, so it may

be wise to create textures with appropriate sizes in the �rst place. Examples of how to use

textures speci�ed in the di�erent forms are given below.

7.7. TEXTURES 123

A programmer speci�es a texture either by calling WAttrib("texture=...") or using Texture(t).

These methods di�er only in that a window cannot be used as a texture with WAttrib(), so

Texture() must be called when a window is used as a texture.

A program can specify how a texture is applied to a particular object by specifying

texture coordinates and vertices. Texture coordinates are x and y coordinates within the

texture; texture coordinate (0.0, 0.0) is the lower left corner of the texture image. Texture

coordinates are mapped to the vertices of an object in the scene. Together, the texture

coordinates and the vertices determine what the object looks like after textures have been

applied. Since texture coordinates are complex, defaults are provided. Assigning attribute

texcoord the value auto causes system default texture coordinates to be used. The defaults

are dependent on the type of primitive.

Non-default texture coordinates are given in several ways, such as

WAttrib("texcoord=s") where s is a comma separated string of real number values between

0.0 and 1.0. Each pair of values is taken as one texture coordinate; there must be an even

number of real values or the assignment of texture coordinates fails. One can assign texture

coordinates by calling Texcoord(x1,y1,...) where x and y are real number values between 0.0

and 1.0. Finally one can use Texcoord(L) where L is a list of real number texture coordinates.

The texture coordinates given by the programmer are used di�erently depending on the

type of primitive to be drawn. If the primitive is a point, line, line segment, polygon,

or �lled polygon, then a texture coordinate given is assigned to each vertex. If there are

more texture coordinates than vertices, unused texture coordinates are ignored. If there are

more vertices than texture coordinates the application of a texture will fail. In order to use

non-default texture coordinates with cubes, tori, spheres, disks, and cylinders a program-

mer should approximate the desired mapping with �lled polygons. These speci�cations are

given in Table 7-7.

Table 7-7

Texture coordinates and primitives

Primitive
Default Texture Coordinates

(from [OpenGL00] chapter 6)

E�ect of

Texture

Coordinates

Picture

Cube
The texture image is applied to each face of the

cube.
None

124 CHAPTER 7. GRAPHICS

Sphere

Cylinder

The y texture coordinate ranges linearly from

0.0 to 1.0. On spheres this is from

z= -radius to z=radius; on cylinders, from

z = 0 to z = height. The x texture coordinate

ranges from 0.0 at the positive y-axis to 0.25 at

the positive x-axis, to 0.5 at the negative

y-axis to 0.75 at the negative x-axis back to 1.0

at the positive y-axis.

None

Filled

Polygon

Line

Polygon

Segment

The x and y texture coordinates are given by

p1x0+p2y0+p3z0+p4w0

A texture

coordinate

is assigned

to a vertex.

7.7. TEXTURES 125

Torus
The x and y texture coordinates are given by

p1x0+p2y0+p3z0+p4w0

None

3D Examples

Changing Context Attributes The user can change attributes throughout a program.

Multiple attributes can be changed with one call to WAttrib(). The following line of code

changes the eye position to (0.0, 0.0, 5.0) and the eye direction to look at the positive

z-axis. An assignment to eyepos, eyedir, eyeup or eye redraws the screen; a given call to

WAttrib() will only redraw the scene once.

WAttrib("eyepos=0.0,0.0,5.0","eyedir=0.0,0.0,1.0")

The values of the attributes can also be read by using the function WAttrib(). The current

eye position could be stored in variable ep by the call:

ep := WAttrib("eyepos")

Drawing Primitives Here is an example that uses some of the drawing primitives.

Fg(w, "ambient yellow")
DrawDisk(w, 0.4, -0.5, -4.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.5, -5.0, 0.5, 1.0)
Fg(w, "diffuse white")
DrawDisk(w, 0.4, -0.5, -4.0, 0.0, 1.0, 0.0, 225.0,1.0, 0.5, -5.0, 0.5,1.0,0.0,125.0)
Fg(w, "ambient pink")
DrawCylinder(w, 0.0, 1.0, -5.0, 1.0, 0.5, 0.3)
Fg(w, "specular navy")
DrawDisk(w, -0.5, -0.5, -2.0, 0.5, 0.3)
Fg(w, "emission green")
DrawSphere(w, 0.5, 1.0, -3.0, 0.5)
WAttrib(w, "light0=on, diffuse white")

126 CHAPTER 7. GRAPHICS

Figure 7-2: 3D Drawing Primitives Made From Various Materials

The function Fg() speci�es the material properties of subsequently drawn objects that

a�ect their color and appearance. In this example, a cube with a di�use green material

is drawn with sides of length 0.7. Then a sphere with a di�use purple and ambient blue

material is drawn with radius 0.5 and center (0.4, -0.5, -4.0). Next a di�use yellow and

ambient grey torus with center (-1.0, 0.4, -4.0), an inner radius of 0.4, and an outer radius

of 0.5 is drawn. Finally a �lled polygon with a di�use red material property and three

vertices, (0.25, -0.25, -1.0), (1.0, 0.25, -4.0) and (1.3, -0.4, -3.0) is drawn.

Di�erent Types of Lighting The next example shows the di�erence between the di�er-

ent types of lighting that can be used in a scene. Each window is the same scene rendered

using di�erent lighting. The upper right scene has an ambient blue-green light. The upper

left scene was drawn using a di�use blue-green light. The lower right scene uses only a

specular blue-green light. The scene in the lower left uses all three types of lighting.

Figure 7-3: Di�erent Types of Lighting

w := open("ambient.icn","gl", "bg=black", "size=400,400")
WAttrib(w,"light0=on, ambient blue-green","fg=specular white")
DrawCylinder(w, 0.0, -0.2, -3.5, 0.75, 0.5, 0.0)
DrawTorus(w,0.0, -0.2, -3.5, 0.3, 0.7)
DrawSphere(w,0.0, 0.59, -2.2, 0.3)

x := open("diffuse.icn","gl", "bg=black", "size=400,400")
WAttrib(x,"light0=on, diffuse blue-green","fg=specular white")
DrawCylinder(x, 0.0, -0.2, -3.5, 0.75, 0.5, 0.0)
DrawTorus(x,0.0, -0.2, -3.5, 0.3, 0.7)
DrawSphere(x, 0.0, 0.59, -2.2, 0.3)

y := open("specular.icn","gl", "bg=black", "size=400,400")
WAttrib(y,"light0=on,specular blue-green","fg=specular white")
DrawCylinder(y, 0.0, -0.2, -3.5, 0.75, 0.5, 0.0)
DrawTorus(y, 0.0, -0.2, -3.5, 0.3, 0.7)
DrawSphere(y, 0.0, 0.59, -2.2, 0.3)

z := open("all.icn","gl", "bg=black", "size=400,400")
WAttrib(z, "light0=on, diffuse blue-green; _

7.7. TEXTURES 127

specular blue-green; ambient blue-green","fg=specular white")
DrawCylinder(z, 0.0, -0.2, -3.5, 0.75, 0.5, 0.0)
DrawTorus(z, 0.0, -0.2, -3.5, 0.3, 0.7)
DrawSphere(z, 0.0, 0.59, -2.2, 0.3)

Figure 7-4 shows the e�ects of emission color on an object.

Figure 7-4: Mixing Emission and Di�use Material Properties

Fg(w, "emission blue; diffuse yellow")
DrawSphere(w, -1.5, 1.0, -5.0, 0.7)
Fg(w, "emission black")
DrawSphere(w, 0.0, 0.0, -5.0, 0.7)
Fg(w, "emission red")
DrawSphere(w, 1.5, -1.0, -5.0, 0.7)

In the above example, three yellow spheres are drawn. An emission color of blue makes

the sphere appear white with a blue ring. With a red emission color, the sphere remains

yellow, but now has an orange-red ring. The middle sphere shows the e�ect of having no

emission color. In order to obtain the di�use yellow sphere in the center, the emission color

was changed to black, without changing the di�use property.

Textures This section contains examples of the use of textures in a scene. The following

example uses a �le as a texture. A .gif image of a map of the world is used to texture a

torus using the default texture coordinates.

128 CHAPTER 7. GRAPHICS

Figure 7-5: A Texture from a GIF Image is Mapped onto a Torus

WAttrib(w, "texmode=on", "texture=map.gif")
DrawTorus(w, 0.0, 0.0, -3.0, 0.3, 0.4)

Instead of using WAttrib(w, "texture=map.gif") to specify the .gif �le, a call to Texture(w,

"map.gif") could be used to obtain the same result.

The next example uses an image string to specify a texture image. The string used for

this example is taken from Graphics Programming in Icon [Griswold98] page 156. This

string is used as a texture on a cube using the default texture coordinates.

Figure 7-6: A Texture Supplied via an Image String

WAttrib(w, "texmode=on")
sphere:= "16,g16, FFFFB98788AEFFFF" ||

"FFD865554446AFFF FD856886544339FF E8579BA9643323AF"||
"A569DECA7433215E 7569CDB86433211A 5579AA9643222108"||
"4456776533221007 4444443332210007 4333333222100008"||
"533322221100000A 822222111000003D D41111100000019F"||
"FA200000000018EF FFA4000000028EFF FFFD9532248BFFFF"

Texture(w, sphere)
DrawCube(w, 0.0, 0.0, -3.0, 1.2)

7.7. TEXTURES 129

The next example shows the use of a Unicon window as a texture. An image of a lamp is

drawn on the �rst window in gl mode. This window is then used as a texture on a cylinder.

The same method can be used to embed 2D window contents in 3D scenes. Note that in

the following code the �rst window is opened with size 256 x 256. Texture images must

have height and width that are powers of 2, or the system must rescale them. The default

coordinates for cylinders are used.

Figure 7-7: A Texture Obtained from Another Window's Contents

w := open("win1","gl","bg=light blue","size=256,256")
Fg(w, "emission pale grey")
PushMatrix(w)
Rotate(w, -5.0, 1.0, 0.0, 0.0)
DrawCylinder(w, 0.0, 0.575, -2.0, 0.15, 0.05, 0.17)
PopMatrix(w)
Fg(w, "diffuse grey; emission black")
PushMatrix(w)
Rotate(w, -5.0, 1.0, 0.0, 0.0)
DrawCylinder(w, 0.0, 0.0, -2.5, 0.7, 0.035, 0.035)
PopMatrix(w)
DrawTorus(w, 0.0, -0.22, -2.5, 0.03, 0.06)
DrawTorus(w, 0.0, 0.6, -2.5, 0.05, 0.03)

w2 := open("win2.icn","gl","bg=black","size=400,400")
WAttrib(w2, "texmode=on")
Texture(w2, w)
Fg(w2, "diffuse purple; ambient blue")
DrawCylinder(w2, 0.0, 0.0, -3.5, 1.2, 0.7, 0.7)

The next two examples illustrate the use of the default texture coordinates versus

texture coordinates speci�ed by the programmer. In both examples, a bi-level image is

used as the texture image. The format for such a string is described in section 2.7. This

image is taken from Graphics Programming in Icon page 159. The �rst example uses the

default texture coordinates for a �lled polygon, which in this case is just a square with sides

130 CHAPTER 7. GRAPHICS

of length one. In this case the default texture coordinates are as follows. The coordinate

(0.0, 0.0) of the texture image is mapped to the vertex (0.0, 0.0, -2.0) of the square, (0.0,

1.0) is mapped to (0.0, 1.0, -2.0), (1.0, 1.0) is mapped to (1.0, 1.0, -2.0), and (1.0, 0.0) is

mapped to (1.0, 0.0, -2.0).

Figure 7-8: Default Texture Coordinates

WAttrib(w,"fg=white","bg=blue","texmode=on","texture=4,#8CA9")
Fg(w, "diffuse purple; ambient blue")
FillPolygon(w, 0.0, 0.0, -2.0, 0.0, 1.0, -2.0, 1.0, 1.0, -2.0, 1.0, 0.0, -2.0)

This example uses the same texture image and the same object to be textured, but

instead uses the texture coordinates (0.0, 1.0), (1.0, 1.0), (1.0, 1.0), and (1.0, 0.0). So the

coordinate (0.0, 1.0) of the texture image is mapped to the vertex (0.0, 0.0, -2.0) of the

square, (1.0, 1.0) is mapped to (0.0, 1.0, -2.0),(1.0, 1.0) is mapped to (1.0, 1.0, -2.0), and

(1.0, 0.0) is mapped to (1.0, 0.0, -2.0).

Figure 7-9: Custom Texture Coordinates

WAttrib(w,"fg=white","bg=blue","texmode=on","texture=4,#8CA9",
"texcoord=0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0")

FillPolygon(w, 0.0, 0.0, -2.0, 0.0, 1.0, -2.0, 1.0, 1.0, -2.0, 1.0, 0.0, -2.0)

Instead of using WAttrib() with the attribute texcoord, the function Texcoord() could be

used. So the line

WAttrib(w,"texcoord=0.0, 1.0, 1.0, 1.0, 1.0, 1.0,1.0, 0.0")

could be replaced by

Texcoord(w, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0,1.0, 0.0)

7.7. TEXTURES 131

A Larger Textures Example The following more complicated example uses many fea-

tures of the Unicon 3D graphics facilities described in the previous sections. This example

also illustrates the e�ect of adding texture to a scene. The scene on the left is a scene

drawn without any texturing. The scene on the right contains texturing. The scene on the

right is a much more realistic scene than the one on the left.

All textures used in the textured scene, except for the unicorn, where captured using

a digital camera. These images were then converted into .gif �les and scaled to width and

height of 2n. Directly using an image �le is one feature of the Unicon 3D graphics facilities

that makes adding textures simpler than using OpenGL.

Figure 7-10: Untextured and Textured Versions of the Same Scene

procedure main()
&window := open("textured.icn","gl","bg=black","size=700,700")

Draw the floor of the room
WAttrib("texmode=on", "texture=carpet.gif")
FillPolygon(-7.0, -0.9, -14.0, -7.0, -7.0, -14.0,

7.0, -7.0, -14.0, 7.0, -0.9, -14.0, 3.5, 0.8, -14.0)

Draw the right and left walls
WAttrib("texture=wall1.gif", "texcoord=0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0")
FillPolygon(2.0, 4.0, -8.0, 8.3, 8.0, -16.0, 8.3, -1.2, -16.0, 2.0, 0.4, -8.0)
WAttrib("texture=wall2.gif")
FillPolygon(2.0, 4.0 ,-8.0, -9.0, 8.0, -16.0, -9.0,-1.2,-16.0, 2.0, 0.4, -8.0)

Draw a picture
WAttrib("texture=poster.gif", "texcoord=0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0")

132 CHAPTER 7. GRAPHICS

FillPolygon(1.0, 1.2, -3.0, 1.0, 0.7, -3.0, 1.2, 0.5, -2.6, 1.2, 1.0, -2.6)
Draw another picture
WAttrib("texture=unicorn.gif", "texcoord=1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0")
FillPolygon(0.8, 2.0, -9.0, -3.0, 1.6, -9.0, 3.0, 3.9,-9.0, 0.8, 4.0, -9.0)
Draw the lamp
WAttrib("texmode=off")
PushMatrix()
Translate(0.7, 0.20, -0.5)
Fg("emission pale weak yellow")
PushMatrix()
Rotate(-5.0, 1.0, 0.0, 0.0)
Rotate(5.0, 0.0, 0.0, 1.0)
DrawCylinder(-0.05, 0.570, -2.0, 0.15, 0.05, 0.17)
PopMatrix()
Fg("diffuse grey; emission black")
PushMatrix()
Rotate(-5.0, 1.0, 0.0, 0.0)
Rotate(6.0, 0.0, 0.0, 1.0)
DrawCylinder(0.0, 0.0, -2.5, 0.7, 0.035, 0.035)
PopMatrix()
PushMatrix()
Rotate(6.0, 0.0, 0.0, 1.0)
DrawTorus(-0.02, -0.22, -2.5, 0.03, 0.05)
PopMatrix()
PopMatrix()

Draw the table
WAttrib("texcoord=auto", "texmode=on", "texture=table.gif")
PushMatrix()
Rotate(-10.0, 1.0, 0.0,0.0)
DrawCylinder(0.0, 0.2, -2.0, 0.1, 0.3, 0.3)
PopMatrix()
PushMatrix()
Translate(0.0, -0.09, -1.8)
Rotate(65.0, 1.0, 0.0, 0.0)
DrawDisk(0.0, 0.0, 0.0, 0.0, 0.29)
PopMatrix()
WAttrib("texmode=off", "fg=diffuse weak brown")
PushMatrix()
Rotate(-20.0, 1.0, 0.0,0.0)
DrawCylinder(0.0, 0.2, -2.2, 0.3, 0.1, 0.1)
PopMatrix()
while (e := Event()) ˜== "q" do write(image(e), ": ", &x, ",", &y)

end

7.7. TEXTURES 133

In order to apply textures to the scene, texturing must be turned on. Next, the texture

to be applied is speci�ed. The �oor of the scene is drawn using a �lled polygon. The

default texture coordinates are used to apply the carpet texture to the �oor of the room.

The tiled appearance on the �oor is caused by the use of the default texture coordinates.

This can be avoided using user-supplied texture coordinates, as is done for the textures

that are applied to the walls and the pictures in the room.

The lamp does not have a texture, so it is necessary to turn o� texturing before drawing

the lamp. Also for the lamp to be centered properly in the room, transformations are used.

Matrices are used to isolate the transformations of the lamp. Finally to draw the table

with a textured top and an untextured base, two cylinders and a disk are used. Texturing

is applied to a cylinder and the disk. Notice the call

WAttrib(w, "texcoord=auto")

This resets the texture coordinates to the defaults. Finally, texturing is turned o� to draw

the base of the table.

Animation

Graphics animation is performance sensitive, and Unicon is slower than systems program-

ming languages such as C and C++. Nevertheless, it is possible to write 3D animations in

Unicon with acceptable frame rates.

3D animations redraw the entire scene each time an object moves or the user changes

point of view. An application can call EraseArea() followed by the appropriate graphics prim-

itives to redraw a scene, but the results often appear to �icker. It is better to let Unicon's

runtime system do the redrawing. Unicon maintains a display list of graphics operations to

execute whenever the screen must be redrawn; these operations are e�ectively everything

since the last EraseArea(). The display list for a window can be obtained by calling Window-

Contents(). The elements of the list are Unicon records and lists containing the string names

and parameters of graphics primitives. For example, a call to DrawSphere(w,x,y,z,r) returns

(and adds to the display list) a record gl_sphere("DrawSphere",x,y,z,r). Instead of redrawing

the entire scene to move an object, you can modify its display list record and call Refresh().

The following code fragment illustrates animation by causing a ball to slide up and down.

In order to bounce, the program would need to incorporate physics.

sphere := DrawSphere(w, x, y, z, r)
increment := 0.2
every i := 1 to 100 do

every j := 1 to 100 do {
sphere.y +:= increment
Refresh(w)
}

134 CHAPTER 7. GRAPHICS

This technique gives animation rates of hundreds of frames per second on midrange PC

hardware. Unicon supports smooth animation for a number of objects which varies widely

depending on the underlying graphics hardware and software.

Selective rendering and object selection

Many 3D applications model scenes with far more objects than are needed at any particular

instant. For example, a virtual building might have many rooms on multiple �oors, but only

a small fraction is visible from any particular location. The 3D facilities remove objects that

are not visible, but doing so becomes too slow for large numbers of objects. An application

with a large scene will generally have to perform at least approximate visibility calculations

to achieve smooth animation. Such visibility calculations can be performed for each frame,

and if the visible objects change, the scene can be re-rendered by rebuilding the display list

from scratch. At this point Unicon's speed can be an issue, as discussed in the previous

section.

The function WSection() comes to the rescue. It plays two vital roles. First, it allows

portions of the display list to be skipped during rendering, without having to rebuild the

display list. Second, it forms the basis for specifying portions of the display list that the

user may select (click on) when interacting with the scene. In both cases, calls to WSection()

come in pairs, �rst a call WSection(s) identi�es a portion of the display list of interest, then

the sequence of 3D calls to render some object or portion of the scene, then a call to

WSection() de�nes the end of that section. Parameter s must be a unique string name or

identi�er for the section.

The call to create a new section returns a record that contains a �eld named skip. Setting

skip to a non-null value causes the section to be omitted whenever the scene is redrawn.

Using WSection() for 3D user input is similar. A program calls WAttrib("pick=on") to turn

on 3D selection, after which keyword &pick generates the identifying names for all objects

intersected by the ray from the camera through the (x,y) screen location where the mouse

was located on the last call to Event().

7.8 Summary

Graphics are ubiquitous in modern applications. Unicon provides 2D and 3D graphics

capabilities that are easy to use, portable building blocks for many programs. The 2D

facilities are mature; the 3D interface is new and will evolve. Many elements of the 2D

graphics system are used in the 3D graphics interface. Further integration of the 2D and

3D graphics systems is likely in the future.

Chapter 8

Threads

Threads are building blocks for concurrent (also known as parallel) execution. In a concur-

rent program, the instructions specify multiple things to compute at the same time, during

some or most of the program run. On a classic single-processor system these computations

will only happen one at a time, but on most modern multiprocessor and multicore systems,

the hardware is designed to do several computations at once, and if your program does not

ask for as much, it is underutilizing (sometimes severely) the platform.

This chapter describes concurrency in Unicon. It is based on Unicon Technical Report

14; UTR14 on the unicon.org site may amend or supercede this chapter with added features

in the future. Threads are an extension of the co-expression type described in Chapter 4

and the system interface described in Chapter 5. Consulting those chapters may be helpful

in studying this one.

Concurrent programming introduces techniques, concepts, and di�culties that do not

exist in sequential programs. In some situations concurrent programming is a natural way

to write programs, such as a server where threads serve di�erent clients. In other situations,

concurrent programming improves performance. Long-running programs can run faster by

having several threads running cooperatively on several CPU cores, or programs that do a

lot of slow I/O operations can allow other non-blocked threads to proceed and utilize the

CPU. However, for programs that have a lot of dependencies and are sequential in nature,

the complexities of parallelizing them can outweigh the bene�ts.

This chapter is not a comprehensive concurrent programming guide. It assumes that

the reader has some basic knowledge about threads, their programming techniques, and

problems, such as synchronization and race conditions. Readers who are unfamiliar with

concurrency can refer to a myriad of resources such as [Andr83] or [Bute97] for an overview.

Since Unicon's concurrency facilities are implemented on top of POSIX threads (pthreads),

many of the concepts from pthreads programming apply, often with more concise, or higher-

level ways of writing things.

135

136 CHAPTER 8. THREADS

8.1 Threads and Co-Expressions

Co-expressions are independent, explicitly sequential execution contexts. Only one co-

expression is active at any given moment. When a co-expression is activated, the calling co-

expression blocks until the child co-expression returns the execution to it or fails. Threads,

on the other hand, can run simultaneously and independently. Threads in Unicon are like

special co-expressions that are marked to run asynchronously.

In a concurrent program with two or more threads, each thread has its own program

counter, stack pointer, and other CPU registers. However, all of the threads in a program

share the address space, open �les, and many other pieces of process-wide information.

This enables very fast communication and cooperation between threads, which leads to

less blocking, faster execution and more e�cient use of resources.

Unicon programs start execution in the main() procedure. In a multi-thread program-

ming environment, the procedure main() is the entry point for a special thread referred to as

the main thread. This main thread is created by the operating system when the program

begins execution. The main thread can create new threads, which can create even more

threads. Each thread has an entry point, where it begins executing. Usually this is a

procedure but it can be any Unicon expression, as is the case for co-expressions. When a

thread �rst starts running in the entry point, it goes on its own execution path, separate

from the thread that created it, which continues to run. A thread never returns. When

it ends, it simply terminates; other threads continue to run. An important exception is

the main thread; if the main thread ends, the whole program ends. If there are any other

threads running, all of them will be terminated.

Since the emergence of the �rst computer, processors have been increasing in computa-

tional power. CPU speeds grew faster than almost all of the other units in the computer,

especially the I/O units. This causes programs, especially those which are I/O bound, to

spend most of their execution time blocked, waiting for I/O to complete. On systems with

multitasking support, several programs run at the same time. When one program blocks

for I/O for example, another program is scheduled to run, allowing a better utilization of

the system resources. Multitasking o�ered a way to increase the overall system throughput

and boosted the utilization of the increasingly powerful processors. However, multitasking

could not help make a process run faster, even on multiprocessor systems.

8.2 First Look at Unicon Threads

Unicon threads facilities give the programmer �exibility in choosing the programming styles

that suit the problem at hand. In many situations the same problem can be solved in

di�erent ways, using implicit features or explicit ones. The following sections cover the

functions and features provided by the thread facilities in Unicon.

8.2. FIRST LOOK AT UNICON THREADS 137

Thread creation

Threads can be created in two ways in Unicon, using the thread reserved word or using

the function spawn(). The di�erence between the two is the separation between creating a

thread and running it. The thread reserved word creates a thread and starts its execution.

The function spawn() however, takes a previously created co-expression and turns it into a

thread. In many cases the thread reserved word allows more concise code. spawn() on the

other hand is useful in situations where several threads need to be created and initialized

before running them. spawn() also takes optional parameters to control some aspects of the

newly-created thread. The following code creates and runs a hello world thread:

thread write("Hello World!")

This is equivalent to

spawn(create write("Hello World!"))

or to

co := create write("Hello World!")

spawn(co)

Both thread and spawn() return a reference to the new thread. The following program creates

10 threads:

procedure main()

every i := !10 do thread write("Hello world! I am thread: ", i)

write("main: done")

end

In this example, the main thread continues to execute normally after �ring 10 threads.

Because of the non-deterministic nature of threads, there is no guarantee which thread gets

to print out its �hello world� message �rst, or in what order the messages are printed out,

including the message from the main thread "main: done". All of the possible permutations

are valid. No assumptions can be made about which thread will continue running or �nish

�rst. It depends on the host OS CPU process/thread scheduler. The order is unpredictable.

Furthermore, the main thread might �nish and terminate the program before some or

all of the threads get executed or print out messages. To avoid such situations, the main

thread needs to wait for other threads to �nish before exiting the program. This is can

be achieved by using the function wait(), which blocks the calling thread until the target

thread is done. The above program can be rewritten as follows:

procedure main()

L := []

138 CHAPTER 8. THREADS

every i := !10 do put(L, thread write("Hello world! I am thread: " , i))

every wait(!L)

write("main: done")

end

wait(!L) tells the main the thread to wait for every thread to �nish, causing the message

"main: done" to be the last thing printed out before the program ends. wait() is useful in cases

where threads need to synchronize so that one thread blocks until another �nishes. wait()

provides a very basic synchronization technique, but most concurrent programming tasks

need more synchronization than waiting for a thread to �nish. Advanced synchronization

mechanisms are discussed below.

Thread evaluation context

Similar to co-expressions, threads have their own stack, starting from a snapshot of pa-

rameters and local variables at creation time. This allows co-expressions and threads to

be used outside the scope where they are created. It also allows a thread to start by using

the variable values at the time of its creation, rather than when running it in the case of

spawn(). An important side e�ect of this process is avoiding race conditions, because each

thread gets a copy of the variables instead of having all the threads competing over the

same shared variables. Race conditions and thread-safe data will be covered in depth in

the following sections. The following example and its output demonstrate the idea of an

evaluation context:

procedure main()

local x:= 10, y:=20, z:=0

write("Main thread: x=", x, ", y=", y, ", z=", z)

thread (x:=100) & write("Thread 1: x=", x)

thread (y:=200) & write("Thread 2: y=", y)

thread (z:=x+y) & write("Thread 3: z=", z)

delay(1000)

write("Main thread: x=", x, ", y=", y, ", z=",z)

end

The output is:

Main thread: x=10, y=20, z=0

Thread 3: z=30

Thread 1: x=100

Thread 2: y=200

Main thread: x=10, y=20, z=0

8.2. FIRST LOOK AT UNICON THREADS 139

The delay(1000) should give the threads enough time to �nish before the main program

�nishes. This should not be left to chance: wait() will block until the threads �nish, instead

of a 1 sec delay.

The output shows that the changes to the variables are per-thread, and not visible in

the main thread or in the other threads. The copies of local variables in di�erent threads

can be thought of as passing parameters by value to a procedure. This is true for local

variables of immutable data types; on the other hand, global variables and mutable types,

such as lists, are shared. Any change in the structure of such types is visible across all

threads. Contrast the following example with the one above:

procedure main()

local L

L := [20, 10, 0]

write("Main thread: L[1]=", L[1], ", L[2]=", L[2], ", L[3]=", L[3])

thread (L[1]:=100) & write("Thread 1: L[1]=", L[1])

thread (L[2]:=200) & write("Thread 2: L[2]=", L[2])

thread (L[3]:=L[1]+L[2]) & write("Thread 3: L[3]=", L[3])

delay(1000)

write("Main thread: L[1] =", L[1], ", L[2]=", L[2], ", L[3]=",L[3])

end

with output

Main thread: L[1]=20, L[2]=10, L[3]=0

Thread 2: L[2]=200

Thread 3: L[3]=300

Thread 1: L[1]=100

Main thread: L[1] =100, L[2]=200, L[3]=300

Instead of using 3 variables x, y, and z, a list of size 3 is used. x from the previous example

maps to L[1], y to L[2], and z to L[3]. The program does the same thing as before, but any

change to the content of L is visible in other threads. Unlike the output in the �rst case,

where the values of x, y, and z remained the same in the main thread, this output shows

that the changes to the list elements in the other threads were visible in the main thread.

Passing arguments to threads

When creating a new thread for a procedure, the parameters that are passed to the pro-

cedure at creation time can be thought of as a one-time one-way communication between

the creator thread and the new thread. This is very useful in initializing the new thread

or passing any data that the thread is supposed to work on. The following program has

3 threads in addition to the main thread. The main thread passes a list to each �worker�

thread, and each worker sums the list and prints the sum to the screen:

140 CHAPTER 8. THREADS

procedure main()

L1 := [1, 2, 3]

L2 := [4, 5, 6]

L3 := [7, 7, 9]

t1 := thread sumlist(1, L1)

t2 := thread sumlist(2, L2)

t3 := thread sumlist(3, L3)

every wait(t1|t2|t3)

end

procedure sumlist(id, L)

s := 0

every s +:= !L

write(" Thread id=", id, ", result=", s)

end

The output is

Thread id=2, result=15

Thread id=1, result=6

Thread id=3, result=23

Since the lists are independent, there is no possibility of a race condition. The example

shows that the second thread was the �rst to �nish and print its result. If the problem

solution requires sharing data or guaranteeing that one thread should �nish before another,

then a synchronization mechanism should be used. These topics are discussed in the next

two sections.

8.3 Thread Safety

Threads cooperate with each other to get the job done; they can send information back

and forth, as described later in the section on thread communication. Other than such

intentional communication, when programming multiple threads it is important that each

thread perform its required computation without interfering with the other threads and

vice versa. Thread safety is the property of multi-threaded code that ensures that threads

do not alter each other's computations unintentionally. The opposite is any operation,

including data structure traversal, where threads may a�ect each other's correct operation,

leading to data corruption or incorrect results. Such operations are called thread-unsafe.

An example of thread-unsafe code can be found in the Icon Program Library wrap.icn

module:

8.3. THREAD SAFETY 141

procedure wrap(s,i)
local t
static line
initial line := ""
/s := "" ; /i := 0
if *(t := line || s) > i then

return "" ∼== (s :=: line)
line := t

end

If two threads were trying to use wrap() at the same time, they would overwrite each

others' values for the static variable line. To avoid this, one might require the caller to

provide a means of storing its own line information in a third parameter. Since Unicon

does not provide reference parameters, this might be passed, for example, as a record �eld.

record lineinfo(line)
procedure wrap(s,i,li)

local t
if /li then stop("wrap(): missing third parameter")
/(li.line) := ""
/s := "" ; /i := 0
if *(t := li.line || s) > i then

return "" ∼== (s :=: li.line)
li.line := t

end

This example works and is thread-safe. Its chief �aw is that the programmer who wants

to call wrap() now has a more complicated API to learn, and existing code that calls the old

wrap() would have to be modi�ed to use the thread-safe version. Millions of C programmers

have su�ered through this for years. A more extreme solution that makes the existing API

thread-safe is given below. To understand it, read the section on thread-synchronization

below, particularly the subsection on thread-safe data structures. The static variable line

is replaced with a table protected by a mutex; this table is indexed by the current thread

¤t every time it is used inside of wrap(). As an exercise for the reader, compare the

performance of this approach with the previous approach that used an extra parameter.

procedure wrap(s,i)
static line
local t
initial line := mutex(table())
/(line[¤t]) := ""
/s := "" ; /i := 0
if *(t := line[¤t] || s) > i then

return "" ∼== (s :=: line[¤t])

142 CHAPTER 8. THREADS

line[¤t] := t
end

From such an example, one can infer some general principles for writing thread-safe

code. Each thread's data must be completely independent of all other threads. Each

thread gets its own stack, so local variables and parameters are thread-safe for free. Global

variables, including statics, are totally the bane of multi-threaded programming, so to

achieve thread-safety you may have to avoid or rewrite any procedures or class libraries

that use globals or statics. For example, if part of a procedure's results were assigned to a

global for the caller to use, you might need to rewrite it to return (or generate) such results

instead of working through a global.

A more subtle issue arises when referencing mutable structures such as lists, tables, or

objects. Although each thread gets its own heap for allocation purposes, if another thread

has a reference to such a structure, operations that alter the structure made by either

thread, are unsafe. For some computations, you might avoid such a problem by making a

separate copy of the structure for each thread to use independently, but when threads need

to share a structure, the list or table or whatever constitutes part of their communication

mechanism. In that case, thread-unsafe code or data structures can be made thread-safe

via a synchronization mechanism to achieve correct behavior and results. Such mechanisms

are presented in the next section.

8.4 Thread Synchronization

Thread synchronization can be done in many di�erent ways. Some problems require more

synchronization than others. Some may require advanced synchronization mechanisms and

rely on the language support to achieve full control over the execution of threads and

protect shared data. This section covers many synchronization techniques in Unicon, used

primarily to avoid the problem of race conditions in multi-threaded code.

The non-deterministic behavior of threads

Programming with threads introduces a whole new set of concepts and challenges that non-

threaded programs do not have to deal with. In most multi-threaded programs, threads

need to communicate through shared data. Because threads run in a non-deterministic

order, they access and update shared data in a non-deterministic fashion. Consider the

following popular example where two threads, T1 and T2, try to increment a shared variable

x whose initial value is 0.

T1 T2

x := x+1 x := x+1

8.4. THREAD SYNCHRONIZATION 143

While x:=x+1 may not look like it could cause a problem, in reality it does because it is

not atomic. In many computer systems, it can be broken down into three operations: fetch

the value of x, add 1 to it, and store the new value back in x. These three operations might

occur at di�erent times in di�erent threads. Thread T2 for example might fetch x, followed

by T1 also fetching it, but before T2 stores back the new value of x, leaving T1 working on

the old value of x. T1 should not be allowed to read the value of x while another thread,

such as T2, is updating it. Consider the following scenarios, starting with x:=0:

Scenario 1 Scenario 2

T1 T2 T1 T2

fetch x (0) fetch x (0) fetch x (0)

increment x (1) increment x (1) increment x (1)

store x (1) store x (1) store x (1)

fetch x (1)

increment x (2)

store x (2)

The �nal value of x is 1. The �nal value of x is 2.

In scenario 1 the �nal value of x is 1, even though there are two increments done by

the two threads. In scenario 2 however the �nal value is 2. This outcome is not necessarily

a problem, or a bug that must be �xed. Non-deterministic execution is a part of multi-

threaded programming that many programs can live with. For example, if one or more

threads depend on a counter to update the screen every 100 increments or so, but this

number does not need to be exactly 100, then the threads can increment the counter without

worrying about races and about synchronizing access to the shared counter. If deterministic

execution must be guaranteed, programmers have to take extra steps to ensure a speci�c

order and predictable results. That is where thread synchronization comes into play.

User-de�ned synchronization

For some simple situations, synchronization can be achieved without relying on special

primitives provided by the language. For example, if one thread is waiting for another to

�nish a task, a shared �ag variable can be used. In the following example, the main thread

might �nish before the child thread:

procedure main()

thread write("I am a thread: Hello world!")

end

As seen in the previous section, this can be handled using wait() or delay(). The wait()

function is the best solution for this situation. delay() also works but there are two problems

associated with it: it forces the program to wait a lot longer than necessary, and second,

144 CHAPTER 8. THREADS

if the delay time is not long enough, depending on the system, the main thread might still

�nish before the child thread. Actually even with a long delay, there is no guarantee the

child thread will �nish �rst. In a real application, delay() would be a poor choice. Finally,

here is an alternative solution that does not use wait():

global done
procedure main()

thread (write("I am a thread: Hello world!") & done := "true")
until \done

end

In this case, the loop until \done ensures that the main thread keeps spinning until the

child thread set the variable done to a non-null value. It avoids the problems with using

delay(), at the expense of fully occupying one CPU in a spin-lock. Note that declaring done

to be global is key. If done were local, the main thread would spin inde�nitely because any

change to done in the child thread would be invisible in the main thread.

If none of these approaches seems acceptable, that is a good sign. Use techniques from

the following sections to avoid such ine�cient synchronization.

Language support for synchronization

Using function wait() or global variables to synchronize threads might be su�cient in some

situations, but most problems require the more e�cient synchronization made possible by

mutexes and condition variables.

Critical regions and mutexes A mutex (from mutual exclusion) is a synchronization

construct used to protect shared data and serialize threads in critical regions, sequences of

instructions in which only one thread may execute at a time or an error will occur. In the

example discussed at the beginning of this chapter, two threads compete to increment the

variable x. The end result might not be what the programmer intended. In such cases a

mutex may be used to protect access to the variable x.

A mutex object is created using the mutex() function. The returned object can be

locked/unlocked via the functions lock() and unlock() to serialize execution in a critical region.

The following example demonstrates the use of a mutex to protect increments to the global

variable x:

global x
procedure main()

mtx_x := mutex()
x := 0
t1 := thread inc_x(mtx_x)
t2 := thread inc_x(mtx_x)

8.4. THREAD SYNCHRONIZATION 145

every wait(t1 | t2)
write("x=", x)

end

procedure inc_x(region)
lock(region)
x := x + 1
unlock(region)

end

It is important to note that the mutex object has to be initialized only once and can

then be shared between all threads (here t1 and t2) accessing the critical region (x := x

+ 1). lock(region) marks the beginning of the critical region protected by the mutex, and

unlock(region) marks its end. When a thread calls lock(region), it tries to acquire the mutex

region. If region is not �owned� by any other thread, lock(region) succeeds, the thread becomes

the owner of the mutex region, and then enters the critical region. Otherwise the thread

blocks until the current owner of the mutex leaves the critical region by calling unlock(region).

Since there are two threads and x := x+1 is protected by a mutex, the output of the program

is guaranteed to be x=2, unlike the case where a mutex is not used, and where x=1 or x=2

are possible outputs.

The more critical-regions/mutexes a concurrent program has, the slower it runs. The

length of the critical region also a�ects the performance. The longer the critical region,

the more time it takes a thread to traverse it and release the mutex, which increases the

probability that other threads become blocked waiting to acquire the mutex and enter the

critical region. Locking a mutex and forgetting to unlock it is very likely to lead to a

deadlock, a common problem in concurrent programming, where all threads block waiting

for each other, and for resources to become available. Because all threads are blocked,

resources will not be freed, and the block persists inde�nitely.

Unicon provides a special syntax for critical regions equivalent to a lock()/unlock() pair,

that aims mainly to guarantee that a mutex is released at the end of a critical region,

besides enhancing the readability of the program. Here is the syntax:

critical mtx: expr

This is equivalent to:

lock(mtx)
expr
unlock(mtx)

Given a global variable named region that has been initialized as a mutex, the code to

increment x in the previous example can be written as:

146 CHAPTER 8. THREADS

critical region: x := x + 1

Prior to Unicon release 13.3, the critical region syntax only unlocked the mutex if

it executed to the end. If there was a return or break in the region's body, it was the

programmer's responsibility to explicitly unlock the mutex. For example:

critical region: {
if x > 100 then { unlock(region); return }
x := x + 1
}

Release 13.3 removes that obligation: the mutex is automatically unlocked no matter how
the region is left, allowing the programmer to write

critical region: {
if x > 100 then return
x := x + 1
}

Another change introduced in release 13.3 is that critical mtx: expr produces the value of expr

(previously, it produced the value of mtx).

In some situations, a thread might have several tasks to �nish and may not want to

block waiting for a mutex that is locked by another thread. For example, if a thread is

creating items that can be inserted in one of several shared queues, the thread can insert

every new item in the �rst queue that it acquires. trylock() is an alternative non-blocking

function for locking. If the thread cannot acquire the mutex immediately, the function fails.

The most suitable way to use trylock() is to combine it with an if statement, where the then

body unlocks the mutex after �nishing the work on the protected object, as follows:

if trylock(mtx) then {
expr
unlock(mtx)
}

Both lock() and trylock() return a reference to the mutex or the object they acquired

(upon succeeding in case of trylock()). This makes it very convenient to write code like the

following, assuming L1 and L2 are lists that are both marked as shared:

item := newitem()
if L := trylock(L1 | L2) then {

put(L, item)
unlock(L)
}

8.4. THREAD SYNCHRONIZATION 147

Note that trylock() may fail to lock any of the lists, leaving item unprocessed. Depending

on what the code needs to do, if it is required to guarantee that it does not proceed before

one of the locks to L1 or L2 succeeds, then it can be written as follows:

item := newitem()
until L := trylock(L1 | L2)
put(L, item)
unlock(L)

Initial clause A procedure in a Unicon program can have an initialization clause at its

top. This gets executed only once the �rst time the procedure is entered. The initial clause

provides a very convenient way to place local static variables and their initialization in

the same procedure, instead of relying on global variables and having to initialize them

somewhere else. A procedure that produces a sequence of numbers one at each call can be

written as:

procedure seq()
static i
initial i := 0
i := i + 1
return i

end

Initial clauses are thread-safe. They can be thought of as a built-in critical region that

is run only once. No thread is allowed to enter the procedure if there is a thread still

executing in the initial block. This can be useful in a concurrent environment to do critical

initialization, such as creating a new mutex object instead of declaring a mutex variable

to be global and initializing it somewhere else, or passing it from one function to another

where it will be actually used. A concurrent version of seq() would look like this:

procedure seq()
local n
static i, region
initial { i := 0; region := mutex() }
critical region: n := i := i+1
return n

end

With the use of the initial clause, seq() is self-contained and thread-safe. Note the use of

the local variable n to temporarily hold the value of the counter i while still in the critical

region. That is because once the thread leaves the critical region, there is no guarantee that

the value of i would remain the same before it is returned. Using the variable n guarantees

that the value returned is correct, even if the value of i is changed by another thread.

148 CHAPTER 8. THREADS

Thread-safe data structures In Unicon, mutexes are not just independent objects as

described above, they are also attributes of other objects, namely attributes of the mutable

data types. Any data structure in Unicon that can be used in a thread-unsafe manner can

be protected by turning on its mutex attribute. Instead of declaring a separate mutex and

locking and unlocking it, the structure can just be marked as �needs a mutex/protection�

and the language does an implicit locking/unlocking, protecting the operations that might

a�ect the integrity of the structure. For example, if several threads are pushing and popping

elements into and out of a list, these are thread-unsafe operations that require protection.

The value of implicit mutexes is made clear after considering the alternative. The following

producer-consumer example uses a list to send and receive data, and protects it using an

explicit mutex:

procedure main()
L := []
mtx := mutex()
p := thread produce(L, mtx)
c := thread consume(L, mtx)
every wait(p | c)

end

procedure produce(L, region)
every i := !10 do

critical region: put(L, i)
end
procedure consume(L, region)

i := 0
while i < 10 do

critical region: if x := get(L) then i +:= 1 & write(x)
end

Using a thread-safe list results in fewer lines of code, and in a more e�cient program

doing less locking and unlocking at the language level, or even not doing explicit locking

at all. For example, the above program may be rewritten as:

procedure main()
L := mutex([])
p := thread produce(L)
c := thread consume(L)
every wait(p | c)

end

procedure produce(L)
every put(L, !10)

end

8.4. THREAD SYNCHRONIZATION 149

procedure consume(L)
i := 0
while i < 10 do

if x := get(L) then i +:= 1 & write(x)
end

The produce() and consume() procedures do not do any locking, making concurrent pro-

gramming in such a case just as easy as writing a sequential program. It is only necessary

to notify the language at the beginning that the data structure is shared, by passing it to

the mutex() function. This function takes a second optional parameter denoting an existing

mutex object or an object that is already marked as shared (has a mutex attribute). Instead

of creating a new mutex object for the data structure, the existing mutex is then used as

an attribute for the data structure. If the second object is a structure that is not marked

as shared, a new mutex is created. This is useful when two objects need to be protected

by the same mutex. For example, the list L and the table T in the following example share

the same mutex:

mtx := mutex()
L := mutex([], mtx)
T := mutex(table(), mtx)

which is equivalent to the following if the mutex does not need to be explicit:

L := mutex([])
T := mutex(table(0), L)

or

L := []
T := mutex(table(0), L)

In all cases, lock(L) and lock(T) lock the same mutex, serializing execution on both data

structures. Not all operations on data structures produce correct results, only �atomic�

operations do. In other words, implicit locking/unlocking takes place per operation, which

means that even if each of the two operations is safe, the combination might not be. A

critical region is still needed to combine the two. For example, if L[1] has the value 3 and

two threads are trying to increment L[1]:

L[1] := L[1] + 1

the resulting L[1] could be 4 or 5. That is because reading L[1] (the right side of the

assignment) and storing the result back in L[1] are two di�erent non-atomic operations,

separated in time. The good news is that solving such an issue does not require an extra

explicit mutex. If L is marked as shared (passed to the mutex() function) it can be passed

to lock()/unlock() functions. It can be used with the critical syntax like this:

critical L: L[1] := L[1] + 1

150 CHAPTER 8. THREADS

Thread safe assignment without a mutex Although protecting a global variable that

is written to concurrently by several threads is always the correct thing to do, there are

some situations where a protecting mutex may be safely discarded. If the type of the

global variable never changes (because every thread writes a value of the same type) then

concurrent assignments are thread safe with one exception: the integers. The reason for

the exception is that the underlying implementation actually uses two di�erent types to

represent integers, one for large integers that are greater than some implementation de�ned

constant, and one for �normal� integers. If you can guarantee that all of the integers written

to the global variable are all either small or all large (but not a mixture) then you may also

discard the protecting mutex in this case too.

Doing without a mutex should be considered carefully on a case by case basis. In

most cases the overhead introduced by the mutex will have an insigni�cant e�ect on the

program's performance and it is better to be safe than sorry. In the rare cases where the

mutex has a considerable impact on performance, following the guidelines above should

give a worthwhile improvement.

If values of di�erent types are written concurrently to a global variable then a mutex

must be used to avoid the risk of the descriptor that the implementation uses to manage

the variable having one type whilst referring to a value of a di�erent type. Either corrupt

data � if you are lucky � or program termination is the likely outcome of such an error.

Condition variables Mutexes are used to protect shared data in critical regions, and

block threads if there is more than one thread trying to enter the region. Condition variables

take thread blocking/resumption to a new level that is not tied to accessing shared data

like a mutex. A condition variable allows a thread to block until an event happens or

a condition is satis�ed. For example, the previous section showed a producer/consumer

problem where the consumer keeps spinning to get values out of the shared list. In real-life

applications, any spinning could be a waste of resources; other threads, including producer

threads could be using the resources to do something useful instead. The consumer needs

to block until there is data to process in the list. This is where a condition variable comes

into play. A condition variable is created using the function condvar(). The returned object

is a condition variable that can be used with wait() and signal() functions. wait(cv) blocks

the current thread on the condition variable cv. The thread remains blocked until another

thread does a signal(cv), which wakes up one thread blocked on cv. A very important

aspect of using a condition variable is that the variable must always be associated with a

mutex. More speci�cally, the wait() function has to be always protected by a mutex. Unicon

provides a built-in mutex for condition variables which can be thought of as an attribute

similar to thread-safe data structures. This means that a condition variable can also be

used with lock()/unlock() functions or the critical clause. It is important to realize that not

only wait() has to be protected by a critical region, but also the condition or the test that

leads a thread to wait on a condition variable. See the following example:

8.4. THREAD SYNCHRONIZATION 151

if x=0 then wait(cv)

A thread wants to wait on cv if x=0, but what happens if the value of x has changed

between the test and the call to wait(cv)? If a second thread changes the value of x and

signals cv to wake up the �rst thread, while the �rst thread transitions from the test to

wait(), it may miss the wake up signal and might block inde�nitely because it is waiting

on a condition variable that it should not wait on. The correct way to use wait() with a

condition variable is

lock(cv)
if x=0 then wait(cv)

unlock(cv)

or :

critical cv: if x=0 then wait(cv)

Because other threads might need to access the condition variable while some threads are

waiting on it, the wait() function atomically blocks the thread and releases its corresponding

mutex. After receiving a wake-up signal, the blocked thread wakes up, acquires the mutex

(blocking if necessary) and continues executing, and that is when wait() returns. It is good

practice to do the condition variable test before assuming that it is in one state or another.

This leads to a more correct way to use condition variables that ensures that a thread does

not leave wait() before guaranteeing the test is in a speci�c state, as follows:

critical cv: while x=0 do wait(cv)

Using a while in place of if will ensure that the thread goes back to sleep if it happens

to wake up and the condition has not changed.

The producer/consumer example mentioned above can be rewritten using a condition

variable. Since the consumer needs to sleep/wake up depending on the availability of

elements in the list, the state of the list must be guaranteed to remain the same while

interacting with the condition variable for the reason explained above (missing wake-up

signals). The list and the condition variable have to be protected by the same mutex.

condvar() allows an optional argument, an existing mutex that is to be associated with the

condition variable. In the original example, using an independent mutex to protect the

condition variable looks like this:

procedure main()
L := []
mtx := mutex()
cv := condvar(mtx)
p := thread produce(L, cv)

152 CHAPTER 8. THREADS

c := thread consume(L, cv)
every wait(p | c)

end

procedure produce(L, cv)
every i := !10 do {

critical cv: put(L, i)
if *L=1 then signal(cv)
}

end

procedure consume(L, cv)
i := 0
while i < 10 do {

if *L=0 then critical cv: until *L>0 do wait(cv)
if x := get(L) then i +:= 1 & write(x)
}

end

Another way to write this program is on top of the thread-safe list example. Since there

is no explicit mutex to pass to the condvar() function in the original example, a mutex can

be �rst created and then passed along with the list to the mutex() function. The same mutex

then can be passed to condvar(). The function binds the mutex already associated with the

list to the condition variable. The �nal result is the same as in the explicit mutex example,

a list and a condition variable sharing the same mutex. Here is the example again with the

shared list and a condition variable:

procedure main()
mtx := mutex()
L := mutex([], mtx)
cv := condvar(mtx)
p := thread produce(L, cv)
c := thread consume(L, cv)
every wait(p | c)

end

procedure produce(L, cv)
every put(L, !10) & *L=1 & signal(cv)

end

procedure consume(L, cv)
i := 0
while i < 10 do

if x := get(L) then

8.5. THREAD COMMUNICATION 153

i +:= 1 & write(x)
else

critical cv: until *L>0 do wait(cv)
end

In previous examples, calls to signal() are not protected by any mutex. signal() does

not need protection, because it does not block the thread, and there are no worries about

a deadlock. The worst thing that can happen is signaling a condition variable that does

not have any thread waiting on it, which is not a problem. However protecting calls to

signal() is not an issue either. Depending on the problem, doing it one way or the other

might be more or less e�cient. There is no need to have a thread that spends a lot of time

locking/unlocking a mutex if it is not necessary, creating contention in the critical region.

But a thread that keeps wasting time signaling condition variables that have no threads

waiting on them is also undesirable.

The signal() function takes a second optional parameter: the number of threads to be

woken up. The default is one, but it can be any positive value. For example:

every !4 do signal(cv)

can be written as:

signal(cv, 4)

Furthermore, if all of the threads waiting on cv need to be woken up, a special 0 (or

CV_BROADCAST) value can be passed to signal(), causing it to broadcast a wakeup call for

all threads waiting on cv:

signal(cv, 0)

or

signal(cv, CV_ BROADCAST)

8.5 Thread Communication

Traditionally, co-expressions communicate implicitly, or explicitly using the @ operator. All

co-expression communication is synchronous; the calling co-expression is blocked and the

called co-expression runs. This simple communication model is called activation in Unicon.

A co-expression C1 can activate another co-expression C2 using the syntax x@C2, where x

is an optional value to be transmitted from C1 to C2. C1 waits until it gets activated by

C2 or any other co-expression directly or indirectly activated by C2. As mentioned earlier,

implicit activation takes place whenever a co-expression produces a value or falls o� its

154 CHAPTER 8. THREADS

end. With implicit activation, the co-expression activates its parent (the last co-expression

to activate it).

Threads take co-expression communication to a new level with their dynamic nature.

Threads run concurrently; in many cases, a running thread just wants to send a value to

another thread without waiting for a reply, or receive a value from another thread, if there

is one, without waiting. The @ operator is not suitable for this kind of (asynchronous)

communication. Unicon adds four operators dedicated to asynchronous communication.

These are @>, @>>, <@ and <<@. The operators correspond to send, blocking send,

receive, and blocking receive.

Thread messaging queues

Before exploring how these communication operators are used, look at messaging queues

and how they are utilized to support communication between threads. Each thread main-

tains two queues called the inbox and outbox that are created with the thread. When a

thread sends a message with an explicit destination, the message is queued in the desti-

nation's inbox. Otherwise, it is queued into the sender's outbox. A thread can receive

messages from another thread by dequeuing messages from the source's outbox if there is

an explicit source, otherwise it dequeues messages from its own inbox. Figure 8-1 presents

two threads with inboxes and outboxes.

Figure 8-1: Inboxes and Outboxes for Thread Communication.

send and receive operators

The @> (send) and <@ (receive) operators communicate messages containing arbitrary data

between threads. The operators support co-expressions as well, with the same semantics.

The send operator has the syntax

x @>T

where x can be any data type, including null, which is equivalent to omitting it. T refers

to a thread to which x is transmitted: x is placed in T's inbox. x can be picked by T using

the receive operator which is presented later. x @> &main may be used to send a message

to the main thread. The send operator can also have no destination, as in

8.5. THREAD COMMUNICATION 155

x @>

In this case x is sent to no one, instead it is placed in the sender's outbox. The operator

can be read as �produce x�. x can then be picked up later by any thread wanting a value

from this sender. For example the sender in this case might be a creating prime numbers

and placing them in its outbox to be ready for other threads.

The receive operator is symmetric to send, and takes two forms, with explicit source or

with no source, as follows:

<@T
<@

The �rst case reads �receive a value from T�; it obtains a value from T's outbox. In the

prime number example mentioned above, <@T would be the way to get a prime number

produced by T. <@ on the other hand reads values directly from the receiver's inbox. It

reads messages sent explicitly to the thread doing the receive operation.

Both @> and <@ can succeed or fail. In the case of <@ the operator succeeds and

returns a value from the corresponding queue (inbox/outbox) depending on the operand if

the queue is not empty. If the queue is empty the operation fails directly. In the case of

@>, if the value is placed in the corresponding queue the operation succeeds and returns

the size of the queue. If the queue is full, the send operation fails. The inbox/outbox for

each thread is initialized to have a limited size (it can hold up to 1024 values by default).

This limit can be increased or decreased depending on the application needs. The limits are

useful so that queue sizes do not explode quickly by default. They also provide an implicit

communication/synchronization as explained later in following sections. Let us look at the

producer/consumer example again written using the new operators:

procedure main()
p := thread produce()
c := thread consume(p)
every wait(p | c)

end

procedure produce()
every !10 @> # place values in my outbox

end

procedure consume(p)
i := 0
while i < 10 do

if x := <@ p then # get values from p
i +:= 1 & write(x)

end

156 CHAPTER 8. THREADS

Each thread has exactly one inbox and one outbox, and each operator call is mapped

to only one of these inboxes or outboxes as seen in Figure 1. All messages from all threads

coming to thread B in the �gure end up in its inbox. All threads trying to receive messages

from A compete on A's outbox. Both the inbox and the outbox queues are public com-

munications channels, and it is impossible to distinguish the source of a message if there

are several threads sending messages to the same thread at the same time. Furthermore,

if <@ has an explicit source like A in Figure 1, it only looks in A's outbox, and does not

see messages from A coming directly to the inbox. Applications that require the sender's

address can attach that information to messages by building them as records with two

�elds, one �eld for data and the other containing the sender's address. A better approach

for private communications for some applications is the use of lists shared between the two

communicating threads or the use of private communication channels discussed later in this

document.

Inbox/Outbox and the Attrib() function

As seen in previous sections, communication between threads is done though inbox/outbox

queues which have size limits. The size limit, which defaults to 1024, and the actual size

dictate how synchronization is merged with the communication. The size operator * can

be used with a thread to query its actual outbox size (how many values it contains, not

the maximum limit), as follows:

outbox_size := *T

But this is only a single attribute for one queue. To access or change other queue

attributes, a new function Attrib() is introduced. This function uses the form Attrib(handle,

attribcode, value, attribcode, value, ...). The integer codes used by this function are de�ned in

an include �le threadh.icn. This header �le is part of the threads package, which can be used

by a program via

import threads

When values are omitted, Attrib() generally returns attribute values. To get the size of

the outbox (the same as the * operator), the code is

outbox_size := Attrib(T, OUTBOX_SIZE)

similarly,

inbox_size := Attrib(T, INBOX_SIZE)

gets the current size of the inbox. On the other hand

8.5. THREAD COMMUNICATION 157

Attrib(T, INBOX_LIMIT, 64, OUTBOX_LIMIT, 32)

sets the inbox and outbox size limits to 64 and 32 respectively. The following table sum-

marizes the available attributes and their meanings.

Attribute Meaning Read/Write?

INBOX_SIZE Number of items in the inbox Read Only

OUTBOX_SIZE Number of items in the outbox Read Only

INBOX_LIMIT The maximum number of items allowed

in the inbox

Read/Write

OUTBOX_LIMIT The maximum number of items allowed

in the outbox

Read/Write

Blocking send and receive

In many situations senders and receivers generate and consume messages at di�erent speeds

or based on needs. Instead of overloading slow receivers or busy waiting for slow senders,

the two ends of the communication need a synchronizing mechanism to tell them when

to send new messages or when a new message is available. Two more send and receive

operators provide such functionality, the blocking send operator @>> and the blocking

receive operator <<@. These can be used in the same way as @> and <@, except that

instead of failing when the operation cannot be completed, the new operators block and

wait until the operation succeeds. In the simple producer/consumer example, the producer

is only producing 10 values, since the default size of the queue is 1024, using a blocking

send would not make any di�erence. The consumer however, can make use of the blocking

receive instead of spinning in some cases while the queue is empty and the original blocking

receive just keeps failing. Take a closer look at the consumer code again:

procedure consume(p)
i := 0
while i < 10 do

if x := <@ p then # get values from p
i +:= 1 & write(x)

end

Using an if statement with <@ checks whether the operation succeeds in receiving a

value. A blocking receive is more suitable in this case and it simpli�es the loop slightly,

since the if can be dropped, and also the counter is not necessary anymore. The counter was

previously necessary because the loop needs to keep track of how many <@ were needed to

count to 10. The consumer can be rewritten as

procedure consume(p)
get exactly 10 values from p, block if necessary
every !10 do write(<<@ p)

end

158 CHAPTER 8. THREADS

In some cases, a thread might want to use a blocking receive to get values from a second

thread, but it is not willing to block inde�nitely; it may do some other useful work instead

of waiting. The <<@ operator accepts a timeout parameter to impose a limit on how long

to wait for a result before giving up. Here is how <<@ would look in this case:

result := timeout <<@ # get from my inbox

or

result := timeout <<@ T # get from T’s outbox

The timeout operand is a non-negative integer denoting the maximum time to wait

in milliseconds. Negative integers are treated as a null value, defaulting to an inde�nite

blocking receive. A 0 operand indicates no waiting time, e�ectively resulting in a non-

blocking receive. The following table summarizes the di�erent forms of the send and receive

operators and their operands:

Operator Operands Behavior
@>

(send)
msg@> Place msg in my outbox, fail if the outbox is full

msg@>T Place msg in T's inbox, fail if T's inbox is full
<@

(receive)
<@ get a message from my inbox, fail if the inbox is empty

<@T get a message from T's outbox, fail if T's outbox is empty
@>>

(blocking

send)

msg@>> Place msg in my outbox, block if the outbox is full

msg@>>T Place msg in my T's inbox, block if the T's inbox is full
<<@

(blocking

receive)

<<@ Get a message from my inbox, block if the inbox is empty

<<@T Get a message from T's outbox, block if it is empty

n<<@
Get a message from my inbox, block up to n milliseconds

waiting for an inbox message to become available

n<<@T
Get a message from T's outbox, block up to n milliseconds

waiting for a message to become available there

Most applications use only a few of these modes. In a fast sender/slow receiver applica-

tion, the sender would block when the queue is full and unblock when the queue is empty

(using @>>). The receiver would consume messages from the queue until it is empty, and

then block until there is a new message added to the queue (<<@). For some applications

8.5. THREAD COMMUNICATION 159

however this communication scheme might not be optimal, hence many options are pro-

vided. The di�erent options in the table above give the programmer a wide range of control

over when to block or resume a thread based on the availability of data in the communica-

tion queues. This control covers the needs of many applications and provides simple ways

to abstract concurrent programming activities such as load balancing and e�cient use of

resources.

Private communication channels

As mentioned in the previous sections, inbox and outbox communication queues are visible

by all threads all the time. In some scenarios two or more threads need to communicate

with each other without worrying about other threads sending and receiving messages at

the same shared queues. While it is possible to build a protocol at the application level

on top of the inbox and outbox queues to achieve such behavior, it is simpler and more

e�cient to have the threads communicate privately. This kind of communication can be

done by sharing a list between two threads and protecting it by an explicit mutex, or using a

thread-safe list. A more formal way for such communication is to use the channel() function.

Starting a private communication is similar to a network connection, except that this

connection is taking place between two threads in the same process instead of two di�erent

processes that may be on di�erent machines. A private communication channel between

two threads can be created using the library procedure channel().

channel() is part of the threads package, so import threads is necessary to use it. It takes

one parameter, which is the thread with which the connection will be initiated. If channel()

succeeds, it returns a list representing a communication channel between the two threads.

Representing a bidirectional channel that can be used by the two threads, given that each

thread calls the function channel() with the other thread as an argument. Here is an example.

In thread A:

chB := channel(B) | "failed to open a channel with B"

In thread B:

chA := channel(A) | "failed to open a channel with A"

A channel is a directional communication medium. One thread should use it as an

outbox, and the other should use it as an inbox; only one thread will send messages over

the channel while the other receives them from the other end. The provided channel can

be used with the communication operators (all four of them) with the same semantics

as before. The only di�erence in this case is that the right operand is a communication

channel instead of a thread. In the channel example below, the main thread transmits the

consumer's identity to the producer (c @> p), who receives it via c := <<@:

160 CHAPTER 8. THREADS

import threads
procedure main()

p := thread produce()
c := thread consume(p)
c @> p
every wait(p | c)

end

procedure produce()
c := <<@
chC := channel(c)
every !10 @> chC # place values in channel c

end

procedure consume(p)
chP := channel(p)
every !10 do write(<<@chP)

end

A simple thread pool

In some cases the explicit creation of a thread for each concurrent activity is the simplest

and most transparent way of writing the program, especially if the threads need access to

the local variables of the procedure that created them. In other cases the work can be

more expeditiously carried out by a pool of �worker� threads, which execute tasks that are

handed to them. The threads package contains a simple thread pool that may be used for

this purpose: it has four procedures.

MakePool(n) Create a pool of n worker threads. The default value for n is 2 +

the number of processors reported in &features.There is usually not much to be gained

by having many more active threads than the number of available processors (unless a

signi�cant number are idle, waiting for an event to happen).

Dispatch(proc, params, ...) Queue a task to be executed by a thread from the

pool. If a thread is available the procedure will be called immediately with the supplied

parameters, otherwise it will be called when a thread becomes available.

isIdle() Succeeds if no worker threads are active and there are no tasks in the queue.

ClosePool() Shuts down the pool after remaining tasks have �nished (including

those that are in the queue). ClosePool does not return until the pool has been shut

down and all the threads have �nished, which provides a simple way of synchronizing the

concurrent activities with the controller thread (often &main).

8.5. THREAD COMMUNICATION 161

Although waiting for everything to �nish is the most usual (and safest) technique, if
waiting is not required a simple way to achieve it is to write

thread{ClosePool()}

Note that calling ClosePool directly in a worker thread will lead to deadlock (because

the thread will be waiting for itself to terminate). The same thing happens if you write

Dispatch(ClosePool). There is some risk attached to not waiting for the pool to complete its

work because if the main thread terminates the whole program �nishes � regardless of the

state of the thread pool.

The thread pool is minimalist by design. There are a number of extra facilities that

could, perhaps, be added � cancellation of a task, place a task at the front of the queue,

rather than the rear � but these are left as an exercise for the reader who needs them.

Thread-local storage

It is notable that thread�local storage can be implemented in Unicon without any special
support from the runtime system. The threads package contains a TLS procedure that can
be invoked on either side of an assignment operator to store and recover thread-local values.
A plausible implementation of TLS would be

procedure TLS(var)
local thr, tls
static mtx, TT # A table of tables indexed by thread id
initial { mtx := mutex(); TT := table() }

thr := serial()
critical mtx: tls := if not member(TT,thr) then TT[thr] := table() else TT[thr]
return tls[var]

end

In fact, the implementation of TLS is

procedure TLS(var)
local thr; static TT # A table of tables indexed by thread id
initial TT := mutex(table())
/TT[thr:=serial()] := table()
return TT[thr][var]

end

which takes full advantage of the automatic locking and unlocking features discussed earlier

(and is approximately 50% faster). Note that TLS is a misnomer: it actually implements

co-expression local storage but, unless you are writing a multi-threading program that also

uses co-expressions within each thread, the distinction is unlikely to matter.

162 CHAPTER 8. THREADS

8.6 Practical examples using threads and messages

This section starts with a discussion of an early version of a program that forms part of an

indexing system for LATEX �les, which are the source for a book. The system operates in

three phases:

1. An analysis phase, where the possible words to be indexed are gathered from the

source �les.

2. A manual review phase to select the index terms. Good indexing is an art and some

judgement must be exercised when choosing what to index and how to refer to it.

3. An insertion phase where the chosen terms are located and the indexing terms inserted

into the source �les.

We focus on the �rst (analysis) phase. Here the �les are read in and every �word� is put into

a table that counts how many times that word occurs. Words that occur too many times

(either in an individual source �le, or the document as a whole) are rejected as indexing

candidates because they are likely to be the common words that are of no value in an index.

A simple program to analyze the �les is something like the following. It uses three nested

loops to read each �le, split every line into words and put the results into a �le table. At

the end of each �le, it copies eligible words from the �le table into the document table.

Two parameters, perFile and perDoc, govern the limits that cause a particular word to be

rejected as an index candidate. perDoc is used in the reportWords procedure, which is not

shown.

global perFile # If a wordcount exceeds this in a single tex file it is rejected
global perDoc # If a wordcount exceeds this in the whole document it is rejected

procedure main(args)
local nFiles
local f, wt, dt, word, texWord, fileName, line, count, x

argument and option processing omitted for clarity

dt := table(0)
texWord := &letters ++ "_-\’"
count := 0

every fileName := !args do {
if f := open(fileName, "r") then {

wt := table(0)
every line := !f do { # put each word in the word table

line ? {while tab(upto(texWord))

8.6. PRACTICAL EXAMPLES USING THREADS AND MESSAGES 163

word := tab(many(texWord)); wt[word] +:= 1; count +:=1 }
}

}

Add the candidate words used in this file to the master table.
every word := key(wt) do if (x := wt[word]) <= perFile then dt[word] +:= x
close(f)

} else {write(&errout, "Cannot open ", fileName) }
}
reportWords(dt)

return # Success
end

Whilst this program works, albeit with an idiosyncratic de�nition of what constitutes a

word, it su�ers from a serious defect: it only analyzes one �le at a time so a large proportion

of the available processing power is unused (on the author's machine, which reports 8 cores,

the �gure works out at 87.5% idle). We can do much better than that.

In the following version, which uses the threads library package, each �le is processed in

parallel by a separate thread drawn from a pool of worker threads. After the analysis of

each �le is complete, the results are sent to a separate �accumulator� thread that aggregates

the results.

import threads
global perFile # If a wordcount exceeds this in a single tex file it is rejected
global perDoc # If a wordcount exceeds this in the whole document it is rejected
global countingThread

procedure main(args)
local nFiles

argument and option processing omitted for clarity

nFiles := *args
MakePool() # no parameter means default of 2 + no. of processors

Start a "counting thread" to accumulate answers from the analysis threads.
Dispatch(accumulator)

Analyze each file in a separate thread. Send the results to the accumulator.
every Dispatch(analyze, !args)

waitFor(nFiles) # Wait for all files to be analyzed.

164 CHAPTER 8. THREADS

Since all the analyzers have now finished, it is safe to end the counting thread.
It will get all the answers that have previously been sent before receiving "end".
"end" @>> countingThread

ClosePool() # ClosePool returns when all threads have finished.

return # Success
end

The procedures called by main (except for waitFor) are all pretty much the same as the
corresponding lines of code in the preceding example. Each analysis thread sends a message
to the main thread when it has �nished. Since the main thread knows how many �les there
are to be processed, it can wait until every �le has been analyzed.

Wait for the specified number of messages before returning
procedure waitFor(messages :integer)

repeat { <<@ ; if 0 >= (messages -:= 1) then return }
end

The analyze procedure is the same as the previous example, except that it sends a result
to the accumulator thread and a ��nished� message to the main thread.

procedure analyze(fileName :string)
local f, line, count := 0, word, wt := table(0)
local texWord := &letters ++ "_-\’"
if f := open(fileName, "r") then {

every line := !f do { # put each word in the word table
line ? {while tab(upto(texWord)) do {

word := tab(many(texWord)); wt[word] +:= 1; count +:=1 }
}

}
wt @>> countingThread # Send the words to the accumulator thread
close(f)

} else { write(&errout, "Cannot open ", fileName) }

"end" @> &main # Tell the main thread that a file has been analyzed
return # success

end

The accumulator thread gets messages from the analysis threads and from the main
thread. It uses the type of the message to distinguish between them. Before starting, it
writes its thread id to a global variable so other threads know where to send messages.

procedure accumulator()

8.6. PRACTICAL EXAMPLES USING THREADS AND MESSAGES 165

local msg, word, x, dt := table(0)
publish the thread Id so other threads can send messages.
countingThread := ¤t
repeat {

msg := <<@
case type(msg) of {

"table" : # Add the candidate words in this file to the master table.
{ every word := key(msg)

do if (x := msg[word]) <= perFile then dt[word] +:= x }
"string" : # Final message from the main thread.

{ reportWords(dt); return }
default: stop("Invalid message sent to counting thread")

}
}

end

Note: this design has a race condition � it is possible that an analysis thread that

has started after the accumulator could �nish its analysis before the accumulator has even

started. In that case the program would terminate because of an attempt to send a message

to &null: it has never happened, but the behaviour is theoretically possible (and a correct

concurrent program may make no assumptions about timing). One cure would be for the

main program to wait for a message from the accumulator thread before starting the others.

A less elegant solution would be to delay until the countingThread variable is not null.

Although the tables themselves may be quite large, because a table is a mutable type it

is passed by reference, so the messages passed between threads are quite small. Extra work

has to be done to pass messages and to coordinate the threads but the savings outweigh the

extra work by a considerable margin. The graph below plots the run times of the original

sequential program and the concurrent program using a di�erent number of threads to

perform the analysis.

Because of the accumulator thread, the number of threads performing the analysis is

one less than the graph shows. This explains the slight �bump� at two threads: there is

only one analysis thread, so we get the performance of the sequential version plus the

overheads of message passing. With two analysis threads (three in total) the run time

is halved and with four analysis threads the performance is roughly quadrupled. Adding

more threads doesn't really increase the performance in this particular example (the test

machine reports eight processors but it's really four dual hyper-threaded cores: the lack of

speed-up after four analysis threads suggests that the dual hyper-threads don't have quite

as much �grunt� as two separate cores)

There is no explicit synchronization because the analysis threads are not contending

with each other � if the table that counted words in the whole document were global and

each analysis thread added it's own results to the global table then contention for the table

might be a performance bottleneck � instead, the analysis threads are just passing their

166 CHAPTER 8. THREADS

results in a message and getting on with their day. An accumulator, for the price of an

extra thread, can often result in a worthwhile increase in performance.

This design pattern (process in parallel and send results to a single accumulator) can

be used in many di�erent circumstances and, in most cases, the reduction in contention

more than makes up for the cost of the extra thread.

8.6.1 Disk space usage

The unix du utility can be used to traverse a �lesystem and report on the space used. If,
instead of a recursive traversal of each directory, the separate directories are analyzed in
parallel and the results sent to an accumulator the result is usually faster. The process
may be initiated by a procedure like the following

Analyze a directory and wait until the analysis is finished
procedure analyze(path)

local thisThread := ¤t
MakePool()
Adder := thread { Dispatch(du, (\path | ".")); GatherResults() @>> thisThread }
write("total size = ", <<@)
ClosePool()
return # success

end

Note that instead of using a thread from the pool as an accumulator, one is created on

the �y (this is another way of avoiding the start-up race discussed in the previous example).

The du procedure analyzes a directory, adding up the size for regular �les, ignoring special

8.6. PRACTICAL EXAMPLES USING THREADS AND MESSAGES 167

�les and handing o� (sub) directories to another thread. At the end it sends o� the total

for that directory (but not it's children) to the accumulator thread.

Before analyzing a directory, it also sends o� a message to the accumulator announcing
its intent. The reasons for this are discussed later. In the interests of clarity, some code
dealing with loops in the �lesystem has been omitted.

Get the disk usage for a directory. Do sub-dirs in parallel with this one.
procedure du(d, parent)

local st, fd, f, path, kb := 0

fd := open(d) | { Report("Cannot open", d); return }
send a "starting analysis of d" message to the Adder
[d, &null] @>>Adder

while f := !fd do {
if f == ("." | "..") then next

if st := stat(path := d || "/" || f) then {
case st.mode[1] of {

"-": # Normal file - add its rounded size to the total for this directory
kb +:= ((st.size < st.blksize) |

st.blksize * ceil(st.size/(0.0 + st.blksize)))/1024

"d": # Directory - hand it off to a worker thread to analyze in parallel
Dispatch(du, path, d, f)

"l" | "s" | "b" | "c" | "p" | "|": # Ignore special files, symbolic links, pipes etc.
next

default: Report("Cannot handle mode "", st.mode, "", file ", path)
}

} else {
Report("Cannot stat", path)

}
}

close(fd)
[d, kb,] @>> Adder # Send the result from analysis of d to the Adder

end

The Adder thread, which calls procedure GatherResults, gets results for each directory

until it's all over. Each directory results in two messages: [d, null] followed, a little later by

[d, size]. Results for child directories of d might come before the second message, but will

never precede the �rst.

168 CHAPTER 8. THREADS

procedure GatherResults()
local msg, kb := 0

repeat {
msg := <<@; kb +:= \msg[2]

Have we finished? The question is trickier than it looks!
if IsIdle() & (Attrib(Adder,INBOX_SIZE) = 0) then return kb

}
end

Now to the discussion of �Have we �nished?� The reason the question is tricky is because

GatherResults operates in parallel with the analysis; perhaps before it has even started. We

must ensure that we don't bail out before at least one directory has been analyzed, which

is achieved by placing the test after the reception of the �rst message � this is one of

the reasons for sending two messages per directory. We must check the analysis is �nished

i.e. there is no work in progress. The WIP logic depends on du queuing new work before

reporting the result of analyzing a directory. Finally, we must have processed all of the

messages.

Note that IsIdle() must be true before checking the message queue is empty; otherwise,

there is a race between the analysis thread and GatherResults (We might see an empty

message queue, then the analyzer posts [d, size] and �nishes before we call IsIdle(): The

result would be that we'd ignore the �nal message, or messages).

It is sometimes true that deciding when a concurrent algorithm has �nished � without

terminating prematurely or discarding some of the �nal results or never terminating � is

harder than writing the processing algorithm itself!

The reader may be wondering why the directory name is passed to the GatherResults

procedure, which doesn't use it. The reason is that these examples are edited extracts from

a larger program that builds a structure that represents the directory and its child sub-

directories. It then displays a series of pie charts (one for each directory) showing where all

the space has gone. It needs the directory names to label the segments of each pie chart.

The other reason for passing two messages per directory is that the full program needs to

set up the structure for a directory before receiving any results for its children.

When analyzing a fairly large (500GB) directory, the pie chart program � which runs

on the Unicon interpreter and is based on the code examples above � outperforms the

built in du program by almost an order of magnitude on an eight core processor; the built

in program is presumably written in C and optimised but, crucially, it is single threaded.

8.6.2 More suggestions for parallel processing

If several �les are involved, it is often quite easy to see how the processing may be done

in parallel but there are other cases � some more obvious than others � where it might

8.7. SUMMARY 169

prove useful:

Monte Carlo methods Any problem that calls for a large number of trials, where the

result of one trial does not a�ect subsequent trials is amenable to being written as a

parallel application.

Matrix multiplication Large matrices may be multiplied in parallel, either by a naive

rewrite of the sequential (O(n3)) algorithm or by dividing the matrix up into blocks

(divide and conquer) and handling each block in a separate thread.

Unicon compiler Analysis and code generation is largely independent for each Unicon

procedure. It might be possible to farm out larger procedures to a thread pool and

thereby increase the overall performance of the compiler.

grep If the regular expression is computationally expensive, spreading out the analysis

work for each line of the �le to a thread pool might be faster.

The last two suggestions are speculative but demonstrate that the world can look quite

di�erent when viewed through concurrent spectacles.

8.7 Summary

True concurrency opens up major new application domains for the Unicon language. More

importantly, it enables the language to utilize more than the small fraction of modern

processors utilized by traditional sequential execution. For example, on a typical quad-

core desktop, many applications will be able to get between 2× and 4× the performance

of a sequential Unicon program with relatively minor changes. This is comparable to the

speedup typically delivered by the optimizing compiler. Some applications will be able to

do even better on processors with more cores.

This document presented Unicon's concurrency facilities from a programmer's perspec-

tive. The implementation and its performance are described in more detail in [Al-G12].

There are major areas for future work, including GPU- and APU support, and various

forms of implicit concurrency that can be added to the language.

170 CHAPTER 8. THREADS

Chapter 9

Execution Monitoring

Unicon's execution monitoring facilities allow the user to execute a Unicon program under

the observation of one or more monitoring programs, also written in Unicon. This chapter

presents the monitoring architecture and a standard execution monitoring scenario, followed

by details of the language features involved. This chapter is based on �Program Monitoring

and Visualization� [Je�99], which has many additional examples.

9.1 Monitor Architecture

The monitoring facilities components are summarized in Figure 9-1. Many of these com-

ponents are general-purpose language features that are useful independent of execution

monitoring.

Figure 9-1: The Alamo architecture

171

172 CHAPTER 9. EXECUTION MONITORING

Monitor Terminology

The terminology used in discussing Unicon's execution monitoring architecture relates to

events and the linguistic features associated with them.

Dynamic loading � The ability to load multiple programs into a shared execution en-

vironment supports monitor access to target program data. Dynamic linking is not

desirable in the context of execution monitoring; the names in the monitor are distinct

from those in the target program.

Synchronous execution � The monitor and target program execute independently, but

not concurrently. This allows the monitor to control target program execution using

a simple programming model. Unicon's co-expression data type is used to support

the relationship between monitor and target program.

High-level instrumentation � Information about program execution is available to the

monitor from locations in the language runtime system that are coded to report sig-

ni�cant events. This obviates the need for, and o�ers higher performance than target

program instrumentation. The runtime system instrumentation is a generalization

of an earlier special-purpose monitoring facility oriented around dynamic memory

allocation and reclamation [Town89]. It also supercedes Icon and Unicon's procedure

tracing mechanism.

Events � The primary language concept added in order to support execution monitoring

is an event . An event is the smallest unit of execution behavior that is observable

by a monitor. In practice, an event is the execution of an instrumentation point

in the code (a sensor) that is capable of transferring control to the monitor. This

de�nition limits events to those aspects of program behavior that are instrumented

in the language runtime system or the program itself. If instrumentation does not

exist for an aspect of program behavior of interest, it is often possible to monitor

the desired behavior by means of other events. In the present implementation, for

example, no instrumentation exists for �le input and output. If an EM wishes to

monitor I/O behavior, it can monitor function and operator events and act on those

functions and operators that relate to input and output. A similar example involving

the monitoring of Icon's built-in string scanning functions is presented in [Je�ery99]

In Unicon, events occur whether they are monitored or not, and each event may or

may not be observed by any particular monitor. This de�nition is useful in a multi-

monitor environment, in which EMs are not coupled with the instrumentation and

multiple EMs can observe a TP's execution.

Event codes and values � From the monitor's perspective, an event has two compo-

nents: an event code and an event value. The code is generally a one-character

9.1. MONITOR ARCHITECTURE 173

string describing what type of event has taken place. For example, the event code C

denotes a procedure call event. Event codes all have associated symbolic constants

used in program source code. For example the mnemonic for a procedure call event

is E_Pcall. These constants are available to programmers as part of a standard event

monitoring library described below.

The event value is an Icon value associated with the event. The nature of an event

value depends on the corresponding event code. For example, the event value for a

procedure call event is an Icon value designating the procedure being called, the event

value for a list creation event is the list that was created, the event value for a source

location change event is the new source location, and so forth. Event values can be

arbitrary Icon structures with pointer semantics; the EM accesses them just like any

other source language value.

Event reports � The number of events that occurs during a program execution is ex-

tremely large�large enough to create serious performance problems in an interactive

system. Most EMs function e�ectively on a small fraction of the available events; the

events that an EM uses are said to be reported to the EM. An event report results

in a transfer of control from the TP to the EM. E�cient support for the selection of

appropriate events to report and the minimization of the number of event reports are

primary concerns.

Event masks � A monitor controls the target program by means of this dynamic form

of �ltering events. An event mask is a set that describes the execution behavior

of interest to the monitor. Because event codes are one-letter strings, the cset data

type is used for event masks. Csets are represented internally by bit vectors, so a cset

membership test is very e�cient compared to the set data type, whose membership

test is a hash table lookup.

Event masking allows the monitor to specify which events are to be reported and to

change the speci�cation at runtime. Events that are of no interest to the execution

monitor are not reported and do not impose unreasonable execution cost. When a

monitor starts or resumes execution of the program being monitored, the monitor

selects a subset of possible event codes from which to receive its �rst report. The

program executes until an event occurs with a selected code, at which time the event

is reported. After the monitor has �nished processing the report, it transfers control

back to the program, again specifying an event mask. Dynamic event masking enables

the monitor to change the event mask in between event reports.

When an event report transfers control from TP to EM, the two components of the

event are supplied in the Icon keywords &eventcode and &eventvalue, respectively.

As discussed earlier, these keywords are special global variables that are given their

values by the runtime system during an event report, rather than by explicit user

174 CHAPTER 9. EXECUTION MONITORING

assignment. The monitor then can act upon the event based on its code, display or

manipulate its value, etc.

Standard Execution Monitoring Scenario

The following scenario presents the relationship between execution monitors and target

program in its simplest form. More sophisticated relationships between the monitor and

target program, such as running many monitors on a single target program via a monitor

coordinator, are described in �Program Monitoring and Visualization� [Je�ery99]. In addi-

tion, the expected user and range of program behavior observable using these monitoring

facilities are characterized.

Scenario De�nitions

target program (TP) � The target program is the Unicon pro-

gram under study, a translated Unicon executable �le. Monitoring

does not require that the TP be recompiled, nor that the TP's source

code be available, although some monitors make use of program text

to present information.

execution monitor (EM) � An execution monitor is a Unicon

program that collects and presents information from an execution

of a TP.

program behavior � Program behavior denotes the results of

executing the TP. Behavior is meant in a general sense that includes

program output, execution time, and the precise sequence of actions

that take place during execution.

user � In our standard scenario, the user is a human capa-

ble of understanding the TP's execution behavior. The user must

know the target language in order to make good use of many EMs

or to write a new EM. In general, the user need not necessarily be

familiar with the TP's source code.

Execution monitoring begins with a user who has questions about the behavior of a TP

(Figure 9-2). Typical questions relate to correctness or performance, such as �How is the

result calculated?� or �What is taking so long?�. Questions may be more general in nature

if the user is just trying to understand how a program works.

9.1. MONITOR ARCHITECTURE 175

Figure 9-2: Monitoring starts with a user, a program, and questions.

Answers to important questions can be found by following the execution at the source

language level, but key behavior often depends upon language semantics, implemented by

the language runtime system. In Figure 9-3, iconx.c denotes the set of �les in the Unicon

language runtime system. Many monitors can provide useful information about runtime

behavior even if the TP's source code is not available. Figure 9-3 could be elaborated to

include dependencies on the platform on which the program is running.

Figure 9-3: Behavior depends on the language, not just the program.

Selecting or Developing Appropriate Monitors

Rather than focusing on one monolithic EM that attempts to accommodate all monitoring

tasks, the framework advocates development of a suite of specialized EMs that observe

and present particular aspects of a TP's behavior. The user is responsible for selecting an

appropriate EM or set of EMs that address the user's concerns.

If no available EM can provide the needed information, the user can modify an existing

EM or write a new one. This end user development of execution monitors is also useful when

an existing EM provides the needed information, but it is obscured by other information;

existing EMs can be customized to a particular problem.

176 CHAPTER 9. EXECUTION MONITORING

Running the Target Program

The user runs the TP, monitored by a selection of EMs (Figure 9-4). General-purpose EMs

provide an overall impression of program behavior. Visualization techniques enable the

presentation of a large amount of information and abstract away detail.

Figure 9-4: EMs can answer questions about TP behavior.

Obtaining speci�c information often requires that the user interact with the EMs to

control the TP's execution, either to increase the amount of information presented during

speci�c portions of execution or to pause execution to examine details. In order to provide

this interactive control, EMs present execution information as it happens during the TP's

execution, rather than during a postmortem analysis phase.

Framework Characteristics

The preceding scenario requires language support in several areas: controlling a program's

execution, obtaining execution information, presenting large quantities of information, and

interacting with the user. To support these tasks, the framework provides synchronous

shared address multitasking and an event-driven execution control model. The �rst two of

these features are the focus of this chapter.

Multitasking

In the monitoring execution model, in which an EM is a separate program from the TP ,

the relationship is almost that of two co-expressions, except that activations of the monitor

are implicit occurrences of events within the runtime system, rather than expression results

or explicit activations using the @ operator. Event reports are transfers of control to the

monitor as well as the primary source of execution information from a TP (Figure 9.5).

9.1. MONITOR ARCHITECTURE 177

Figure 9-5: EM and TP are separately loaded coroutines

Multitasking has the following bene�ts for monitoring: the EM and TP are independent

programs, the EM has full access to the TP, and the mechanism accommodates multiple

EMs. These bene�ts are described in more detail below.

Independence

Because the EM and TP are separate programs, the TP need not be modi�ed or even

recompiled in order to be monitored by an EM, and EMs can be used on di�erent target

programs. By de�nition, execution of tasks such as EMs and TPs is synchronous. The

TP is not running when an EM is running, and vice versa. This synchronous execution

allows EMs and TPs to be independent without introducing the complexities of concur-

rent programming. In a concurrent context, each thread might have a monitor, but the

target thread and its associated monitor are not concurrent � and monitoring concurrent

programs is not yet supported by the implementation.

Another degree of EM and TP independence is a�orded by separate memory regions;

EMs and TPs allocate memory from separate heaps. Memory allocation in the EM does

not a�ect the allocation and garbage collection patterns in the TP. Because Unicon is a

type-safe language with runtime type checking and no pointer data types, EMs and TPs

cannot corrupt each others' memory by accident; only code that contains explicit references

to another program's variables and data can modify that program's behavior. EMs can

(and some do) modify TP values in arbitrary ways; the purpose of separate memory regions

is to minimize unintentional data intrusion.

Access

An address space is a mapping from machine addresses to computer memory. Within an

address space, access to program variables and data is direct, e�cient operations such as

single machine instructions. Accessing program variables and data from outside the address

space is slow and requires operating system assistance.

The EM and TP reside within the same address space. This allows EMs to treat TP data

values in the same way as their own: EMs can access TP structures using regular Unicon

operations, compare TP strings with their own, and so forth. Because of the shared address

178 CHAPTER 9. EXECUTION MONITORING

space, the co-expression switch used to transfer execution between EMs and TPs is a fast,

lightweight operation. This is important because monitoring requires an extremely large

number of task switches compared to typical multitasking applications.

Multiple Monitors and Monitor Coordinators

Unicon's dynamic loading capabilities allow simultaneous execution of not just a single EM

and a single TP, but potentially many EMs, TPs, and other Icon programs in arbitrary

con�gurations. Although uses for many such con�gurations can be found, one con�guration

merits special attention when many specialized EMs are available: the execution of multiple

monitors on a single TP (Figure 9-6, left).

Figure 9-6: Multiple EMs (left); EMs under a monitor coordinator (right)

The di�culty posed by multiple monitors is not in loading the programs, but in coor-

dinating and transferring control among several EMs and providing each EM with the TP

execution information it requires. Since EMs are easier to write if they need not be aware

of each other, things are much simpler if EMs run under a monitor coordinator (MC), a

special EM that monitors a TP and provides monitoring services to one or more additional

EMs (Figure 9-6, right). EMs receiving an MC's services need not be aware of the presence

of an MC any more than a TP need be aware of the presence of an EM.

The virtual monitor interface provided by MCs makes adding a new monitor to the

system extremely easy. A new monitor could conceivably be written, compiled, linked, and

loaded during a pause in the TP's execution. In addition, constructing e�cient MCs that

provide high-level services is another area of research that is supported within the Alamo

Icon framework.

9.2. OBTAINING EVENTS USING EVINIT 179

Support for Dual Input Streams

An EM typically has two primary input streams: the event stream from the TP, and the

input stream from the user (Figure 9-7). Although these two input streams are conceptually

independent and may be treated as such, for many EMs this unnecessarily complicates the

central loop that obtains event reports from TP�the EM must also check its own window

for user activity.

Figure 9-7: Monitors have two input streams

The runtime system instrumentation includes code that optionally checks for EM input

and reports it as an event by the execution monitoring facility, instead of requiring that the

EM explicitly check the user input stream. This simpli�es EM control �ow and improves

EM performance.

9.2 Obtaining Events Using evinit

A standard library called evinit provides EMs with a means of obtaining events. Programs

wishing to use the standard library include a link declaration such as link evinit. In addition,

monitors include a header �le named evdefs.icn to obtain the symbolic names of the event

codes.

Setting Up an Event Stream

An EM �rst sets up a source of events; the act of monitoring then consists of a loop

that requests and processes events from the TP. Execution monitoring is initialized by the

procedure EvInit(x[,input,output,error]). If x is a string, it is used as an icode �le name in a

call to the Unicon function load(). If x is a list, its �rst argument is taken as the icode �le

name and the rest of the list is passed in to the loaded function as the arguments to its

main procedure. EvInit() assigns the loaded TP's co-expression value to EM's &eventsource

keyword. The input, output, and error arguments are �les used as the loaded program's

standard �les.

EMs generally call the library procedure EvTerm() when they complete, passing it their

main window (if they use one) as a parameter. EvTerm() informs the user that execution

180 CHAPTER 9. EXECUTION MONITORING

has completed and allows the �nal screen image to be viewed at the user's leisure, waiting

for the user to press a key or mouse button in the window and then closing it.

The typical EM, and all of the EMs presented as examples in this book, follow the

general outline:

$include "evdefs.icn"
link evinit
procedure main(arguments)

EvInit(arguments) | stop("can’t initialize monitor")
... initialization code, open the EM window
... event processing loop (described below)
EvTerm()

end

This template is generally omitted from program examples for the sake of brevity.

EvGet()

Events are requested by an EM using the function EvGet(mask). EvGet(mask) activates the

co-expression value of the keyword &eventsource to obtain an event whose code is a member

of the cset mask. mask defaults to &cset, the universal set indicating all events are to

be reported. The TP executes until an event report takes place; the resulting code and

value are assigned to the keywords &eventcode and &eventvalue. EvGet() fails when execution

terminates in TP.

Event Masks and Value Masks

EvGet() allows a monitor the �exibility to change event masks each time the event source

is activated. Another function that sets event masks is eventmask(). eventmask(C,c) sets the

event mask of the task owning co-expression C to the cset value given in c.

Event masks are the most basic �ltering mechanism in Alamo, but there are situations

where they are not speci�c enough. For example, instead of handling events for all list

operations, you may want events only for speci�c lists. This situation is supported by the

concept of value masks. A value mask is an Icon set or cset whose members are used to �lter

events based on their &eventvalue, just as an event mask �lters based on the &eventcode. You

may specify a di�erent value mask for each event code. Value masks for all event codes are

supplied in a single Icon table value whose keys map event codes to corresponding value

masks. This table is passed as an optional second parameter to EvGet() or third parameter

to eventmask(). Note that no value mask �ltering is performed for event codes that are not

key in the value mask. Note also that value masks persist across calls to EvGet(). They

are replaced when a new value mask is supplied, or disabled if a non-table is passed as the

value mask parameter.

9.3. INSTRUMENTATION IN THE ICON INTERPRETER 181

There is one special case of value masks that receives extra support in Icon: virtual

machine instructions. Requesting an event report for the execution of the next virtual ma-

chine instruction is performed by calling EvGet() with an event mask containing E_Opcode.

VM instructions occur extremely frequently; dozens of them can occur as a result of the

execution of a single line of source code. Consequently, performance is severely a�ected by

the selection of all VM instruction events.

However, a particular instruction or small set of instructions may be of interest to a

monitor. In that case, the EM need not receive reports for all instructions. The function

opmask(C, c) allows EM to select a subset of virtual machine instructions given by c in C's

task. Subsequent calls to EvGet() in which E_Opcode is selected reports events only for the

VM instructions designated by c.

The event values for E_Opcode are small non-negative integers. They fall in a limited

range (< 256), which is what allows a cset representation for them. Symbolic names for

individual virtual machine instructions are de�ned in the include �le opdefs.icn. opmask(C,

c) is equivalent to:

t := table()
t[E_Opcode] := c
eventmask(C, , t)

9.3 Instrumentation in the Icon Interpreter

This section describes the instrumentation used by Unicon to produce events at various

points in the runtime system. Signi�cant points in interpreter execution where transfer of

control might be warranted are explicitly coded into the runtime system with tests that

result in transfer of control to an EM when they succeed. When execution reaches one

of these points, an event occurs. Events a�ect the execution time of the TP; execution is

either slowed by a test and branch instruction (if the event is not of interest to the EM),

or stopped while the event is reported to the EM and it processes information. Minimizing

the slowdown incurred due to the presence of monitoring instrumentation has been a focus

of the implementation.

There are several major classes of events that have been instrumented in the Unicon

interpreter. Most of these events correspond to explicit elements within the source code;

others designate actions performed implicitly by the runtime system that the programmer

may be unaware of. A third class of event that has been instrumented supports user

interaction with the EM rather than TP behavior.

Explicit Source-Related Events

The events that relate behavior observable from the source code are:

182 CHAPTER 9. EXECUTION MONITORING

Program location changes � Source code locations are reported in terms of line num-

bers and columns.

Procedure activity �There are events for procedure calls, returns, failures, suspensions,

and resumptions. In addition to these explicit forms of procedure activity, events

occur for implicit removals of procedure frames.

Built-in functions and operations � Events that correspond to Icon built-ins describe

many areas of behavior from numeric and string operations to structure accesses and

assignments. Like procedures, events are produced for function and operator calls,

returns, suspensions, resumptions, and removals.

String scanning activity � Icon's pattern matching operations include scanning envi-

ronment creation, entry, change in position, and exit. To obtain a complete picture of

string scanning, monitors must observe these events along with the built-in functions

related to string scanning.

Implicit Runtime System Events

Events that depict important program behavior observed within the runtime system in-

clude:

Memory allocations � Memory is allocated from the string and block regions in the

heap. Allocation events include size and type information. This instrumentation is

based on earlier instrumentation added to Icon for a memory monitoring and visual-

ization system [Town89].

Garbage collections � The storage region being collected (Icon has separate regions for

strings and data structures), the memory layout after compaction, and the completion

of garbage collection are reported by several events.

Type conversions � In Icon, automatic conversions are performed on parameters to

functions and operators. Information is available for conversions attempted, failed,

succeeded, and found to be unnecessary.

Virtual machine instructions � Icon's semantics may be de�ned by a sequence of in-

structions executed by the Icon virtual machine [Gris86]. The program can receive

events for all virtual machine instructions, or an arbitrary subset.

Clock ticks � The passage of CPU time is indicated by a clock tick.

Most EMs, except completely passive visualizations and pro�ling tools, provide the user

with some degree of control over the monitoring activity and must take user interaction into

9.4. ARTIFICIAL EVENTS 183

account. For example, the amount of detail or the rate at which the monitor information

is updated may be variables under user control. Since an EM's user input occurs only

as often as the user presses keys or moves the mouse, user interaction is typically far less

frequent than events in TP. Even if no user input occurs, polling for user input may impose

a signi�cant overhead on the EM because it adds code to the central event processing loop.

In order to avoid this overhead, the event monitoring instrumentation includes support

for reporting user activity in the EM window as part of the TP's event stream. Monitor

interaction events are requested by the event code E_MXevent. An example of the use

of monitor interaction events is presented further in this chapter in the section entitled

�Handling User Input�. A complete list of event codes is presented in Appendix ?? in order

to indicate the extent of the instrumentation.

9.4 Arti�cial Events

As described above, the Unicon co-expression model allows interprogram communication

via explicit co-expression activation or implicit event reporting within the runtime system.

Arti�cial events are events produced by explicit Icon code; they can be viewed at the

language level as co-expression activations that follow the same protocol as implicit events,

assigning to the keyword variables &eventcode and &eventvalue in the co-expression being

activated.

There are two general categories of arti�cial events, virtual events meant to be indis-

tinguishable from implicit events and pseudo events that convey control messages to an

EM. Virtual events are generally used either to produce event reports from manually in-

strumented locations in the source program, to simulate event reports, or to pass on a real

event from the primary EM that received it to one or more secondary EMs. Pseudo events,

on the other hand, are used for more general inter-tool communications during the course

of monitoring, independent of the TP's execution behavior.

Virtual Events Using event()

The function event(code, value, recipient) sends a virtual event report to the co-expression

recipient, which defaults to the &main co-expression in the parent of the current task, the

same destination to which implicit events are reported.

There are times when a primary EM wants to pass on its events to a secondary EM.

An example would be an event transducer that sits in between the EM and TP, and uses

its own logic to determine which events are reported to EM with more precision than is

provided by the masking mechanism. A transducer might just as easily report extra events

with additional information it computes, in addition to those received from TP. A more

substantial application of virtual events is a monitor coordinator, an EM that coordinates

and produces events for other monitors. Such a tool is presented in [Je�ery99]

184 CHAPTER 9. EXECUTION MONITORING

Pseudo Events for Tool Communication

EMs generally have an event processing loop as their central control �ow mechanism.

The logical way to communicate with such a tool is to send it an event. In order to

distinguish a message from a regular event report, the event code must be distinguishable.

In the monitoring framework, this is achieved simply by using an event code other than a

one-letter string, such as an integer. Since not all EMs handle such events, they are not

delivered to an EM unless it passes a non-null second argument (the �value mask argument�)

to EvGet(), such as EvGet(mask, 1).

The framework de�nes a minimal set of standard pseudo events, which well-behaved

EMs should handle correctly [Je�ery99]. Beyond this minimal set, pseudo events allow the

execution monitor writer to explore communication between EMs as another facility to ease

programming tasks within the monitoring framework.

9.5 Monitoring Techniques

Monitors generally follow a common outline and use a common set of facilities, which are

described below.

Anatomy of an Execution Monitor

The execution monitoring interface uses a form of event driven programming: the central

control �ow of EM is a loop that executes the TP for some amount of time and then returns

control to EM with information in the form of an event report. The central loop of an EM

typically looks like:

while EvGet(eventmask) do
case &eventcode of {

a case clause for each code in the event mask
}

Event-driven programming is more commonly found in programs that employ a graphi-

cal user interface, where user activity dominates control �ow. Because monitoring employs

a programming paradigm that has been heavily studied, many coding techniques devel-

oped for graphical user interface programming, such as the use of callbacks [Clark85], are

applicable to monitors. Several of the example EMs in the IPL use a callback model to

take advantage of a higher-level monitoring abstraction available by means of a library

procedure.

Handling User Input

An EM that handles user input could do so by polling the window system after each event

in the main loop:

9.5. MONITORING TECHNIQUES 185

while EvGet(eventmask) do {
case &eventcode of {

a case clause for each code in the event mask
}

poll the window system for user input
}

If the events being requested from the TP are relatively infrequent, this causes no great

problem. However, the more frequent the event reports are, the more overhead is incurred

by this approach relative to the execution in TP. In typical EMs, polling for user events

may slow execution from an imperceptible amount to as much as 15 percent. Relative

frequency for di�erent types of events varies wildly; it is discussed in [Je�ery99].

Since the slowdown is a function of the frequency of the event reports and not just the

cost of the polling operation itself, techniques such as maintaining a counter and polling

once every n event reports still impose a signi�cant overhead. In addition, such techniques

reduce the responsiveness of the tool to user input and therefore reduce the user's control

over execution.

Monitor interaction events, presented earlier in this chapter, address this performance

issue by allowing user input to be supplied via the standard event stream produced by

EvGet(). Since the E_MXevent event occurs far less frequently than other events, it makes

sense to place it last in the case expression that is used to select actions based on the event

code. Using this feature, the main loop becomes:

while EvGet() do
case &eventcode of {

other cases update image to reflect the event
E_MXevent: {

process user event
}

}

EvGet() reports pending user activity immediately when it is available; the control over

execution it provides is comparable to polling for user input on each event.

After each event report, EMs can use Unicon's intertask data access functions to query

TP for additional information, such as the values of program variables and keywords. The

access functions can be used in several ways, such as

• applying a predicate to each event report to make monitoring more speci�c,

• sampling execution behavior not reported by events by polling the TP for information

unrelated to the event reports [Ogle90], or

• presenting detailed information to the user, such as the contents of variables.

186 CHAPTER 9. EXECUTION MONITORING

9.6 Some Useful Library Procedures

As mentioned, several library procedures are useful in EMs. The following library proce-

dures that are included in the evinit library.

Location decoding and encoding procedures are useful in processing location change

event values, but they are also useful in other monitors in which two-dimensional screen

coordinates must be manipulated. Besides program text line and columns, the technique

can variously be applied to individual pixels, to screen line and columns, or to screen grid

locations in other application-speci�c units.

In addition, various EMs use utility procedures. Figure 9-8 lists some library procedures

that are recommended for use in monitors.

procedure returns or computes

evnames(s) converts event codes to text descriptions and vice versa

evsyms() two-way table mapping event codes to their names

typebind(w,c) table mapping codes to color coded Clones for w

opnames() table mapping VM instructions to their names

location() encodes a two dimensional location in an integer

vertical() y/line/row component of a location

horizontal() x/column component of a location

prog_len() number of lines in the source code for TP

procedure_name() name of a procedure

WColumns() window width in text columns

WHeight() window height in pixels

WRows() window height in text rows

WWidth() window width in pixels

Figure 9-8: Additional library procedures for monitors.

9.7 Conclusions

Unicon includes facilities to exploit instrumentation available within its runtime system.

Writing a monitor consists of writing an ordinary application. The key concepts introduced

for Unicon's event monitoring facilities are events, event reports, event codes and values,

and event masks. Monitors also make use of a standard monitoring library and the graphics

facilities.

Part II

Object-oriented Software Development

187

Chapter 10

Objects and Classes

Object-oriented programming means di�erent things to di�erent people. In Unicon, object-

oriented programming starts with encapsulation, inheritance, and polymorphism. These

ideas are found in most object-oriented languages as well as many that are not object-

oriented. This and following chapters present these ideas and illustrate their use in design

diagrams and actual code. Diagrams and code are alternative notations by which program-

mers share their knowledge. This chapter explores the essence of object-orientation and

gives you the concepts needed before you delve into diagrams and code examples. In this

chapter you will learn:

• How di�erent programming languages support objects in di�erent ways

• To simplify programs by encapsulating data and code

• The relationship between objects and program design

• Draw diagrams that show class names, attributes, and methods

• Write corresponding code for classes and their methods

• To create instances of classes and invoke methods on those objects

10.1 Objects in Programming Languages

Object-oriented programming can be done in any language, but some languages make

it easier than others. Support for objects should not entail strange syntax or programs

that look funny in a heterogeneous desktop-computing environment. Smalltalk has these

problems. C++ avoids these programs, but its low-level machine-orientation is less than

ideal as an algorithmic notation usable by non-experts. Java o�ers a simple object model

and familiar syntax. The advantages Unicon has over Java are fundamentally higher-level

built-in types, operations, and control structures.

Many object-oriented languages require that everything be done in terms of objects,

even when objects are not appropriate. Unicon provides objects as just another tool to aid

189

190 CHAPTER 10. OBJECTS AND CLASSES

in the writing of programs, especially large ones. Icon already provides a powerful notation

for expressing a general class of algorithms. The purpose of object-orientation is to enhance

that notation, not to get in the way of it.

Icon does not support user-de�ned objects, although its built-in types have nice object-

like encapsulation and polymorphism properties. Unicon's object-oriented facilities descend

from a package for Icon called Idol. In Idol, a preprocessor implemented objects with no

support from the underlying Icon runtime system. In contrast, Unicon has support for

objects built-in to the language. This simpli�es the notation and improves the performance

of object-related computations.

Object-orientation adds several general concepts into procedure-based programming.

The single overriding reason for object-oriented programming is to reduce complexity in

large programs. Simple programs can be written easily in any language. Somewhere be-

tween the 1,000-line mark and the 10,000-line mark most programmers can no longer keep

track of their entire program at once. By using a very high-level programming language,

fewer lines of code are required; a programmer can write perhaps ten times as large a

program and still be able to keep track of things.

As programmers write larger and larger programs, the bene�t provided by very high-

level languages does not keep up with program complexity. This obstacle has been labeled

the �software crisis�, and object-oriented programming is one way to address this crisis.

In short, the goals of object-oriented programming are to reduce the complexity of coding

required to write very large programs and to allow code to be understood independently of

the context of the surrounding program. The techniques employed to achieve these goals

are discussed below.

A second reason to consider object-oriented programming is that the paradigm �ts cer-

tain problem domains especially well, such as simulation, and graphical user interfaces.

The �rst well-known object-oriented language, Simula67, certainly had the domain of sim-

ulation in mind. The second pioneering object-oriented language, Smalltalk, popularized

fundamental aspects of bitmapped graphical user interfaces that are nearly universal today.

Three decades of experience with object-oriented techniques has led many practitioners to

conclude that the concepts presented below are very general and widely applicable, but not

all problems �t the object-oriented mold. Unicon advocates the use of objects, but this is

a suggestion, not a rule.

Encapsulation

The primary concept advocated by object-oriented programming is the principle of encap-

sulation. Encapsulation is the isolation, in the source code that a programmer writes, of a

data representation and the code that manipulates the data representation. In some sense,

encapsulation is an assertion that no other routines in the program have side-e�ects with

respect to the data structure in question. It is easier to reason about encapsulated data

10.1. OBJECTS IN PROGRAMMING LANGUAGES 191

because all of the source code that could a�ect that data is immediately present with its

de�nition.

Encapsulation does for data structures what the procedure does for algorithms: it draws

a line of demarcation in the program source code. Code outside this boundary is irrelevant

to the code that is inside, and vice versa. Communication across the boundary occurs

through a public interface. An encapsulated data structure is called an object. Just as a

set of named variables called parameters is the interface between a procedure and the code

that uses it, a set of named procedures called methods comprises the interface between an

object and the code that uses it.

This textual de�nition of encapsulation as a property of program source code accounts

for the fact that good programmers can write encapsulated data structures in any language.

The problem is not capability, but veri�cation. To verify encapsulation some languages

require programmers to specify the visibility of every piece of information in each data

structure as public or private. There are even multiple forms of privacy (semi-private?).

Unicon instead stresses simplicity.

Inheritance

In large programs, the same or nearly the same data structures are used over and over again

for myriad di�erent purposes. Similarly, variations on the same algorithms are employed by

structure after structure. To minimize redundancy, techniques are needed to support code

sharing for both data structures and algorithms. Code is shared by related data structures

through a programming concept called inheritance.

The basic premise of inheritance is simple: when writing code for a data structure similar

to a structure that is already written, specify the new structure by giving the di�erences

between it and the old structure, instead of copying and modifying the old structure's

code. There are times when the inheritance mechanism is not useful, such as if the two

data structures are more di�erent than they are similar, or if they are simple enough that

inheritance would only confuse things, for example.

Inheritance addresses multiple programming problems found at di�erent conceptual

levels. The most obvious software engineering problem it solves might be termed enhance-

ment. During the development of a program, its data structures may require extension

via new state variables or new operations or both; inheritance is especially useful when

both the original structure and the extension are used by the application. Inheritance also

supports simpli�cation, or the reduction of a data structure's state variables or operations.

Simpli�cation is analogous to argument culling, an idea from lambda calculus (don't worry

if this sounds like Greek to you), in that it describes a logical relation between structures.

In general, inheritance may be used in source code to describe any sort of relational hy-

ponymy, or special casing. In Unicon the collection of all inheritance relations de�nes a

directed (not necessarily acyclic) graph.

192 CHAPTER 10. OBJECTS AND CLASSES

Polymorphism

From the perspective of the writer of related data structures, inheritance provides a conve-

nient method for code sharing, but what about the code that uses objects? Since objects

are encapsulated, that code is not dependent upon the internals of the object at all, and it

makes no di�erence to the client code whether the object in question belongs to the original

class or the inheriting class.

We can make a stronger statement. Due to encapsulation, di�erent executions of code

that uses objects to implement an algorithm may operate on objects that are not related

by inheritance at all. Such code can utilize any objects that implement the operations

that the code invokes. This facility is called polymorphism, and such algorithms are called

generic. This feature is found in many non-object-oriented languages; in object-oriented

languages it is a natural extension of encapsulation.

10.2 Objects in Program Design

Another fundamental way to think about objects is from the point of view of software de-

sign. During program design, objects are used to model the problem domain. The di�erent

kinds of objects and relationships between objects capture fundamental information that

organizes the rest of the program's design and implementation. Program design includes

several other fundamental tasks such as the design of the user interface, or interactions

with external systems across a network. Additional kinds of modeling are used for these

tasks, but they all revolve around the object model.

For small, simple, or well-understood software projects, a prose description may be all

the documentation that is needed. The Uni�ed Modeling Language (UML) is a notation

for building software models of larger software systems for which a prose description alone

would be inadequate. It was invented by Grady Booch, Ivar Jacobson, and James Rum-

baugh. In UML, software models document the purpose and function of a software system.

The advantage of a model is that it conveys information that is both more precise and more

readily understood than a prose description. UML is used during multiple phases of the

software lifecycle. UML de�nes several kinds of diagrams, of which we will only consider

four in this book.

• Use case diagrams show the organization of the application around the speci�c

tasks accomplished by di�erent users.

• Class diagrams show much of the static structure of the application data.

• Statechart diagrams model dynamic behavior of systems that respond to external

events, including user input.

• Collaboration diagrams model interactions between multiple objects

10.3. CLASSES AND CLASS DIAGRAMS 193

These diagrams describe key aspects of many categories of software applications. The

reader should consult the UML Notation Guide and Semantics documents for a complete

description of UML. A good introduction is given in UML Toolkit, by Hans-Erik Eriksson

and Magnus Penker (1998).

A typical application of UML to a software development project uses these diagrams

in sequence. You start by constructing use case diagrams and detailed descriptions of the

di�erent kinds of users and tasks performed using the system. Then develop class diagrams

that capture the relationships between di�erent kinds of objects in the system. Finally,

construct statechart and collaboration diagrams as needed to describe the sequences of

events that can occur and the corresponding operations performed by various objects in

response to those events.

Use case and statechart diagrams are important, but their purpose is to elaborate on

an object model described in class diagrams. For this reason, class diagrams are presented

�rst, along with the corresponding programming concepts. Use case diagrams, statecharts,

and collaboration diagrams are discussed in Chapter 12.

10.3 Classes and Class Diagrams

Classes are user-de�ned data types that model the information and behavior of elements

in the application domain. In Unicon they are records with associated procedures, called

methods. Instances of these special record types are called objects. But the language

constructs originated from a need to model application domain concepts, so it is appropriate

to introduce them from that perspective.

Modeling a software system begins with identifying things that are in the system and

specifying how they are related. A class diagram shows a static view of relationships

between the kinds of elements that occur in the problem domain. A class diagram is

a data-centric, object-centric model. In contrast, a user-centric view is provided by use

cases. Class diagrams have several basic components.

Classes are represented by rectangles. A class denotes a concept of the application do-

main that has state information (depicted by named attributes) and/or behavior (depicted

by named operations, or methods) signi�cant enough to be re�ected in the model. Inside

the rectangle, lines separate the class name and areas for attributes and operations. Figure

10-1 shows an example class.

194 CHAPTER 10. OBJECTS AND CLASSES

Figure 10-1: Class Job O�er has two Attributes and Three Methods

Classes in an object model are implemented using programming language classes, which

are described in the next section. The degree of separation between the notion of a class in

the model and in the implementation depends on the programming language. In the case of

Unicon, the separation is minimal, because built-in types such as lists and tables take care

of almost all data structures other than those introduced speci�cally to model application

domain elements. In the case of C++ or Java, many additional implementation artifacts

typically have to be represented by classes.

The same class can appear in many class diagrams to capture all of its relationships with

other classes. Di�erent diagrams may show di�erent levels of detail, or di�erent aspects

(projections) of the class relevant to the portion of the model that they depict. In the

course of modeling it is normal to start with few details and add them gradually through

several iterations of the development process. Several kinds of details may be added within

a class. Such details include:

• The visibility of attributes and operations. A plus sign (+) before the attribute name

indicates that the attribute is public and may be referenced in code external to the

class. A minus sign (-) before the attribute name indicates that the attribute is

private and may not be referenced in code outside the class.

• Types, initial values, and properties of attributes

• Static properties of the class that will not be relevant at run-time

Attribute names may be su�xed with a colon and a type, an equal sign and a value, and

a set of properties in curly braces. Figure 10-2 shows two very di�erent levels of detail for

the same class. Each level of detail is appropriate in di�erent contexts.

10.4. DECLARING CLASSES 195

Figure 10-2: A Class is Drawn with Di�erent Levels of Detail in Di�erent Diagrams

You can draw rectangles with names of classes inside them all day, but unless they say

something about program organization, such diagrams serve little purpose. The main point

of drawing a class diagram is not the classes; it is the relationships between classes that

are required by the model. These relationships are called associations. In a class diagram,

associations are lines that connect classes. Accompanying annotations in the diagram

convey relevant model information about the relationships. The details of associations and

their implementation are described in Chapter 10.

10.4 Declaring Classes

In Unicon program code, the syntax of a class is:

class foo(attribute1, attribute2, attribute3, ...)
procedures (methods) to access class foo objects

code to initialize class foo objects
end

The procedures that manipulate class objects are called methods. Methods de�ne a class'

interface from the rest of the program. The syntax of a method like a procedure:

method bar(param1, param2, param3, ...)
Unicon code that may access fields of a class foo object

end

Execution of a class method is always associated with a given object of that class. The

method has access to an implicit variable called self that is a record containing �elds whose

names are the attributes given in the class declaration. Fields from the self variable are

directly accessible by name. In addition to methods, classes may also contain global and

record declarations; such declarations have the standard semantics and exist in the global

name space.

196 CHAPTER 10. OBJECTS AND CLASSES

10.5 Object Instances and Initially Sections

Like records, instances of a class type are created with a constructor function whose name

is that of the class. Instances of a class are called objects, and behave similar to records.

The �elds of an instance generally correspond directly to the class attributes. Fields may

be initialized explicitly in the constructor in exactly the same way as for records. For

example, after de�ning a class foo(x, y) one may write:

procedure main()
f := foo(1, 2)

end

In this case x would have the value 1, and y would have the value 2, the same as for a

record type. The �elds of an object do not have to be initialized by a parameter passed to

the class constructor. Many constructors initialize objects' �elds to some standard value.

In this case, the class declaration includes an initially section after its methods are de�ned

and before its end. An initially section is just a special method that is invoked automatically

by the system when it creates each instance of the class.

An initially section begins with the word initially and an optional parameter list, followed

by lines of code that are executed when an object of that class is constructed. These lines

typically assign values to one or more of the attributes of the object being created.

For example, suppose you want an enhanced table type that permits sequential access

to elements in the order they are inserted into the table. You can implement this using

a combination of a list and a table, both of which would be initialized to the appropriate

empty structure:

class taque(L, T) # pronounced "taco"
methods to manipulate taques,
e.g. insert, index, foreach...

initially
L := []
T := table()

end

In such a case you can create objects without including arguments to the constructor:

procedure main()
mytaque := taque()

end

Although the default behavior of classes is the same as records, and constructor argu-

ments normally assign each of the �elds in the class in order, there are some important

rules that override classes' record-like constructor behavior.

10.5. OBJECT INSTANCES AND INITIALLY SECTIONS 197

• With no initially section, a class constructor behaves exactly like a record constructor.

Class �elds are assigned in order from parameters and missing arguments default to

the null value.

• With an initially(...) that has a parenthesized list of zero or more formal parameter

names, the constructor parameters are used to initialize the formal parameters of

the initially() method. In this case, the constructor does not assign class �elds from

parameters implicitly. Instead the initially section may initialize �elds as it sees �t,

including initializing them using values from the named parameters of method initially()

if it so chooses.

• an initially section without a parenthesized formal parameter list behaves somewhere in

between the above two cases. Normal record-like assignment of parameters to �elds

is performed. Missing arguments start with a null value. However, the initially section

may assign those �elds without the caller having passed values into the constructor.

The initially section with no parameter list makes it possible to write classes with some

�elds that are initialized explicitly by the constructor parameters, while other �elds are

initialized implicitly by code in the initially section. In this case you should declare the

automatically initialized �elds after those initialized by parameters in the constructor. The

parameters are assigned to �elds in the constructor exactly in the order they appear in the

class declaration.

This default semantics for constructor parameters is awkward in some cases, so there is

an alternative. When an initially section includes a parameter list, no implicit initialization

of objects' �elds is performed. This frees the constructor from having the same number

and order of parameters as the declared class �elds. In the following example, class C

is constructed with only a single parameter even though it has three �elds. The actual

parameter "Greenwich Village" is bound to initially formal parameter x. The third �eld in the

class (c) is initialized from the constructor parameter x, overriding the default behavior of

initializing �elds in the declared order. This capability becomes important in large classes

with many �elds.

class C(a, b, c)
initially(x)

a := ["vital", "urgent", "gentrified"]
b := promptedread("tell me about " || x)
c := x

end
...
procedure main()
v := C("Greenwich Village")
end

198 CHAPTER 10. OBJECTS AND CLASSES

Hopefully all this has convinced you that initially sections are important and useful. They

are in fact just a special method that gets called when an object is constructed, but that

means they play the role of a constructor function that is found in many other object-

oriented languages. The next chapter, which goes into inheritance in detail, points out

that the inheritance rules apply to initially sections just like any other method. A subclass

initially will usually need to invoke its superclass(es)' initially sections, along with initializing

any new �elds that it introduces.

10.6 Object Invocation

Once you have created an object with a class constructor, you manipulate the object by

invoking its class methods. Since objects are both procedures and data, object invocation

is a combination of a procedure call and a record access. The syntax is

object . methodname (arguments)

If an object's class is known, object methods can also be called using a normal procedure

call. This allows object oriented Unicon code to be called from Icon. Called as a procedure,

the name of a method is pre�xed with the class name and an underscore character. The

object itself is always the �rst parameter passed to a method. In the absence of inheritance

(discussed in the next chapter) if x is an object of class C, x.method(arguments) is equivalent

to C_method(x, arguments).

Although object methods can be called using procedure calls, the �eld operator has the

advantage that it handles inheritance and polymorphism correctly, allowing algorithms to

be coded generically using polymorphic operations. Generic algorithms use any objects

whose class provides the set of methods used in the algorithm. Generic code is less likely

to require change when you later enhance the program, for example adding new subclasses

that inherit from existing ones. In addition, if class names are long, the �eld syntax is

considerably shorter than writing out the class name for the invocation. Using the taque

example:

procedure main()
mytaque := taque()
mytaque.insert("greetings", "hello")
mytaque.insert(123)
every write(mytaque.foreach())
if mytaque.index("hello") then write(", world")

end

For object-oriented purists, using the �eld operator to invoke an object's methods in

this manner is the only way to access an object. In Unicon, visibility issues such as �public�

and �private� are addressed in an application's design and documentation. A good starting

10.7. COMPARING RECORDS AND CLASSES 199

point is to consider all �elds �private� and all methods �public�. Nevertheless, an object is

just a kind of record, complete with record-style �eld access.

Direct external access to an object's data �elds using the usual �eld operator is not

good practice, since it violates the principle of encapsulation. Within a class method, on

the other hand, access to an object's attributes is expected. The implicit object named self

is used under the covers, but attributes and methods are referenced by name, like other

variables. The taque insert method is thus:

method insert(x, key)
/key := x
put(L, x)
T[key] := x

end

The self object allows �eld access just like a record, as well as method invocation like

any other object. Using the self variable explicitly is rare.

10.7 Comparing Records and Classes

The concepts of classes and objects are found in many programming languages. The follow-

ing example illustrates Unicon's object model and provides an initial impression of these

concepts' value. To motivate Unicon's OOP constructs, our example contrasts conventional

Icon code with object-oriented code that implements the same behavior.

Before objects

Suppose you are writing some text-processing application such as a text editor. Such

applications need to be able to process structures holding the contents of various text �les.

You might begin with a simple structure like the following:

record buffer(filename, text, index)

where filename is a string, text is a list of strings corresponding to lines in the �le, and index

marks the current line at which the bu�er is being processed. Icon record declarations are

global; in principle, if the above declaration needs to be changed, the entire program must

be rechecked. A devotee of structured programming would write procedures to read the

bu�er in from a �le; write it out to a �le; examine, insert and delete individual lines; and

so on. These procedures, along with the record declaration given above, can be placed in

their own source �le (buffer.icn) and understood independently of the program(s) in which

they are used. Here is one such procedure:

200 CHAPTER 10. OBJECTS AND CLASSES

read a buffer in from a file
procedure read_buffer(b)

f := open(b.filename) | fail
b.text := []
b.index := 1
every put(b.text, !f)
close(f)
return

end

There is nothing wrong with this example; in fact its similarity to the object-oriented

example that follows demonstrates that a good, modular design is the primary e�ect en-

couraged by object-oriented programming. Using a separate source �le to contain a record

type and those procedures that operate on the type allows an Icon programmer to maintain

a voluntary encapsulation of that type.

After objects

Here is part of the same bu�er abstraction coded in Unicon. The purpose here is to

facilitate a direct comparison with the preceding record-based example. The example lays

the groundwork for a further object-oriented illustration in the following chapter. Classes

are record types with associated code. Methods are procedures that are always called in

reference to a particular object (a class instance).

class buffer(filename, text, index)
read a buffer in from a file
method read()

f := open(filename) | fail
text := []
index := 1
every put(text, !f)
close(f)
return

end
...additional buffer operations, including method erase()

initially
if \filename then read()

end

This example does not illustrate the full object-oriented style, but it is a start. The

object-oriented version o�ers encapsulation and polymorphism. A separate name space for

each class's methods allows shorter names. The same method name, such as read(), can be

used in each class that implements a given operation. This notation is more concise than is

10.8. SUMMARY 201

possible with procedures, and it enables an algorithm to work on objects of any class that

implements the operations required by that algorithm.

Consider the initialization of a new bu�er. Constructors allow the initialization of �elds

to values other than &null. In the example, the read() method is invoked if a �lename is

supplied when the object is created. This can be simulated using records by calling a

procedure after the record is created; the value of the constructor is that it is automatic.

The programmer is freed from the responsibility of remembering to call this code everywhere

objects are created in the client program(s). This tighter coupling of memory allocation

and its corresponding initialization removes one more source of program errors, especially

on multi-programmer projects.

The preceding two paragraphs share a common theme: the net e�ect is that each piece

of data is made responsible for its own behavior in the system. Although this example

dealt with simple line-oriented text �les, the same methodology applies to more abstract

entities such as the components of a compiler's grammar.

The example illustrates an important scoping issue. Within class bu�er, method read()

makes the regular built-in function read() inaccessible! Beware of such con�icts. It would

be easy to capitalize the method name to eliminate the problem. If renaming the method

is not an option, as a last resort you could get a reference to the built-in function read(),

even within method read(), by calling proc("read", 0). The function proc() converts a string

to a procedure; supplying a second parameter of 0 tells it to skip scoping rules and look

for a built-in function by that name.

10.8 Summary

Classes are global declarations that de�ne a record data type and a set of procedures (meth-

ods) that operate on that type. Class instances, called objects, are normally manipulated

solely by calling the class' methods; such object privacy is a matter of design, documenta-

tion, and convention. All methods execute within an object of interest, whose �elds and

methods are visible without the record dot notation, in a class scope that is introduced in

between the local and global scopes.

202 CHAPTER 10. OBJECTS AND CLASSES

Chapter 11

Inheritance and Associations

Relationships between classes are depicted in UML class diagrams by lines drawn between

two or more class rectangles. One of the most important relationships between classes

describes the situation when one class is an extension or minor variation of another class:

this is called generalization, or inheritance. Most other relationships between classes are

really relationships between those classes' instances at run-time; these relationships are

called associations. This chapter starts with inheritance, and then describes a variety of

associations. In this chapter you will learn how to:

• De�ne a new class in terms of its di�erences from an existing class

• Compose aggregate classes from component parts.

• Specify new kinds of associations

• Supply details about the roles and number of objects in an association

• Use structure types to implement associations

11.1 Inheritance

In many cases, several classes of objects are very similar. In particular, many classes arise

as enhancements of classes that have already been de�ned. Enhancements might consist of

added �elds, added methods, or both. In other cases a class is just a special case of another

class. For example, if you have a class fraction(numerator, denominator), you could de�ne class

inverses(denominator) whose behavior is identical to that of a fraction, but whose numerator

is always 1.

Both of these ideas are realized with the concept of inheritance. When the de�nition of

a class is best expressed in terms of the de�nition of another class or classes, we call that

class a subclass. The class or classes from which a subclass obtains its de�nition are called

superclasses. The logical relation between the subclass and superclass is called hyponymy.

It means an object of the subclass can be manipulated just as if it were an object of one

203

204 CHAPTER 11. INHERITANCE AND ASSOCIATIONS

of its de�ning classes. In practical terms it means that similar objects can share the code

that manipulates their �elds.

Inheritance appears in a class diagram as a line between classes with an arrow at one

end. The arrow points to the superclass, the source of behavior inherited by the other class.

Consider Figure 11-1, in which an o�er of a salaried appointment is de�ned as one kind of

job o�er. The attributes (salary, title) and methods (Accept() and Reject()) of class JobO�er

are inherited by class SalariedAppointment, and do not need to be repeated there. A new

attribute (term) is added in SalariedAppointment that is not in JobOffer.

Figure 11-1: A Salaried Appointment is a subclass of a Job O�er

The syntax of a subclass is

class classname superclasses (attributes)
methods

initially_section
end

Where superclasses is an optional list of class names separated by colons, attributes is

an optional list of variable names separated by commas, methods is an optional list of

declarations for the class methods, and the initially_section is optional initialization code for

the class constructor. For example

class SalariedAppointment : JobOffer (term)
method SetTerm(t : interval)

term := t
end

initially
/term := "unknown term"

end

As you can see, a subclass declaration is identical to a regular class, with the addition

of one or more superclass names, separated by colons. The meaning of this declaration is

the subject of the next section.

11.1. INHERITANCE 205

Inheritance semantics

There are times when a new class might best be described as a combination of two or more

classes. Unicon classes may have more than one superclass, separated by colons in the class

declaration. This is called multiple inheritance.

Subclasses de�ne a record type consisting of the �eld names of the subclass itself and

all its superclasses. The subclass has associated methods consisting of those in its own

body, those in the �rst superclass that were not de�ned in the subclass, those in the second

superclass not de�ned in the subclass or the �rst superclass, and so on. In ordinary single-

inheritance, this adding of �elds and methods follows a linear bottom-up visit of each

superclass, followed in turn by its parent superclass.

When a class has two or more superclasses, the search generalizes from a linear sequence

to an arbitrary tree, directed acyclic graph, or full graph traversal. Multiple inheritance

adds �elds and methods in an order de�ned by a depth-�rst traversal of the parent edges

of the superclass graph. Think of the second and following superclasses in the multiple

inheritance case as adding methods and �elds only if the single-inheritance case (following

the �rst superclass and all its parents) has not already added a �eld or method of the same

name.

Warning

Care should be taken employing multiple inheritance if the two parent classes have any

�elds or methods of the same name!

Fields are initialized by parameters to the constructor or by the class initially section,

which is a method and is inherited in the normal way. It is common for a subclass initially

section to call their superclasses' initially sections, for example:

class sub : A : B(x)
initially

x := 0
A.initially()
B.initially()

end

It is also common to have some attributes initialized by parameters, and assign others in

the initially section. For example, to de�ne a class inverse (for numbers of the form 1 / n) in

terms of a class fraction(numerator, denominator) one can write:

class inverse : fraction (denominator)
initially

numerator := 1
end

Objects of class inverse can be manipulated using all the methods de�ned in class

fraction; the code is actually shared by both classes at runtime.

206 CHAPTER 11. INHERITANCE AND ASSOCIATIONS

Viewing inheritance as the addition of superclass elements not found in the subclass is

the opposite of the more traditional object-oriented view that a subclass is an instance of

the superclass as augmented in the subclass de�nition. Unicon's viewpoint adds quite a

bit of leverage, such as the ability to de�ne classes that are subclasses of each other. This

feature is described further below.

Invoking superclass operations

When a subclass de�nes a method of the same name as a method de�ned in the superclass,

invocations on subclass objects execute the subclass' version of the method. This can be

overridden by explicitly including the superclass name in the invocation:

object$superclass.method(parameters)

This facility allows the subclass method to do any additional work required for added

�elds before or after calling an appropriate superclass method to achieve inherited behavior.

The result is frequently a chain of inherited method invocations.

Since initially sections are methods, they can invoke superclass operations including

superclass initially sections. This allows a chain of initially sections to be speci�ed to

execute in either subclass-�rst or superclass-�rst order, or some mixture of the two.

Inheritance examples

Several inheritance examples follow from the buffer example from Chapter 10. Suppose

the program does more than edit text, it has a word-associative dictionary, bibliography,

spell-checker, and thesaurus. These features can be implemented using the table type. The

contents vary, but they all use string keyword lookup. As external data, the databases can

be stored in text �les, one entry per line, with the keyword at the beginning. The format

of the rest of the line varies from database to database.

Figure 11-2 shows a class diagram with subclasses derived from buffer. A class buftable

re�nes the bu�er class, adding support for random access. Other classes are de�ned as

subclasses of buftable. The implementation of these classes is given below.

11.1. INHERITANCE 207

Figure 11-2: Some Subclasses of the Bu�er Class

Although all these types of data are di�erent, the code used to read the data �les can

be shared, as well as the initial construction of the tables. In fact, since we are storing our

data one entry per line in text �les, we can use the code already written for bu�ers to do

the �le I/O itself.

class buftable : buffer()
method read()

self.buffer.read()
tmp := table()
every line := !text do

line ? { tmp[tab(many(&letters))] := line | fail }
text := tmp
return

end
method index(s)

return text[s]
end

end

This concise example shows how little must be written to achieve data structures with

vastly di�erent behavioral characteristics, by building on code that is already written. The

superclass read() operation is one important step of the subclass read() operation. This

technique is common enough to have a name: it is called method combination in the

literature. It allows you to view the subclass as a transformation of the superclass. The

buftable class is given in its entirety, but our code sharing example is not complete: what

about the data structures required to support the databases themselves? They are all

208 CHAPTER 11. INHERITANCE AND ASSOCIATIONS

variants of the buftable class, and a set of possible implementations follow. Note that the

formats presented are designed to illustrate code sharing; clearly, an actual application

might make di�erent choices.

Bibliographies Bibliographies might consist of a keyword followed by an uninterpreted

string of information. This imposes no additional structure on the data beyond that im-

posed by the buftable class. An example keyword would be Je�ery99.

class bibliography : buftable()
end

Spell-checkers The database for a spell-checker might be a list of words, one per line, the

minimal structure required by the buftable class. Some classes introduce new terminology

rather than to de�ne a new data structure. This example introduces a lookup operation

that can fail, for use in tests. In addition, since many spell-checking systems allow user

de�nable dictionaries in addition to their central database, spellChecker objects may chain

together for the purpose of looking up words.

class spellChecker : buftable(parent)
method spell(s)

return \text[s] | (\parent).spell(s)
end

end

Dictionaries Dictionaries are slightly more involved. Each entry might consist of a

part of speech, an etymology, and an arbitrary string of uninterpreted text comprising

a de�nition for that entry, separated by semicolons. Since each such entry is itself a

structure, a sensible decomposition of the dictionary structure consists of two classes: one

that manages the table and external �le I/O, and one that handles the manipulation of

dictionary entries, including their decoding and encoding as strings.

class dictionaryentry(word, partofspeech, etymology, definition)
decode a dictionary entry into its components
method decode(s)

s ? {
word := tab(upto(’;’))
move(1)
partofspeech := tab(upto(’;’))
move(1)
etymology := tab(upto(’;’))
move(1)
definition := tab(0)

}

11.1. INHERITANCE 209

end
method encode() # encode a dictionary entry into a string

return word || ";" || partofspeech || ";" || etymology || ";" || definition
end

initially
if /partofspeech then {

constructor was called with a single string argument
decode(word)
}

end

class dictionary : buftable()
method read()

self.buffer.read()
tmp := table()
every line := !text do
line ? { tmp[tab(many(&letters))] := dictionaryentry(line) | fail }

text := tmp
end
method write()

f := open(filename, "w") | fail
every write(f, (!text).encode)
close(f)

end
end

Thesauri Although an oversimpli�cation, one might conceive of a thesaurus as a list of

entries, each of which consists of a comma-separated list of synonyms followed by a comma-

separated list of antonyms, with a semicolon separating the two lists. Since the code for

such a structure is nearly identical to that given for dictionaries above, we omit it here

(you might start by generalizing class dictionaryentry to handle arbitrary strings organized

as �elds separated by semicolons).

A (toy) Dictionary Program

The above examples were intended to illustrate a pedagogical point about how inheritance

facilitates specialization of existing code. Although they are legal Unicon code, they were

always toy examples that illustrate ideas, not an extract from a real software application.

Consult the Unicon translator implementation, or the Unicon GUI classes, for many real-

world examples of inheritance.

Having said that, here is a complete program that makes use of some of the preceding

class examples. The program, called deen (from Deutsch-English) reads in a dictionary in

210 CHAPTER 11. INHERITANCE AND ASSOCIATIONS

plain text format, originally obtained from http://ftp.tu-chemnitz.de/pub/Local/urz/ding/de-

en/ and writes out English entries for one or more German language words given on the

command-line. German was chosen fairly arbitrarily here, but the code does depend on

the �le format of the dictionary �le, de-en.txt.

#
deen.icn - give English equivalents of German words
#
$define DEEN "http://ftp.tu-chemnitz.de/pub/Local/urz/ding/de-en/de-en.txt.gz"

procedure main(av)
if av[1]=="-all" then all := pop(av)
dd := DeenDictionary()
every s := !av do

if lu := dd.lookup(s) then {
if \all then

every write(s, ": ", dd.lookup(s).definition)
else write(s, ": ", lu.definition)
}

else write(s, " is not in the dictionary.")
end

class buffer(filename, text)
read a buffer in from a file
todo: decompress if .gz extension
method read()

if match("http://", filename) then mode := "m" else mode := "r"
f := open(filename, mode) | stop("can’t open ", image(filename))

if filename[-3:0] == ".gz" then {
if mode=="m" then { # download_to_local_file

if not (f2 := open("de-en.txt.gz","w")) then
stop("can’t write")

while s := reads(f, 1000000) do writes(f2, s)
close(f)
close(f2)
}

system("gunzip de-en.txt.gz")
f := open("de-en.txt") | stop("can’t read de-en.txt")
}

writes("Opened ",image(f),".\nReading")
text := []
every put(text, !f) do if *text%1000=0 then writes(".")

11.1. INHERITANCE 211

close(f)
write("\ndone. Read ", *text, " lines")
return

end
method erase()

#... ?
end
...additional buffer operations

initially
if \filename then read()

end

class buftable : buffer()
method read()

self.buffer.read()
tmp := table()
every line := !text do {

line ? {
word := tab(many(&letters)) | stop("failed on ", image(line))
tmp[word] := line
}

}
text := tmp
return

end
method lookup(s)

suspend ! \ (text[s])
end

end

class dictionaryentry(word, part, etymology, definition)
decode a dictionary entry into its components
assumed format is word;pos;eym;def
method decode(s)

s ? {
word := tab(find(";"))
move(1)
part := tab(find(";"))
move(1)
etymology := tab(find(";"))
move(1)
definition := tab(0)
}

end

212 CHAPTER 11. INHERITANCE AND ASSOCIATIONS

method encode() # encode a dictionary entry into a string
return word || ";" || part || ";" || etymology || ";" || definition

end
initially

if /part then # constructor was called with a single string argument
decode(word)

end

class dictionary : buftable()
method read()

self.buffer.read()
tmp := table()
every line := !text do

line ? {
word := tab(many(&letters)) | stop("failed on ", image(line))
tmp[word] := dictionaryentry(line) | fail
}

text := tmp
end
method Write()

f := open(filename, "w") | fail
every write(f, (!text).encode)
close(f)

end
end

class DeenEntry : dictionaryentry(gender)
initially(de, en)

de ? {
if word := trim(tab(find("{"))„0) then {

="{"
gender := tab(find("}"))
}

else { # here is one without gender info
word := trim(tab(find("[")|0)„0)
gender := "?"
}

}
definition := en

end

#
Return a list of dictionary entries for a given line of text

11.1. INHERITANCE 213

#
procedure get_entries(s)

subentries := []
s ? {

deutsch := tab(find("::")) | stop("no :: in ", image(s))
="::"; tab(many(’ ’))
english := tab(0)

deutsch ? {
while *(deutschwort := tab(find("|") | 0))>0 do {

deutschwort := trim(deutschwort„0)
="|"
tab(many(’ ’))
englishword := trim(english[1:find("|",english)|0]„0)
english ?:= {

tab(many(’ \t’))
=englishword
tab(many(’ \t’))
="|"
tab(many(’ \t’))
tab(0)
}

if i := find(";", deutschwort) then {
deutschwort ? {

while *(dword := tab(find(";") | 0))>0 do {
=";"
tab(many(’ ’))
if gronk:=englishword[1:upto(’;|’, englishword)|0] then {

if *gronk>0 then {
eword := gronk
}

}
put(subentries, DeenEntry(dword, eword))
englishword ?:= { =eword; =";"; tab(many(’ ’)); tab(0)}
}

}
}

else {
put(subentries, DeenEntry(deutschwort, englishword))
}

}
}

}
return subentries

214 CHAPTER 11. INHERITANCE AND ASSOCIATIONS

end

class DeenDictionary : dictionary()
method read()

self.buffer.read()
tmp := table()
every line := !text do

line ? {
if ="#" | line=="" then next
if not (L := get_entries(line)) then

stop("get_entries failing on ", image(line))
every x := !L do {

if not member(tmp, x.word) then
tmp[x.word] := [x]

else put(tmp[x.word], x)
}

}
text := tmp

end
initially

if stat("de-en.txt") then filename := "de-en.txt"
else if stat("de-en.txt.gz") then filename := "de-en.txt.gz"
else filename := DEEN
self.read()

end

Superclass cycles and type equivalence

In many situations, there are several ways to represent the same abstract type. Two-

dimensional points might be represented by Cartesian coordinates x and y, or equivalently

by radial coordinates expressed as a distance d and angle r given in radians. If one im-

plements classes corresponding to these types there is no reason one of them should be

considered a subclass of the other; they are interchangeable and equivalent.

In Unicon, expressing this equivalence is simple and direct. In de�ning classes Cartesian

and Radial we may declare them to be superclasses of each other:

class Cartesian : Radial (x, y)
code that manipulates objects using Cartesian coordinates
end

class Radial : Cartesian (d, r)
code that manipulates objects using radial coordinates
end

11.2. ASSOCIATIONS 215

These superclass declarations make the two types equivalent names for the same type

of object; after inheritance, instances of both classes will have �elds x, y, d, and r, and

support the same set of operations.

Equivalent types each have a unique constructor given by their class name. Often the

di�ering order of the parameters used in equivalent types' constructors re�ects di�erent

points of view. Although they export the same set of operations, the actual procedures

invoked by equivalent types' instances may be di�erent. For example, if both classes de�ne

an implementation of a method print(), the method invoked by a given instance depends on

which constructor was used when the object was created.

If a class inherits methods from one of its equivalent classes, it is responsible for initial-

izing the state of the �elds used by those methods in its constructor. It is also responsible

for maintaining the state of the inherited �elds when its methods make state changes to

its own �elds. In the geometric example given above, for class Radial to use any methods

inherited from class Cartesian, it must at least initialize x and y explicitly in its constructor

from calculations on its d and r parameters. This added responsibility is minimized in those

classes that treat an object's state as immutable.

11.2 Associations

An association denotes a relationship between classes that occurs between speci�c instances

of the classes at runtime. Just as objects are instances of classes, associations have instances

called links. Like objects, links have a lifetime, from the instant at which the relationship

is established to the time at which the relationship is dissolved. Besides serving to connect

two objects, links may have additional state information or behavior; in the most general

case links can be considered to be objects themselves: special objects whose primary role

is to interconnect other objects.

11.3 Aggregation

Inheritance may be the most famous kind of relationship between classes, but it is not

the most indispensable. Many languages that provide objects do not even bother with

inheritance. The composition of assembly objects from their component parts, on the

other hand, is a truly ubiquitous and essential idea called aggregation. The class dictionary

de�ned in the previous section is a good example of an aggregate object; its component

parts are dictionaryentry objects.

Aggregation is depicted in class diagrams by a line between classes with a diamond

marking the aggregate, or assembly, class. Figure 11-3 shows an aggregate found in the

domain of sports, where a team is comprised of a group of players.

216 CHAPTER 11. INHERITANCE AND ASSOCIATIONS

Figure 11-3: A Team is an Aggregation of Players

Unlike inheritance, aggregation describes a relationship between instances at run-time.

Di�erent aggregate instances are assembled from di�erent component part instances. While

a given player might play for di�erent teams over a period of time, at any given instant a

player is normally part of at most one team.

11.4 User-de�ned associations

All the other relationships between classes in UML are left to the application designer to

specify as custom associations. User-de�ned associations are depicted by lines, annotated

with the association name next to the line, midway between the two classes. Figure 11-4

shows a silly user-de�ned association that describes a family relationship called Marriage.

For a diagram containing such an association to be well de�ned, the semantics of such a

relationship must be speci�ed in external documentation that describes Marriage for the

purposes of the application at hand.

Figure 11-4: A User-De�ned Association

Multiplicities, roles, and quali�ers

Whether they are aggregations or user-de�ned application domain relationships, associa-

tions are not completely speci�ed until additional details are determined during program

design, such as how many instances of each type of object may participate in a given re-

lationship. These additional details appear in canonical positions relative to the line that

depicts the association within a class diagram.

A multiplicity is a number or range that indicates how many instances of a class are

involved in the links for an association. In the absence of multiplicity information an

association is interpreted as involving just one instance. It normally appears just below the

association line next to the class to which it applies. Figure 11-5 shows a BasketballTeam

that is an aggregate with a multiplicity of �ve Players.

11.4. USER-DEFINED ASSOCIATIONS 217

Figure 11-5: Multiplicity of a Basketball Team

A multiplicity range is expressed as a pair of numbers separated by two periods, as in

1..3. The value * may be used by itself to indicate that a link may associate any number

(zero or more) of objects. The * value may also be used in a range expression to indicate

no upper bound is present, as in the range 2..*.

A role is a name used to distinguish participants and responsibilities within an asso-

ciation. Roles are drawn just above or below the association line, adjacent to the class

to which they refer. They are especially useful if a given association may link multiple

instances of the same class in asymmetric relationships. Figure 11-6 shows a better model

of the classes and roles involved in a Marriage association depicted earlier in Figure 11-4.

Figure 11-6: Roles in an Association

A quali�er is a key value used to distinguish instances in a link, in lieu of a large

multiplicity that would otherwise be ine�cient. For example, a directory may contain

many �les, but each one may be directly accessed by name. A quali�er is drawn as a

rectangular association end with the quali�er key given inside the rectangle. Figure 11-7

shows a reinterpretation of the basketball aggregation in which the players on the team are

distinguished using a quali�er key named position.

Figure 11-7: Using a Quali�er in lieu of multiplicity

Implementing associations

Unlike inheritance, which is implemented by the language and resolved at compile time,

associations involve dynamic relationships established at runtime, and are implemented by

the programmer...or are they? In the most general case, an association may be implemented

by writing a class whose instances are links between the related classes' objects. In the

218 CHAPTER 11. INHERITANCE AND ASSOCIATIONS

narrowest special case, an association can be implemented by adding an attribute in one

class to contain a reference to an object in an associated class. Much of the value introduced

by multiplicity and quali�er information is to narrow the association semantics down to

what is readily implementable using the built-in structure types instead of writing classes

for them. If an association can be implemented using a list or table instead of de�ning a

new class, the resulting code will be smaller and faster.

In all cases, associations will introduce additional �elds into the classes being associated.

The following code example implements the Marriage association from Figure 11-6. For

illustration purposes it is modeled as a one-one relationship at any given point in time. No-

tice the intertwining methods in the two classes that establish a bi-directional relationship.

Error checking is left as an exercise for the reader.

class Man(wife)
method Marry(w)

wife := w
if not (self === w.husband) then w.Marry(self)

end
end
class Woman(husband)

method Marry(m)
husband := m
if not (self === m.wife) then m.Marry(self)

end
end

As a general rule, an association that has a quali�er is implemented with a table. The

following example corresponds to the basketball team diagram in Figure 11-7. The players

attribute might be a list or set in class Team, but the quali�er allows class BasketballTeam

to override this and implement players using a table. Such a re�nement can be awkward

in a statically typed object-oriented language. Depending on whether its player parameter

is supplied or is null, method Player() serves to either lookup a player, given a position, or

to insert a player into the association. In either case the player at the designated position

is returned.

class BasketballTeam : Team ()
method Player(position, player)

players[position] := \player
return players[position]

end
initially

players := table()
end

11.5. SUMMARY 219

Associations with multiplicity might be implemented using sets or lists, with lists being

favored when multiplicity is bounded to some range, or when there is a natural ordering

among the instances. The following version of the BasketballTeam class uses a list of �ve

elements to implement its aggregation, which occupies less space than either a set or the

table in the last example.

class BasketballTeam : Team (players)
method Player(player)

if player === !players then fail # already on the team
if /!players := player then return # added at null slot
?players := player # kick someone else off team to add

end
initially

players := list(5)
end

De�ning a new class to implement an association handles rare cases such as many-many

relationships and associations that have their own state or behavior. Other examples of

associations and their implementation are given in Part 3 of this book.

11.5 Summary

The relationships between classes are essential aspects of the application domain that are

modeled in object-oriented programs. You can think of them as the "glue" that connects

ideas in a piece of software. Class diagrams allow many details of such relationships to

be speci�ed graphically during design. Unicon's structure types allow most associations to

map very naturally onto code. In order to understand the subtleties of how these features

are implemented, you may wish to study the output of unicon -E for various examples; the

-E option writes out the Icon translation of the object-oriented code.

220 CHAPTER 11. INHERITANCE AND ASSOCIATIONS

Chapter 12

Writing Large Programs

This chapter describes language features, techniques, and software tools that play a sup-

porting role in developing large programs and libraries of reusable code. You can write large

programs or libraries without these tools; the tools just make certain tasks easier. These

facilities are not speci�c to object-oriented programs. However, they serve the same target

audience since one of the primary bene�ts of object-orientation is to reduce the di�culty

of developing large programs.

In the case of Unicon, "large" might mean any program so complex that it is not self-

explanatory without any special e�ort. This includes all programs over a few thousand lines

in size, as well as shorter programs with complex application domains, and those written

by multiple authors or maintained by persons other than the original author.

Writing and maintaining large programs poses additional challenges not encountered

when writing small programs. The need for design and documentation is greater, and the

challenge of maintaining the correspondence between design documents and code is more

di�cult. Design patterns can help you with the design process, since they introduce easily

recognizable idioms within a design. The more familiar the design is, the less cognitive

load is imposed by the task of understanding it.

This chapter shows you how to:

• Understand the di�erence between abstract and concrete classes

• Use design patterns to simplify and improve software designs

• Organize programs and libraries into packages

• Generate HTML indices and reference documentation for your code

12.1 Abstract Classes

In programming languages, it turns out there are at least two very di�erent kinds of things

referred to by the word "class". Most classes denote a data type, of which there are one or

221

222 CHAPTER 12. WRITING LARGE PROGRAMS

more instances. The word class is also used to denote a general category of objects, of which

there are no actual instances. Such classes are called abstract classes. Abstract classes are

used by de�ning subclasses which do have instances. In a small program you might not

run into a need for abstract classes, but if you write a large object-oriented program, or

your small program uses someone else's large object-oriented class library, you are likely to

need to understand abstract classes.

The whole idea of class and inheritance originated by analogy from biology, but if you

think about it, biology uses a host of di�erent terms to denote categories (phylum, family,

genus, etc.), that are distinct from the term that denotes a class of instances (species).

There are plenty of instances of species Homo sapiens, but there are no instances of a

genus Homo, there are only instances of Homo's subclasses. Similarly, if you are designing

software to model the behavior of cars and trucks, you may identify a lot of shared behavior

and place code for it in a superclass Vehicle, but there are no instances of Vehicle, only its

subclasses.

In a larger inheritance graph (or tree) most classes may well be abstract. It may be

those classes (primarily leaves) of which there are actual instances that are special and

deserve a di�erent term besides "class". We could easily think of all classes as abstract

by default, and refer to classes that have instances as "concrete classes" or "instantiation

classes". The analogy to biology would be better served by such terminology. But for

better or for worse, most software engineers will have to live with "abstract class" and

"class" to denote general categories and instantiable categories, respectively.

Numerous larger and more concrete examples of abstract classes appear in the Unicon

GUI class library, described in Chapter 17. Some classes, such as Button, denote general

categories of widgets that have code and behavior in common (such as the fact that you

can click them). There are no instances of Button, there are only subclasses such as

TextButton, IconButton, and CheckBox, that may be instantiated. In larger applications,

the code sharing (or duplication avoidance) of abstract classes may be compelling, but like

all uses of inheritance they do require you to read and understand multiple bodies of code

(the class and all its superclasses) in order to use the class e�ectively.

Although some abstract classes like Button look exactly like regular classes and have

to be identi�ed as abstract via their supporting comments or documentation, Unicon does

have one language feature that is only used within abstract classes. The reserved word

abstract may be given preceding a method header in lieu of providing the actual body of

the method. Such an abstract method declaration implies that subclasses must provide

an implementation of the method in question, as it will be called by other methods in

the abstract class or in client code. For example, the Unicon GUI Component class is an

abstract class that is a superclass of all GUI components. It provides many methods that

components can all inherit and use or override. It also declares one abstract method that

all subclasses must implement to indicate what they do (if anything) in response to the

passage of time:

12.2. DESIGN PATTERNS 223

abstract method tick()

Class Button is a subclass of Component and provides an implementation of method tick():

method tick()
if dispatcher.curr_time_of_day() > self.repeat_delay then

fire(BUTTON_HELD_EVENT)
end

12.2 Design Patterns

Class and function libraries provide good mechanisms for code reuse, and inheritance helps

with code reuse in some situations. But in large programs it is desirable to reuse not just

code, but also successful designs that capture the relationships between classes. Such design

reuse is obtained by identifying design patterns with known successful uses in a broad range

of application domains. For example, the practice of using pipes to compose complex �lters

from more primitive operations has been successfully used in compilers, operating system

shells, image processing, and many other application areas. Every programmer should be

familiar with this pattern.

The �eld of software design patterns still quite young. Practitioners are producing

simple catalogs of patterns, such as the book Design Patterns, by Erich Gamma, Richard

Helm, Ralph Johnson, and John Vlissides. When the �eld is more mature it will include

syntactic and/or semantic rules for how patterns are combined to form higher-order pat-

terns, as is the case for building architecture. This section presents a few classic patterns

and their implementation in Unicon.

At best, this discussion of patterns may whet your appetite to go read more about the

subject. In addition to their design reuse value, patterns also provide software developers

with a common vocabulary for discussing recurring design concepts. The judicious use of

one or more abstract classes seems to be a recurring theme throughout most of the design

patterns identi�ed by Gamma et al.

Singleton

Perhaps the simplest design pattern is the singleton, describing a class of which exactly

one instance is required. Singletons are interesting because they are related to packages, a

language feature described later in this chapter. A package is a mechanism for segregating

a group of global objects so that their names do not con�ict with the rest of the program.

This segregation is similar to that provided by object encapsulation; a package is similar

to a class with only one instance.

Consider as an example a global table that holds all the records about di�erent employ-

ees at a small company. There are many instances of class Employee, but only one instance

224 CHAPTER 12. WRITING LARGE PROGRAMS

of class EmployeeTable. What is a good name for this instance of EmployeeTable, and how

can you prevent a second or subsequent instance from being created? The purpose of the

singleton pattern is to answer these questions.

In Unicon, one interesting implementation of a singleton is to replace the constructor

procedure (a global variable) by the instance. Assigning an object instance to the variable

that used to hold the constructor procedure allows you to refer to the instance by the name

of the singleton class. It also renders the constructor procedure inaccessible from that point

on in the program's execution, ensuring only one instance will be created.

class EmployeeTable(...)
initially

EmployeeTable := self
end

There are undoubtedly other ways to implement singleton classes.

Proxy

A proxy is a "stand-in" for an object. The proxy keeps a reference to the object it is

replacing, and implements the same interface as that object by calling the object's version

of the corresponding method each time one of its methods is invoked. Figure 12-1 shows a

proxy serving a client object in lieu of the real object.

Figure 12-1: The Proxy Pattern

Proxies are used when the original object cannot or should not be invoked directly. If

the object is on a remote machine, the proxy can take care of network communication and

hide the location of the object from the clients. As another example, the original object

12.2. DESIGN PATTERNS 225

may be instantiated lazily - it may be a large object that is not loaded into memory unless

one of its operations is invoked.

Similar to both of the preceding examples, mobile objects might be implemented using

proxies. If several machines are running a computation jointly and communicating, some

gigantic object might be kept on one machine at a time. In applications with strong

locality of reference, whenever a machine needs to do a call on the gigantic object it might

do hundreds of calls on that object. In that case the object should move from wherever it

is, to the machine where it is needed. The rest of the program does not need to be aware

of whether the object is local, remote, or mobile; it just interacts with the proxy instance.

class gigantic(x1,x2,...,x1000)
method invoke()

...
end

initially
Gigantic object’s state is loaded from network

end
class proxy(g)

method invoke()
/g := gigantic()
return g.invoke()

end
method depart()

g := &null
end

end

Chain of responsibility

This pattern is similar to a proxy, in that an object is delegating one or more of its methods

to a second object. It is not presented in detail, but its similarity to proxies is mentioned

because many design patterns in the Gamma book seem incredibly similar to each other;

reading the book is like having déjà vu all over again. Perhaps there ought to be some kind

of orthogonality law when it comes to patterns.

The di�erence between a chain of responsibility and a proxy is that the proxy forwards

all method invocations to the "real" object, while in a chain of responsibility, the object

may handle some methods locally, and only delegate certain methods to the next object

in the chain. Also, proxies are normally thought of as a single level of indirection, while

the chain of responsibility typically involves multiple linked objects that jointly provide a

set of methods. The following example illustrates a chain of responsibility between a data

structure object (a cache) and an Image class that knows how to perform a computationally

intensive resolution enhancement algorithm.

226 CHAPTER 12. WRITING LARGE PROGRAMS

class Image(...)
method enhance_resolution(area)

enormous computation...

end
initially

... lots of computation to initialize lots of fields
end

class hirez_cache(s, t)
method enhance_resolution(area)

if member(t,area) then { # proxy handles
return t[area]
}

else create the gigantic instance
/im := image()
return t[area] := im.enhance_resolution(area)

end
initially

t := table()
Insert some known values for otherwise enormous computation.
Don’t need im if user only needs these values.
t[1] := 1
t[2] := 1

end

The instance of class Image is not created until one is needed, and image's method

enhance_resolution() is not invoked for previously discovered results. Of course, en-

hance_resolution() must be a pure mathematical function that does not have any side

e�ects for this caching of results to be valid.

Visitor

The visitor pattern is a classic exercise in generic algorithms. It is fairly common to have a

structure to traverse, and an operation to be performed on each element of the structure.

Writing the code for such a traversal is the subject of many data structure texts. In fact,

if you have one operation that involves traversing a structure, there is a good chance that

you have (or will someday need) more than one operation to perform for which the same

traversal is used. Figure 12-2 illustrates the visitor pattern.

12.2. DESIGN PATTERNS 227

Figure 12-2: The Visitor Pattern

The visitor pattern says you can separate out the traversal algorithm from the operation

performed at each element of the structure, and reuse the traversal on other operations. The

following code illustrates this separation of traversal (implemented by method Accept())

from visitation (implemented by methods DoLeaf() and DoInternalNode() in the visitor).

Where there is one kind of visitor there may be many, and in that case, class Visitor

may be an abstract class, instantiated by many concrete Visitor subclasses that have the

same method names but do not share code. Note also that this code example allows for

heterogeneous structures: the Visitor just de�nes a "Do..." method for each type of node

in the structure.

class Visitor()
method DoLeaf(theLeaf)

... visit/use theLeaf.datum
end
method DoInternalNode(theNode)

... visit/use theNode.datum
end

end
class Leaf(datum)

method Accept(v)
v.DoLeaf(self)

end
end
class InternalNode : Leaf(children)

method Accept(v)
every (!children).Accept(v)
v.DoInternalNode(self)

end
end

Executing a traversal from a root object looks like root.Accept(myvisitor) where myvis-

228 CHAPTER 12. WRITING LARGE PROGRAMS

itor is an instance of some Visitor class. The point of the Visitor pattern is that you

can de�ne di�erent Visitor classes. For example, here are Visitors to print a tree, and to

calculate and store the heights of all nodes in the tree:

class Printer()
method DoLeaf(theLeaf)

writes(theLeaf.datum, " ")
end
method DoInternalNode(theNode)

writes(theNode.datum, " ")
end

end
class Heights()

method DoLeaf(theLeaf)
theLeaf.datum := 1

end
method DoInternalNode(theNode)

theNode.datum := 0
every theNode.datum <:= (!children).datum
theNode.datum +:= 1

end
end

12.3 Packages

In large programs, the global name space becomes crowded. You can create a disaster if one

of your undeclared local variables uses the same name as a built-in function, but at least you

can memorize the names of all the built-in functions and avoid them. Memorization is no

longer an option after you add in hundreds of global names from unfamiliar code libraries.

You may accidentally overwrite some other programmer's global variable, without any clue

that it happened.

Packages allow you to partition and protect the global name space. A package is similar

to a �singleton� class with only one instance. Every global declaration (variables, proce-

dures, records, and classes) is "invisible" outside the package, unless imported explicitly.

The package declaration

A package declaration speci�es that all global symbols within a source �le belongs to a

package. The package declaration looks similar to the link declaration. You provide the

package name, an identi�er, or a string �lename:

package foo

12.3. PACKAGES 229

or

package "/usr/local/lib/icon/foo"

There can be only one package declaration in a source �le. It need not be at the

beginning of the source �le, but this is conventional. Within a package, global names

de�ned inside the package are referenced normally. Global names outside the package are

not visible by default. Here is an example source �le that declares some globals and adds

them to a package.

pack1.icn
package first
procedure my_proc()

write(“In my_proc”)
end
class SomeClass()

method f()
write(“In SomeClass.f”)

end
end

When this code is compiled, the information that package �rst contains the symbols

my_proc and SomeClass is recorded into a database and that using package �rst implies

linking in pack1.u along with any other �les that are part of package �rst. In order to

prevent name con�icts the compiler also applies a name mangling process to the global

symbols, described below.

The import declaration

To access symbols within another package, use the import declaration, which has the fol-

lowing syntax:

import foo

This causes the compiler to look up the package in its database and identify its sym-

bols. Import declarations use the IPATH environment variable in the same way as do link

declarations. In particular, an import declaration is a link declaration, augmented with

scope information about the names de�ned in the package.

230 CHAPTER 12. WRITING LARGE PROGRAMS

Explicit package references

Sometimes, two imported packages may de�ne the same symbol, or an imported symbol

con�icts with a global declaration in one of your �les. To resolve these problems, you

can explicitly specify the package to use for particular symbol references. For example, if

packages �rst and second both de�ne a procedure named write, then

import first, second
procedure main()

first::write() # calls write() in package first
second::write() # calls write() in package second
::write() # calls the global write()

end

The use of the :: operator on its own is a useful way to refer to a global procedure from

within a class that has a method of the same name, as in

class Abc(x)
method write()

::write(“Abc x=”, x)
end

end

In this example, omitting the :: would cause the write() method to call itself until the

program runs out of memory and produces a runtime error.

Name con�icts and name mangling

The purpose of packages is to reduce name con�icts, especially accidental ones. You will get

a link error if you declare the same name twice in the same package. You will get a compile

error if you try to import a package that contains a variable that is already declared. In

Unicon, unlike Arizona Icon, you will also get a warning message if you declare a global

variable of the same name as a built-in function, or assign a new value to such a name.

Often this is done on purpose, and it shows o� the �exibility of the language. But other

times when it happens by accident, it is a disaster. Such warnings can be turned o� with

the -n option to the unicon compiler.

Under the hood, packages are implemented by simple name mangling that pre�xes the

package name and a pair of underscores onto the front of the declared name. You can easily

defeat the package mechanism if you try, but the reason to mention the name mangling is

so you can avoid variable names that look like names from other packages.

A similar name mangling constraint applies to classes. Also, the compiler reserves

�eld names __s and __m for internal use; they are not legal class �eld names. Identi-

�ers consisting of _n, where n is an integer are reserved for Unicon temporary variable

12.3. PACKAGES 231

names. Finally, for each class foo declared in the user's code, the names foo, foo__state,

foo__methods, and foo__oprec are reserved, as are the names foo_bar corresponding to

each method bar in class foo.

Compilation order and the unidep tool

When possible, you should compile all �les in a package before you import that package.

Even if you do, if multiple source �les belong to the same package, the order in which they

are compiled is signi�cant. Consider the following code in three source �les:

order1.icn
package demo
procedure first()

write(“first”)
end

order2.icn
package demo
procedure second()

write(“second”)
first()

end

order3.icn
import demo
procedure main()

second()
end

Files order1.icn and order2.icn belong to a package demo, which is used by order3.icn.

You can rightly guess that order3.icn should be compiled after order1.icn and order2.icn,

but does it matter which of them is compiled �rst? If order2.icn is compiled �rst, Unicon's

database does not know symbol �rst is part of the package, and does not mangle the name;

if you compile these �les out of order you will get a runtime error.

The brute force solutions you have available to you are: to always place all of a package

in the same source �le, or to compile the �les twice. Neither of these options is especially

appealing. The symbol references in each package's �les form a graph of dependencies on

the other �les in the same package. As long as this graph is acyclic, a correct order can

be calculated. Unidep is a program that automates this task and generates a make�le

specifying the dependencies in build rules. For example, given the program above, and the

following make�le:

order: order1.u order2.u order3.u

232 CHAPTER 12. WRITING LARGE PROGRAMS

unicon -o order order1.u order2.u order3.u
%.u: %.icn

unicon -c $*

Running the command �unidep order1.icn order2.icn order3.icn� will append the re-

quired additional dependencies. In this case these are:

order1.u: order1.icn
order2.u: order2.icn order1.u
order3.u: order3.icn order2.u

With these dependencies added, the make�le will compile the �les in the correct order.

You will want to add a rule to invoke Unidep from the make�le, and rerun it when your

program changes signi�cantly.

12.4 HTML documentation

Iplweb is an Icon documentation generator, inspired loosely by Java's JavaDoc program,

and based on an HTML-generating program called iplref, by Justin Kolb. Iplweb depends

on your program being in "IPL normal form", which is to say that comments in your source

�les should be in the format used in the Icon Program Library. From these comments and

the signatures of procedures, methods, records, and classes, Iplweb generates reference

documentation in HTML format.

This approach produces reference documentation automatically, without altering the

original source �les. Run Iplweb early, and run it often. It is common for reference docu-

mentation to diverge over time from the source code without such a tool. It is especially

suitable for documenting the interfaces of procedure and class libraries. What it doesn't

help with is the documentation of how something is implemented. It is designed primarily

for the users, and not the maintainers, of library code.

12.5 Summary

Writing and maintaining large programs poses additional challenges not encountered when

writing small programs. The need for design and documentation is greater, and the chal-

lenge of maintaining the correspondence between design documents and code is more dif-

�cult. Design patterns can help you with the design process, since they introduce easily

recognizable idioms or sentences within a design. The more familiar the design is, the less

cognitive load is imposed by the task of understanding it.

Packages have little or nothing to do with design patterns, but they are just as valuable

in reducing the cognitive load required to work with a large program. Packages are not

12.5. SUMMARY 233

just a source code construct. They actually do play a prominent role in software design

notations such as UML. From a programmer's point of view, packages protect a set of

names so that their associated code is more reusable, without fear of con�icts from other

reusable code libraries or the application code itself.

234 CHAPTER 12. WRITING LARGE PROGRAMS

Chapter 13

Use Cases and Supplemental UML

Diagrams

When starting a new software project, it is tempting to begin coding immediately. An

advocate of stepwise re�nement starts with the procedure main() that every program has,

and grows the program gradually by elaboration from that point. For complex systems,

a software designer should do more planning than this. Chapters 9 and 10 covered the

basics of class diagramming, an activity that allows you to plan out your data structures

and their interrelationships.

The hard part about class diagramming is �guring out what information will need to

be stored in attributes, and what object behavior will need to be implemented by methods.

For many large projects there are basic questions about what the program is supposed

to do that must be answered before these details about the application's classes can be

determined. In addition, class diagrams depict static information but model nothing about

the system that involves changes over time.

This chapter discusses some UML diagramming techniques that are useful before you

start coding. They can help you �gure out the details that belong in your class diagrams,

by modeling dynamic aspects of your application's behavior. When you are �nished with

this chapter you will know how to:

• Draw use case diagrams that show the relationships between di�erent kinds of users

and the tasks for which they will use the software.

• Describe the details of use cases that de�ne an application's tasks.

• Draw statechart diagrams that depict an object's behavior as states and transitions

between states that model the dynamic aspects of the application.

• Specify conditions and activities that occur when an event causes an object to change

its state.

235

236 CHAPTER 13. USE CASES AND SUPPLEMENTAL UML DIAGRAMS

• Draw collaboration diagrams that illustrate dynamic interactions between groups of

objects.

13.1 Use Cases

A use case is an individual task. It de�nes a unit of functionality that the software enables

one or more users to carry out. Sometimes it is a challenge to �gure out what makes a

reasonable �unit of functionality� in an application where long sequences of complex tasks

are performed. Should the use cases correspond to small units such as individual user

actions such as mouse clicks, or longer jobs such as updating a spreadsheet? One way to

identify the appropriate units of functionality is to ask, for any given user action, whether

it completes a change to the state of the application data. If the user would likely want to

be able to save their work afterwards, the task is large enough to constitute a use case.

A diagram showing all the use cases helps early on in development to identify the overall

scope and functionality of the software system as seen from the outside. The components

of a use case diagram are depicted in Figure 13-1.

Figure 13-1: The main components of use case diagrams

The use cases themselves are shown as ovals. The name of the use case is inside the

oval. The use cases have an accompanying description; an example description is given in

13.1. USE CASES 237

the next section. A use case is not represented in software by a class, but rather in the logic

of the program's control �ow. A use case relates several otherwise unassociated objects for

a limited time to accomplish a particular task.

The term actor denotes both human users and external hardware or software systems

that interact with the software system under design. Actors are shown in use case diagrams

as stick �gures. Each stick �gure in the diagram represents a di�erent kind of actor that

interacts with the system during one or more use cases. The name of the role is written

under the stick �gure. An actor is really just a special kind of class that represents an

external, asynchronous entity.

The associations between use cases and the actors that perform those tasks are drawn

as plain lines. A use case may be performed by one or several actors. Use case associations

identify the actors that participate in each use case. They are only slightly related to the

associations between classes found in class diagrams.

Dependencies and elaborations between use cases are drawn as lines with arrows, anno-

tated with a label between � and �. Some use cases use other use cases as part of a more

complex task. Other use cases are de�ned as extensions of another use case.

Use case diagrams

A use case diagram consists of a set of use case ovals, bordered by a rectangle that signi�es

the extent of the software system. Actors are drawn outside the rectangle, with connecting

lines to those use cases in which they participate. When some actors are non-human

external systems, by convention the human actors are depicted on the left, and the non-

humans go on the right.

An example use case diagram is shown in Figure 13-2, which depicts a recruiting man-

agement system. The manager hiring a new employee may interact with the company's legal

department to produce an acceptable position advertisement. Many applicants might ap-

ply for a given position. The manager evaluates applications, possibly interviewing several

candidates. When a candidate is selected, the manager interacts with the legal department

to make a job o�er.

238 CHAPTER 13. USE CASES AND SUPPLEMENTAL UML DIAGRAMS

Figure 13-2 A Use Case Diagram

Use case descriptions

The details of each use case are speci�ed in a related use case description. This description

may include prose text, such as the following description of the �Make O�er� use case:

Make O�er is started by the manager when an applicant has been selected from among

the candidates for a position. The manager obtains approval from the legal department,

commits necessary budget resources, and generates an o�er letter with details on salary,

bene�ts, and the time frame in which a decision is required.

The use case description may be organized into �elds, or more detailed than this. For

example, one �eld might consist of the most common sequence of events, emphasized by

an explicit enumeration. The common variations on the primary event sequence are also

of value. A more organized description of the Make O�er use case might be

Make O�er Initiated: by manager, after candidate for a position has been selected.

Terminates: when the candidate receives the o�er in writing.

Sequence:

1. Manager obtains approval from legal department.

2. Manager commits resources from budget

3. Manager telephones candidate with o�er

4. Manager generates o�er letter

5. O�er letter is express mailed to candidate.

Alternatives:

In step 2, Manager may request extra non-budgeted resources.

In step 3, Manager may fax or e-mail o�er in lieu of telephone.

13.2. STATECHART DIAGRAMS 239

13.2 Statechart Diagrams

Statecharts are diagrams that depict �nite state machines. A �nite state machine is a set

of states, drawn as circles or ovals, plus a set of transitions, drawn as lines that connect

states. Statecharts generally have an initial state, which may be specially designated by a

small, solid circle, and one or more �nal states, which are marked by double rings.

In object modeling, states represent the values of one or more attributes within an

object. Transitions de�ne the circumstances or events that cause one state to change

to another. Statecharts are a tool for describing allowable sequences of user interactions

more precisely than is captured by use cases. Discovering the events that cause transitions

between states, as well as the conditions and actions associated with them, helps the

software designer to de�ne the required set of operations for classes.

Figure 13-3 shows an example statechart diagram for a real estate application. A house

enters the FORSALE state when a listing agreement is signed. The house could leave the

FORSALE state with a successful o�er at the listed price (entering a REVIEW period) or

by utter failure (if the listing agreement expires), but the most common occurrence is for a

buyer to make an o�er that is less than the asking price. In that case, a NEGOTIATION

state is entered, which may iterate inde�nitely, terminating when either the buyer or seller

agrees to the other party's o�er or walks away from the discussion. When an o�er is

accepted, a PENDING period is entered in which �nancing is arranged and inspections

and walkthroughs are performed; this period is terminated when escrow is closed, title is

transferred, and the house is SOLD.

Figure 13-3: A Statechart Diagram

Since a state represents the values of one or more attributes within an object, a transition

coincides with assignments that alter those attributes' values. The purpose of the diagram

is to identify when and why those values change, in terms of the application domain.

240 CHAPTER 13. USE CASES AND SUPPLEMENTAL UML DIAGRAMS

Events and conditions

Most transitions in a statechart are triggered by an event. In Figure 13-3 the events were

things like �o�er� and �closing�. Typically, an event describes an asynchronous communi-

cation received from another object. An event is instantaneous, while a state corresponds

to some possibly lengthy interval of time until an object transitions into some other state.

From the point of view of the object being modeled in the statechart, the event is an in-

terrupt that a�ects the object's behavior. Such an event would normally be implemented

by de�ning a method for the object with a name derived from the event name.

It is common during modeling to have a transition that can only occur if a Boolean

condition is satis�ed. In Figure 13-3, the event o�er was used for two transitions out of the

same state, with di�erent conditions (amount >= list price versus amount < list price) to

determine which transition would be taken. In statechart diagrams, conditions are given

after the event name, in square brackets, as in [amt < list].

For a condition on a transition, it might make sense for that transition to require no

trigger event at all. The transition would occur immediately if the condition were ever

satis�ed. Such a constraint-based transition would potentially introduce condition tests at

every point in the object's code where the condition could become true, such as after each

assignment to a variable referenced in the condition. This may work in special cases, but

poses e�ciency problems in general. Transitions without trigger events make sense in one

other situation. If a state exits when a particular computation completes, you can use a

triggerless transition to the new state that the object will be in when it is �nished with the

job it is performing in the current state.

Actions and activities

Events are not the only class methods that are commonly introduced in statecharts. In

addition to a condition, each event can have an associated action. An action is a method

that is called when the event occurs. Since events are instantaneous, action methods should

be of bounded duration. Similarly, states can have a whole regalia of related methods called

activities. There are activities that are called when a state is entered or exited, respectively.

The most common type of activity is a method that executes continuously as long as the

object is in that state. If more than one such activity is present, the object has internal

concurrency within that particular state.

In statechart diagrams, actions are indicated by appending a slash (/) and an action

after the event name and any condition. Activities are listed within the state oval. If a

keyword and a slash pre�x the activity, special semantics are indicated. For example, the

do keyword indicates repeated activity. In Figure 13-3, the activity do / show() says that

the house will be shown repeatedly while it is in the FORSALE state. The activity entry /

open_escrow() indicates that the method open_escrow() is called on entry to the PENDING

state, after which inspections() and arrange_financing() activities are performed.

13.3. COLLABORATION DIAGRAMS 241

13.3 Collaboration Diagrams

Statecharts normally model the state of one object. They show how the object reacts to

events that come from the other objects in the system, but do not depict where those

events came from. In a complex system, it is useful to understand the interactions among

many objects. An event that changes one object's state may trigger events in many other

objects, or a group of objects may trigger events in one another in a cyclic fashion.

Collaboration diagrams show such interactions between objects. They are drawn simi-

larly to class diagrams. A group of rectangles are drawn to represent instances of classes,

and lines depict the relationships between those classes. But while a class diagram em-

phasizes the static structures, representing details such as class attributes, and association

multiplicity, a collaboration diagram depicts a speci�c sequence of messages sent from ob-

ject to object during the completion of some task. The messages are annotated alongside

the links between objects to indicate sender and recipient, and numbered to show both

the sequence and the tree structure of the nested messages. In the general case more than

one message number can be annotated for a given link, since multiple messages may be

transmitted between the same objects in the course of completing the use case.

Figure 13-4 shows an example collaboration diagram. This particular collaboration

illustrates the input processing of a user event in a game application in which pieces are

moved about a board, such as chess or checkers. The incoming event is sent as a message

from the window object to the board widget (message 1). The board widget uses its layout

to map mouse (x, y) coordinates onto a particular square to which the user is moving the

currently selected piece, and forwards a message to that square (1.1). The square sends a

message to a rules object, which checks the validity of the user's move (1.1.1), and if the

move is legal, the square sends a message to the game piece, e�ectively telling it to move

itself (1.1.2). The game piece sends an �erase� message to the square where it was formerly

located (1.1.2.1) before changing its link to refer to the square to which it is moving.

Figure 13-4: A Collaboration Diagram

There are a couple more annotations worth noting in Figure 13-4. The links between

window, board widget, and square widget are identi�ed as aggregations since they denote

242 CHAPTER 13. USE CASES AND SUPPLEMENTAL UML DIAGRAMS

geometric containment; this information is redundant with the class diagram, but is given to

explain how the objects are linked to allow message transmission. The connections between

the square widget and the rules and game piece objects are marked as <<global>> to

indicate that the square widget obtains references to these objects from global variables.

The link between the game piece and the square widget in which it is located is a regular

association and does not require further annotation. Besides <<global>> you can annotate

a link as a <<parameter>> or <<local>> to indicate other non-association references

through which messages are transmitted.

13.4 Summary

This chapter introduced four UML diagram types that are useful in modeling dynamic

aspects of a program's behavior. To learn more about these techniques and others, consult

a primary UML resource, such as The Uni�ed Modeling Language User Guide, by Grady

Booch, James Rumbaugh, and Ivar Jacobson.

No one technique is a complete solution, but some combination of use cases, statecharts,

and collaboration diagrams will allow you to su�ciently model most applications. Use

cases are particularly valuable for describing tasks from the point of view of the application

domain and human user. Statecharts are good for modeling event-based systems such

as user interfaces or distributed network applications. Collaboration diagrams describe

interactions between objects that allow you to model the big picture in a complex system.

In terms of primacy and chronological order, for most applications you should start

with use cases and try to develop them completely. For those use cases that seem complex,

or for which the conventional use case description seems inadequate, you can then bring in

statecharts or collaboration diagrams to assist in completing an understandable design.

Class diagrams are the backbone of a detailed object oriented design. They can be

developed by extracting details from the other kinds of diagrams, and should re�ect pro-

grammers' understanding of the application domain for which the software is being written.

Part III

Example Applications

243

Chapter 14

CGI Scripts

CGI scripts are programs that read input forms and generate dynamic HTML content for

the World Wide Web. CGI programs are often written in scripting languages, but they can

be written in any language, such as C. Unicon is ideal for writing CGI scripts, since it has

extraordinary support for string processing. In this chapter you will learn how to

• Construct programs whose input comes from a web server.

• Process user input obtained from �elds in HTML forms

• Generate HTML output from your Icon programs

14.1 Introduction to CGI

The Common Gateway Interface, or CGI, de�nes the means by which Web servers interact

with external programs that assist in processing Web input and output. CGI scripts are

programs that are invoked by a Web server to process input data from a user, or provide

users with pages of dynamically generated content, as opposed to static content found in

HTML �les. The primary reference documentation on CGI is available on the Web from the

National Center for Supercomputer Applications (NCSA) at http://hoohoo.ncsa.uiuc.edu/cgi/.

If you need a gentler treatment than the o�cial reference, The CGI Book, by Bill Weinman,

is a good book on CGI. Although other methods for writing web applications on the server

have been developed, CGI is the most general, portable method and is likely to remain in

wide use for some time.

This chapter describes cgi.icn, a library of procedures for writing CGI scripts. The cgi.icn

library consists of a number of procedures to simplify CGI input processing and especially

the generation of HTML-tagged output from various data structures. The cgi.icn reference

documentation can be found in Appendix B, which describes many important modules in

the Icon Program Library.

Note

245

246 CHAPTER 14. CGI SCRIPTS

To use cgi.icn, place the statement link cgi at the top of your program.

CGI programs use the hypertext markup language HTML as their output format for

communicating with the user through a Web browser. Consequently, this chapter assumes

you can cope with HTML, which is beyond the scope of this book. HTML is an ASCII

format that mixes plain text with tags consisting of names enclosed in angle brackets such

as <HTML>. HTML de�nes many tags. A few common tags will be de�ned where they

occur in the examples. Most tags occur in pairs that mark the beginning and end of some

structure in the document. End tags have a slash character preceding the name, as in

. More details on HTML are available from the World Wide Web Consortium at

http://www.w3.org/MarkUp/.

Organization of a CGI script

CGI programs are very simple. They process input data supplied by the Web browser that

invoked the script (if any), and then write a new Web page, in HTML, to their standard

output. When you use cgi.icn the input-processing phase is automatically completed before

control is passed to your program, which is organized around the HTML code that you

generate in response to the user. In fact, cgi.icn includes a main() procedure that processes

the input and writes HTML header and tail information around your program's output.

For this reason, when you use cgi.icn, you must call your main procedure cgimain().

Processing input

The HTTP protocol includes two ways to invoke a CGI program, with di�erent methods of

supplying user input, either from the standard input or from a QUERY_STRING environment

variable. In either case, the input is organized as a set of �elds that were given names in

the HTML code from which the CGI program was invoked. For example, an HTML form

might include a tag such as:

<INPUT TYPE = "text" NAME = "PHONE" SIZE=15>

which allows input of a string of length up to 15 characters into a �eld named PHONE.

After the CGI library processes the input, it provides applications with the various

�elds from the input form in a single table, which is a global variable named cgi. The keys

of this table are exactly the names given in the HTML INPUT tags. The values accessed

from the keys are the string values supplied by the user. For example, to access the PHONE

�eld from the above example, the application could write

cgi["PHONE"]

14.1. INTRODUCTION TO CGI 247

Processing output

The main task of the CGI program is to write an HTML page to its standard output,

and for this task cgi.icn provides a host of procedures. Typically these procedures convert a

structure value into a string, wrapped with an appropriate HTML tag to format it properly.

A typical example is the library procedure cgiSelect(name,values), which writes an HTML

SELECT tag for a �eld named name. The SELECT tag creates a list of radio buttons on an

HTML form whose labels are given by a list of strings in the second parameter to cgiSelect().

A programmer might write

cgiSelect("GENDER", ["female", "male"])

to generate the HTML

<SELECT NAME="GENDER">
<OPTION SELECTED>female
<OPTION>male
</SELECT>

Common CGI environment variables

The o�cial CGI de�nition includes a set of standard environment variables that are set by

the Web server as a method of passing information to the CGI script. Programmers access

these environment variables using getenv(), as in

getenv("REMOTE_HOST")

Table 14-1 presents a summary of the CGI environment variables as a convenience so

that this book can serve as a stand-alone reference for writing most CGI scripts. For a

complete listing of all the environment variables supported by CGI go to http://hoohoo.ncsa.

uiuc.edu/cgi/env.html on the Internet.

Table 14-1

CGI Environment Variables

http://hoohoo.ncsa.uiuc.edu/cgi/env.html
http://hoohoo.ncsa.uiuc.edu/cgi/env.html

248 CHAPTER 14. CGI SCRIPTS

Variable Explanation

CONTENT_LENGTH The length of the ASCII string provided by method="POST".

HTTP_USER_AGENT
The user's browser software and proxy gateway, if any. The

format is name/version, but varies wildly.

QUERY_STRING

The information submitted through the form, which fol-

lows the ? in the URL when using method="GET".

QUERY_STRING data is parsed and inserted into a table

stored in the global variable cgi, so cgi.icn scripts do not

generally consult this environment variable.
REMOTE_ADDR The IP address of the client machine.

REMOTE_HOST
The hostname of the client machine. Defaults to IP held

by REMOTE_ADDR.
REQUEST_METHOD The method (GET or POST) used to invoke the CGI script.

SERVER_NAME The server's hostname. It defaults to the IP address.

SERVER_SOFTWARE
The Web server that invoked the CGI script. The format

is name/version.

14.2 The CGI Execution Environment

CGI scripts do not execute as stand-alone programs and aren't launched from a command

line; a Web server executes them. The details of this are necessarily dependent on the

operating system and Web server combination in use. The following examples are based

on a typical UNIX Apache server installation in which users' HTML �les are located under

$HOME/public_html. Check with your system administrator or Web server documentation

for the speci�c �lenames, directories, and permissions required to execute scripts from your

Web server. Some web servers do not allow scripts at all, and most others run scripts with

a special userid in a limited/protected �le system where absolute pathnames are di�erent

from how you see them.

Under Apache, you need a directory under $HOME/public_html named cgi-bin. Both

$HOME/public_html and its cgi-bin subdirectory should have "group" and "other" permis-

sions set to allow reading and executing for the Web server to run the programs you place

there. Do not give anyone but yourself write permissions! The following commands set

things up on a typical Apache system. The percent sign (%) is not part of the command;

it is the UNIX shell prompt. The period in the �nal command is part of the command and

refers to the current working directory.

% mkdir $HOME/public_html
% cd $HOME/public_html
% mkdir cgi-bin
% chmod go+rx . cgi-bin

The next two example �les will allow you to verify that your directories and permissions

14.3. AN EXAMPLE HTML FORM 249

are correct for your Web server. Despite all the attempts to make the world's web servers

secure, the only security you can count on is your own. From security expert David A.

Gamey we have the following tips:

• Use no data without checking for validity. Even HTTP header data can be wrong. If

you expect a number, make sure the supplied data is a number.

• It is a very bad idea to make any system() calls (or open piped commands, etc.) from

scripts. If you absolutely have to run something external, construct command strings

yourself or fully parse user data being used to check for command separators and

hidden commands, etc.

• Don't rely on looking for known bad characters; restrict input to known good char-

acters. Use known good values such as those selected from list boxes

• Sensitive data should be sent using POST, not GET.

• Check for and prevent �le system attacks, such as paths including .. in them.

• Log everything received by your script, so you can tell when attacks occur.

14.3 An Example HTML Form

CGI scripts are typically invoked from HTML pages. When you view the following example

page in your browser, it should look something like the one shown in Figure 14-1. For this

test, create an HTML form $HOME/public_html/simple.html containing Listing 14-1. When

you have a CGI script compiled and ready to run, you can edit the URL in this �le to point

at your CGI program, the simple.cgi executable.

250 CHAPTER 14. CGI SCRIPTS

Figure 14-1: An HTML Form Example

Listing 14-1 An HTML form

<HTML><HEAD><title> An HTML Form Example </title></HEAD>
<BODY>
<h1> A <tt>cgi.icn</tt> Demonstration</h1>
<form method="GET"

action="http://www.cs.uidaho.edu/˜jeffery/cgi-bin/simple.cgi">
1. Name: <input type="text" name="name" size=25> <p>
2. Age: <input type="text" name="age" size=3> Years <p>
3. Quest:
<input type="checkbox" name="fame">Fame</input>
<input type="checkbox" name="fortune">Fortune</input>
<input type="checkbox" name="grail">Grail</input><p>
4. Favorite Color:
<select name="color">
<option>Red
<option>Green
<option>Blue
<option selected>Don’t Know (Aaagh!)
</select><p>
Comments:

14.4. AN EXAMPLE CGI SCRIPT: ECHOING THE USER'S INPUT 251

<textarea rows=5 cols=60 name="comments"></textarea><p>
<input type="submit" value="Submit Data">
<input type="reset" value="Reset Form">
</form>
</BODY>
</HTML>

14.4 An Example CGI Script: Echoing the User's Input

The following script, named simple.cgi might be invoked from the FORM tag above. The

simple.cgi script is produced from an Unicon source �le, simple.icn, that you can copy from

the book web site (http://unicon.org/book/). This program needs to be compiled with the

command

unicon −o simple.cgi simple.icn

Many Web servers are con�gured so that CGI scripts must end with the extension

.cgi. Check with your system administrator about CGI naming conventions if the .cgi

extension does not work for you. In addition to the web server being con�gured to allow

user invocation, unless you use compiler option -B to bundle the virtual machine into

your executable, your program must be able to �nd and execute the virtual machine from

whatever user id CGI's are executed.

The program reads the form input speci�ed in simple.html, and writes it back out. All

cgiEcho() is doing in this case is adding an HTML newline tag after each call. If you look it

up in Appendix B, you will �nd that it will copy its arguments to both the HTML output

and a log �le if given a �le as its �rst argument.

link cgi
procedure cgimain()

cgiEcho("Hello, ", cgi["name"], "!")
cgiEcho("Are you really ", cgi["age"], " years old?")
cgiEcho("You seek: ", cgi["fame"]==="on" & "fame")
cgiEcho("You seek: ", cgi["fortune"]==="on" & "fortune")
cgiEcho("You seek: ", cgi["grail"]==="on" & "grail")
cgiEcho("Your favorite color is: ", cgi["color"])
cgiEcho("Your comments: ", cgi["comments"])

end

Generating an output page that rehashes the user's input is a good test of your HTML

form before you deploy it with a CGI script that actually does something. In some cases, it

is also helpful in allowing the user to recheck their submitted input and con�rm or cancel

before acting on it.

252 CHAPTER 14. CGI SCRIPTS

14.5 Debugging CGI Programs

CGI programs can be a pain to debug. You may have to debug your CGI execution

environment, before you can even start debugging your CGI program itself. If your CGI

script returns an "internal server error", or no output at all, you may have �le permissions

wrong, or the CGI script may not be able to �nd the Unicon virtual machine in order to

run the program. Some web servers execute CGI scripts under a special userid such as

"web", others will run them under your user id. Some web servers run CGI scripts under

a protected �le system where the root directory "/" is not the same as the root directory

visible to your user account, so the path to iconx that you normally use may be invalid in

your CGI program. CGI scripts may have a very limited PATH for security reasons, not

the PATH you set for your user account. Your best bet is probably to use the -B Unicon

compiler option to bundle the Unicon interpreter into your executable �le; alternatively

you can probably copy the virtual machine "iconx" into your cgi-bin directory

Debugging your CGI program itself may require special tricks. Because your CGI

program is executed by a web server, its standard error output may not be visible to you.

You can try to redirect error output to standard out, but your error output may not be

readable unless it is converted into HTML (say, by adding
 at each newline). One way

to accomplish this is to write two programs: one that performs the primary task, and a

second program that calls the �rst one, catches any error messages, and converts any plain

text output to HTML.

14.6 Appform: An Online Scholarship Application

The next example, appform.icn, is a CGI script for an on-line scholarship application that

was used at a university. Its structure is similar to the previous example, with a twist: the

user input is printed for the convenience of the scholarship administrators. As a backup,

the CGI script also e-mails the application to the scholarship administrator. This is useful

if the print job fails for some reason. The program is a single cgimain() procedure, which

starts by processing each of the user input �elds. The program then opens a temporary

�le with a .txt extension, and writes a nicely formatted document containing the user's

scholarship application information.

The code for Appform is shown in Listing 14-2. To run it you must adapt it to your

environment. As written, it prints to lpr, and sends mail to jeffery@cs.uidaho.edu. When

running a CGI script it is important to realize you will run in a di�erent directory, and

with di�erent user id and PATH environment, than your regular account. The program

runs with whatever user id and permissions the system administrator assigns the Web

server process. For example, its root (/) directory may not be at the root of your regular

�lesystem, so absolute paths may not work.

Listing 14-2

14.6. APPFORM: AN ONLINE SCHOLARSHIP APPLICATION 253

An online application form

##
File: appform.icn
Subject: CGI program to process scholarship applications
Author: Clinton Jeffery
Date: July 11, 2002
##
This program processes a bunch of input fields defined in an on-line schol-
arship application at http://unicon.org/book/appform.html and from them,
generates a text file, prints and e-mails it to the scholarship coordinator.
##

link cgi, io
$define ADMIN "jeffery@cs.uidaho.edu"
procedure cgimain()

fname := tempname("appform", ".txt", "/tmp")
f := open(fname, "w") | stop("can’t open ", fname)
write("Generating typeset copy of application form...")
write(f,"Scholarship Program Application\n")
write(f, "Name: ", cgi["NAME"], "\t\t Phone: ", cgi["PHONE"])
write(f, "Address: ", cgi["ADDRESS1"], ’ \t\t Social Sec. Number: ", cgi["SOC"])
write(f, cgi["ADDRESS2"], " \t\t Gender (M/F): ",cgi["GENDER"], "\n")
write(f,"Semester hours completed: ", cgi["CREDITS"])
write(f,"College GPA: Overall ", cgi["GPA"])
write(f,"Present Employer: ", cgi["EMPLOYER"])
write(f,"Position: ", cgi["POSITION"], " Hours/week: ", cgi["HOURS"])
write(f,"Educational Background")
write(f,"High School: name, year, GPA, graduated?")
write(f, cgi["HIGH1"], "\n", cgi["HIGH2"])
write(f,"For each college, list name, dates attended, credit hours,")
write(f,"degrees awarded", cgi["COLL1"], "\n", cgi["COLL2"], "\n\n")
write(f,"Academic honors, scholarships, and fellowships")
write(f,cgi["HONOR1"], "\n", cgi["HONOR2"], "\n")
write(f,"Extracurricular interests:", cgi["EXTRA1"], "\n", cgi["EXTRA2"])
write(f,"Professional organizations:", cgi["ORGS1"], "\n", cgi["ORGS2"])
write(f,"Research interests:")
write(f,cgi["RESEARCH1"], "\n", cgi["RESEARCH2"])
write(f,"Name(s) of at least one person you have asked to")
write(f,"write an academic reference letter.")
write(f,"Name Address Relationship")
write(f,cgi["REF1"], "\t", cgi["REFADD1"], "\t",cgi["REFREL1"])
write(f,cgi["REF2"], "\t", cgi["REFADD2"], "\t",cgi["REFREL2"])
write(f,"\nI certify that information provided on this")
write(f,"application is correct and complete to my knowledge.\n")

254 CHAPTER 14. CGI SCRIPTS

write(f,"Signature: ", repl("_", 60), "\n Date: ", repl("_", 60), "\n\ˆl\n")
write(f,"Please write a short statement of purpose, including")
write(f,"information about your background, major, and career")
write(f,"interests, and professional goals.\n")
write(f, cgi["INFO"])
close(f)
write("Mailing form to program director...")
f := open(fname)
m := open("mailto:" || ADMIN, "m", "Subject: appform")
while write(m, read(f))
close(m)
close(f)
write("Printing hard copy...")
system("lpr " || fname || "; rm " || fname)
cgiEcho("Thank you for applying, ", cgi["NAME"])
cgiEcho("Your application has been submitted to " || ADMIN)

end

Summary

Writing CGI scripts in Unicon is easy. The input �elds are handed to you elegantly in a

global variable, and library functions allow you to write terse code that generates correct

HTML output. The only thing certain about the fast-changing Internet standards is that

they will get continually more complex at a rapid pace. CGI scripting is no substitute for

JavaScript, XML, or any newer buzzword that may be hot this week. But it is a lasting,

multi-platform standard for how to run a program on a Web server from a browser, and it

may be the simplest and best solution for many Internet applications for some time.

Chapter 15

System and Administration Tools

In an open computing environment, users build their own tools to extend the capabilities

provided by the system. Unicon is an excellent language for programmers who wish to

control and extend their own system. This chapter presents techniques used to write

several system utilities of interest to general users as well as system administrators. Best of

all, many of these utilities work across multiple platforms, thanks to Unicon's high degree

of system portability. You will see examples of

• Traversing and examining directories and their contents.

• Finding duplicate �les.

• Implementing a quota system for disk usage.

• Doing your own custom backups.

• Capturing the results of a command-line session in a �le.

15.1 Searching for Files

To begin, consider a simple problem: that of �nding a �le whose name matches a speci�ed

pattern. Regular expressions are commonly used to describe the patterns to match, so

you may want to link in the regular expression library. Here is the start of a �le-search

application.

#
search.icn
#
Search for files whose (entire) names match a pattern given
as a regular expression
#
Usage: ./search <pattern> [dirs]

255

256 CHAPTER 15. SYSTEM AND ADMINISTRATION TOOLS

link regexp

The application starts by processing the command-line arguments. There must be at

least one argument: the pattern to search for. Arguments following that one are directories

to search. If no directories are speci�ed, you can use the current working directory. The

procedure findfile() performs the actual task of searching for the �les:

procedure main(args)
(*args > 0) | stop("Usage: search <pattern> [directories]")
pattern := pop(args)
if *args = 0 then findfile(".", pattern)
else

every dir := !args do findfile(dir, pattern)
exit(0)

end

The search algorithm is a depth-�rst search. In each directory, check the type of each

�le. If you �nd a directory, make a recursive call to findfile(). But before you do that, check

to see if the name of the �le matches the pattern.

For e�ciency, since the program uses the same regular expression for all searches, you

can compile the pattern into a static variable called pat. The regular expression library

allows you to perform this compilation once, the �rst time that findfile() is called, and then

reuse it in subsequent calls.

procedure findfile(dir, pattern)
local d, f, s
static pat
initial {

pat := RePat(pattern) | stop("Invalid pattern ", image(pattern))
}

d := open(dir) | {
write(&errout, "Couldn’t access ", dir, " ", &errortext)
return
}

While you read the names of the �les in the directory, be sure to not go into the special

entries "." and ".." that represent the current directory and the parent directory, respectively.

Except for these names, the directory hierarchy is a tree so you don't need to check for

cycles. Some �le systems support the concept of links, described in Chapter 5; links can

introduce cycles, so the code below recursively calls itself only on regular directories, not

on links.

15.2. FINDING DUPLICATE FILES 257

while name := read(d) do {
if name == ("." | "..") then next
f := dir || "/" || name
s := stat(f) | {

write(&errout, "Couldn’t stat ", f, " ", &errortext)
next
}

Here is the check of the �le name against the pattern:

name ? if tab(ReMatch(pat)) & pos(0) then write(f)

Note

Regular expressions do not use the same notation as �le-matching wildcards used on

the command line. The regular expression notation used by RePat() and ReMatch() is

given in the documentation for the regexp module in Appendix B.

Finally, if f is the name of a directory, make the recursive call. Note that since the

pattern has already been compiled and stored in a static variable, you don't need to pass

it in as a parameter for the recursive call.

if s.mode[1] == "d" then findfile(f)
}

close(d)
close(d)

end

This is a very simple demonstration of some systems programming techniques for Uni-

con. You will see this sort of depth-�rst traversal of the �le system again, in the section on

�le system backups later in this chapter.

15.2 Finding Duplicate Files

An interesting variation on the previous program is to �nd �les whose contents are identical.

This is valuable for those of us who make many copies of �les in various subdirectories over

time, and then forget which ones are changed. Since this task deals with lots of �les, there

are some things to think about. Reading a �le is an expensive operation, so you should try

to minimize the �les you read. Since you can �nd the length of a �le without reading it,

you can use that to perform the �rst cut: you won't need to compare �les of di�erent sizes.

The �rst step, then, is to solve the simpler problem of �nding �les that have the same size.

The previous program example shows how to traverse the directory structure. For the

lengths you can use a table - with each possible length, store the names of the �les of that

length. Since there are lots of �les, try to be smart about what you store in the table. The

natural structure is a list. This leads to the following code:

258 CHAPTER 15. SYSTEM AND ADMINISTRATION TOOLS

procedure scan(dir)
f := open(dir) | {

write(&errout, "Couldn’t access ", dir, " ", &errortext)
return
}

while name := read(f) do {
filename := dir || "/" || name
r := stat(filename)
case r.mode[1] of {

"-" : {
/lengths[r.size] := list()
push(lengths[r.size], filename)
}

"d" : name == ("." | "..") | scan(filename)
}

}
close(f)

end

The main program scans all the directories, and for each list, compares all the �les in

it to each other. The global table named lengths maps lengths to �lenames.

global lengths
procedure main()

lengths := table()
scan("/.")
every l := !lengths do {

if *l = 1 then next
find_dups(l)
}

end

For example, if in a directory there are �les A, B, C, and D with lengths of 1, 2, 5, and

2 bytes, respectively, the lengths table will contain the following:

lengths[1] === ["A"]
lengths[2] === ["B", "D"]
lengths[5] === ["C"]

If a list only has one element, there is no reason to call the function to compare all the

elements together.

All of this makes sense, but in many cases there will be only one �le that has a certain

size. Creating a list for each �le size is a small waste of space. What if, for the �rst entry,

you only store the name of the �le in the table? Then if you get a second �le of the same

size, you can convert the table entry to store a list. That is, in the above example you

could have

15.2. FINDING DUPLICATE FILES 259

lengths[1] === "A"
lengths[2] === ["B", "D"]
lengths[5] === "C"

Now for most of the �les, the program is only storing a string, and it creates a list

only where it needs one. You can say that the table is heterogeneous if you want to get

technical about how its elements are a mixture of strings and lists. With this change, the

main procedure becomes:

global lengths
procedure main()

lengths := table()
scan("/")
every l := !lengths do {

if type(l) == "string" then next
find_dups(l)
}

end

Instead of checking to see if the list has only one element, the code checks to see if the

value from the table is a string, and ignores those entries.

The scan procedure has to do a little more work. Instead of initializing the value to a

list, you can use the name of the current �le; if the value already in the table is a string,

create a list and add both the name from the table and the name of the current �le to the

list. If the value in the table is a list already, then you can just add the current �lename

to it.

while name := read(f) do {
filename := dir || "/" || name
r := stat(filename)
case r.mode[1] of {

"-" :
case type(lengths[r.size]) of {

"null" : lengths[r.size] := filename
"string" : {

lengths[r.size] := [lengths[r.size]]
push(lengths[r.size], filename)

}
"list" : push(lengths[r.size], filename)

}
"d" : name == ("." | "..") | scan(filename)

}
}

260 CHAPTER 15. SYSTEM AND ADMINISTRATION TOOLS

To compare two �les together, you will of course have to read both �les. One way to

do it would be to read in the �les to memory and compare them, but that would take a

lot of space. Most �les even when they have the same size will probably be di�erent; you

only need to read the �les until you �nd a di�erence. At the same time, you shouldn't read

the �les one byte at a time, since the I/O system is optimized to read larger chunks at a

time. The chunk size to use will depend on the exact con�guration of the computer the

program is running on, that is, the speed of the �le reads compared to the CPU speed and

the available RAM storage.

The actual comparison is simple: keep reading chunks of both �les, failing if you �nd a

di�erence and succeeding if you reach the ends of the �les without �nding any.

procedure compare(file1, file2)
static maxline
initial maxline := 1000
f1 := open(file1) | fail
f2 := open(file2) | { close(f1); fail }
while l1 := reads(f1, maxline) do {

l2 := reads(f2, maxline)
if l1 ˜== l2 then {

every close(f1 | f2)
fail
}

}
every close(f1 | f2)
return

end

One technique that is sometimes used for comparing long strings and so forth is hashing.

To use hashing, you de�ne a function that computes an integer from the string. If the hash

values of two strings are di�erent, you know that they cannot be the same. However hash

values being equal doesn't necessarily imply that the strings are equal, so in the worst case

scenario you still have to compare the two strings. If you aren't familiar with hashing,

we encourage you to consult a book on algorithms to learn more about this technique and

think about how the program may be further improved with it. One example hash function

used internally by Unicon is equivalent to:

procedure hash(s)
local i := 0
every i +:= ord(s[1 to min(*s, 10)]) do
i *:= 37
i +:= *s
return i

end

15.2. FINDING DUPLICATE FILES 261

To complete the application, one piece remains: given a list of �lenames, you need to go

through them all and make all the possible comparisons. This can be done with a simple

loop, calling compare() to perform the actual comparisons.

procedure find_dups(l)
every i := 1 to *l do {

f1 := l[i]
every j := i+1 to *l do {

if compare(f1, l[j]) then write(f1, " == ", l[j])
}

}
end

This is relatively ine�cient: for a list of n �les, it performs n(n-1)/2 comparisons and

reads each �le n-1 times. In certain situations it is possible to get by with not doing so

many comparisons; we leave this as an exercise to the reader.

Tip

Clever use of hashing might let you get away with reading each �le just once.

Listing 14-1 shows the complete program, with added comments, and also some error

checking. If any directory or �le open fails, it prints a message and proceeds with the

processing.

Listing 14-1 A program for �nding duplicate �les.

#
duplicate.icn
#
Find files in the filesystem that are identical

global lengths
procedure main()

lengths := table()
On some systems, a leading "//" in a filename may have
a different meaning, so we use "/." instead of just "/"
scan("/.")
every l := !lengths do {

if type(l) == "string" then next
find_dups(l)
}

exit(0)
end

Scan all the directories and add files to the length map -
the global table "lengths"

262 CHAPTER 15. SYSTEM AND ADMINISTRATION TOOLS

procedure scan(dir)
f := open(dir) | {

write(&errout, "Couldn’t open ", dir, "; ", &errortext)
fail
}

while name := read(f) do {
filename := dir || "/" || name
r := stat(filename) | {

write(&errout, "Couldn’t stat ", filename, "; ", &errortext)
next
}

A small optimisation: there are probably quite a few
zero-length files on the system; we ignore them all.
r.size > 0 | next

case r.mode[1] of {
"-" :

ordinary file
case type(lengths[r.size]) of {

if null, it’s the first time; just store filename
"null" : lengths[r.size] := filename

if string, one element already exists; create a list and make
sure we add both the old filename and the new one.
"string" : {

lengths[r.size] := [lengths[r.size]]
push(lengths[r.size], filename)
}

There’s already a list; just add the filename
"list" : push(lengths[r.size], filename)

}
"d" :

A directory. Make sure to not scan . or ..
name == ("." | "..") | scan(filename)

}
}
close(f)
return ""

end

Given a list of filenames, compare the contents of each with every other.
procedure find_dups(l)

This is O(nˆ2)

15.3. USER FILE QUOTAS 263

every i := 1 to *l do {
f1 := l[i]
every j := i+1 to *l do {

if compare(f1, l[j]) then write(f1, " == ", l[j])
}

}
end

Compare two files; by reading in 1000 byte chunks. This value may need
to be adjusted depending on I/O speed compared to CPU speed and memory.
procedure compare(file1, file2)

static maxline
initial maxline := 1000

are f1 and f2 identical?
f1 := open(file1) | {

write(&errout, "Couldn’t open ", file1, "; ", &errortext)
fail
}

f2 := open(file2) | {
close(f1)
write(&errout, "Couldn’t open ", file2, "; ", &errortext)
fail
}

while l1 := reads(f1, maxline) do {
l2 := reads(f2, maxline) |

The files are supposed to be the same size! How could
we read from one but not the other?
stop("Error reading ", file2)

if l1 ˜== l2 then {
every close(f1 | f2)
fail
}

}
every close(f1 | f2)
return

end

15.3 User File Quotas

Many computing platforms o�er a �lesystem quota facility, where each user has only so

much of the disk to store �les. The system does not allow �les to grow once the limit

has been reached. However, many systems don't have this facility, and on other systems

264 CHAPTER 15. SYSTEM AND ADMINISTRATION TOOLS

the available quota mechanism is not enabled because the user might have an urgent and

immediate need to exceed his or her quota for a short time.

For these uses this section presents an alternate �lesystem quota method. The quota

for each user is stored in a �le, and at regular intervals (perhaps overnight) the system

examines the disk usage of each user. If it is above the quota, a message is sent. A

summary message is also sent to the administrator so that any user that is over quota for

more than a few days will be noticed.

First, declare a few global variables that will hold the strings that are to be used in the

messages that are sent:

global complaint_part1, complaint_part2, summary_header

procedure main(args)
Read database of users; get disk usage for each user and
check against his/her quota
db := "/usr/lib/quotas/userdb"
administrator := "root"
init_strings()

Calculating disk usage

The next step is to read the database of users, and for every directory, calculate the disk

usage. On UNIX systems you can just run du (the UNIX tool that measures disk usage)

and read its output from a pipe to obtain this �gure. The -s option tells du to print a

summary of disk usage; it prints the usage and the name of the directory, separated by a

tab character. If your platform doesn't have a du command, how hard is it to write one in

Unicon? The du command is straightforward to write, using the techniques presented in

the previous two programming examples.

procedure du(dir)
local s := stat(dir), d, sum := 0

If it’s not a directory, just return its size
if s.mode[1] ˜== “d” then

return s.size

Otherwise, find the usage of each entry and add
d := open(dir) | fail
while filename := read(d) do sum +:= du(filename)
close(d)
return sum

end

Using this procedure, the program �lls in the table of usages.

15.3. USER FILE QUOTAS 265

L := read_db(db)
owners := L[1]
quotas := L[2]
daysover := L[3]
usages := table(0)
over := table()
every dir := key(owners) do {

usages[dir] := du(dir)
user := owners[dir]

If the usage reported is greater than the quota, increment the "days over" �eld. Save

the results and send all the email later; this will allow us to only send one message to a

user that owns more than one directory.

if usages[dir] > quotas[dir] then {
/over[user] := []
daysover[dir] +:= 1
l := [dir, usages[dir], quotas[dir], daysover[dir]]
push(over[user], l)
}

else daysover[dir] := 0
}

every user := key(over) do complain(user, over[user])

Finally, the program saves the database and sends a summary of the over-quota direc-

tories to the administrator.

write_db(db, owners, quotas, daysover)
send_summary(administrator, owners, quotas, daysover, usages)

end

Sending mail messages

Two procedures in the quota program send mail messages as their primary task. This is

done in many older system administration scripts by executing an external mail client using

the system() function. Calling system() is a potential portability problem and security hole

in many applications. The quota program uses Unicon's messaging facilities to send mail,

avoiding both of these problems.

Procedure complain() sends a message to the user notifying him/her that certain direc-

tories are over quota. The entry for each user is a list, each member of which is a record of

an over-quota directory, stored as a list. This list has the directory name, the usage, the

quota and the number of days it has been over quota.

266 CHAPTER 15. SYSTEM AND ADMINISTRATION TOOLS

procedure complain(user, L)
msg := "Dear " || user || complaint_part1
every l := !L do {

msg ||:= "\t" || l[1] || "\t" || l[2] || "\t" || l[3] || "\t" || l[4] || "\n"
}
msg ||:= complaint_part2
m := open("mailto:"|| user, "m", "Subject: Over Quota")
write(m, msg)
close(m)

end

Procedure send_summary() sends mail to the administrator summarizing all over-quota

directories. It uses the function key() to generate the indexes for tables usages, quotas,

owners, and daysover, which are maintained in parallel. This use of key() is quite common.

It might be possible to combine all these parallel tables into one big table and eliminate

the need to call key().

procedure send_summary(admin, owners, quotas, daysover, usages)
m := open("mailto:"|| admin, "m", "Subject: Quota Summary")
write(m, summary_header)
every dir := key(owners) do

if usages[dir] > quotas[dir] then {
writes(m, dir, "\t", owners[dir], "\t", usages[dir]||"/"||quotas[dir], "\t",

daysover[dir])
Flag anything over quota more than 5 days
if daysover[dir] > 5 then writes(m, " ***")
write(m)

}
close(m)

end

The quota database

The database is stored as a plain text �le so that the system administrator can easily make

changes to it. It has four �elds, separated by white space (spaces or tabs): a directory,

the owner of the directory, the quota, and the number of days the directory has been over

quota. Procedure read_db() reads in the database. Blank lines or lines starting with '#' are

ignored.

procedure read_db(db)
owners := table()
quotas := table(0)
daysover := table(0)
dbf := open(db) | stop("Couldn’t open ",db)

15.3. USER FILE QUOTAS 267

while line := read(dbf) || "\t" do
line ? {

tab(many(’\t’))
if pos(0) | ="#" then next
dir := tab(upto(’\t’)); tab(many(’ \t’))
user := tab(upto(’\t’)); tab(many(’ \t’))
quota := tab(upto(’\t’)); tab(many(’ \t’))
days := tab(0) | ""
The "days" field can be absent in which case 0 is
assumed.
if days == "" then days := 0

If multiple quota lines occur for a directory, the tables must be updated appropriately.

The semantics of the tables require varying approaches. The owners table writes a warning

message if quota lines with di�erent owners for the same directory are found, but otherwise

the owners table is una�ected by multiple entries. The actual quotas table allows multiple

quota lines for a directory; in which case the quotas are added together. The daysover

table retains the maximum value any quota line is overdue for a directory.

if \owners[dir] ˜== user then
write(&errout, "Warning: directory ", dir, " has more than one owner.")

owners[dir] := user
quotas[dir] +:= quota
daysover[dir] := days

}
close(dbf)
return [owners, quotas, daysover]

end

Procedure write_db() rewrites a quota database with current quota information. Notice

how the code preserves the comments and the blank lines that were present in the database

�le. This is very important when dealing with human-editable �les. It also writes to a

temporary �le and then renames it to the correct name. This ensures that a consistent

copy of the database is always present.

procedure write_db(db, owners, quotas, daysover)
new_db := db || ".new"
db_old := open(db)
db_new := open(new_db, "w") | stop("Couldn’t open", new_db)
while line := read(db_old) do {

line ? {
tab(many(’\t’))
if pos(0) | ="#" then {

write(db_new, line)

268 CHAPTER 15. SYSTEM AND ADMINISTRATION TOOLS

next
}

dir := tab(upto(’\t’))
write(db_new, dir, "\t", owners[dir], "\t", quotas[dir], "\t", daysover[dir])

}
}
close(db_old)
close(db_new)
rename(db, db || ".bak")
rename(new_db, db)

end

Lastly, procedure init_strings() initializes global strings used for email messages. Con-

catenation is used to improve the readability of long strings that run across multiple lines.

procedure init_strings()
complaint_part1 := ":\n" ||

"The following directories belonging to you are"|| "over their quota:\n\n"||
"Directory \tUsage \tQuota \tDays Over\n"

complaint_part2 := "\nPlease take care of it."
summary_header := "\n"||

"Over-quota users\n\n"||
"Directory \tOwner \tUsage/Quota \tDays Over\n"

end

15.4 Capturing a Shell Command Session

Many applications including debugging and training can bene�t from the ability record a

transcript of a session at the computer. This capability is demonstrated by the following

program, called script. The script program uses a feature of POSIX systems called the pty.

This is short for pseudo-tty. It is like a bi-directional pipe with the additional property

that one end of it looks exactly like a conventional tty. The program at that end can set

it into "no-echo" mode and so forth, just like it can a regular terminal. This application's

portability is limited to the UNIX platforms.

The script program has only one option: if -a is used, output is appended to the transcript

�le instead of overwriting it. The option is used to set the second argument to open():

script: capture a script of a shell session (as in BSD)
Usage: script [-a] [filename]
filename defaults to "typescript"

procedure main(L)
if L[1] == "-a" then {

15.4. CAPTURING A SHELL COMMAND SESSION 269

flags := "a"; pop(L)
}

else flags := "w"

Now the program must �nd a pty to use. One method is to go down the list of pty

device names in sequence until an open() succeeds; then call procedure capturesession(), to

perform the actual logging. On POSIX systems the pty names are of the form /dev/ptyp-s0-a.

The tty connected to the other end of the pipe then has the name /dev/ttyXY , where X and

Y are the two characters from the pty's name.

Find a pty to use
every c1 := !"pqrs" do

every c2 := !(&digits || "abcdef") do
if pty := open("/dev/pty" || c1 || c2, "rw") then { # Aha!

capturesession(fname := L[1] | "typescript", pty, c1 || c2, flags)
stop("Script is done, file ", image(fname))

}
stop("Couldn’t find a pty!")

end

Note

If you do not have read-write permissions on the pseudotty device the program uses, the

program will fail. If this program does not work, check the permissions on the /dev/tty*

device it is trying to use.

The script program uses the system() function, executing the user's shell with the standard

input, standard output, and standard error streams all redirected to be the tty end; then

it waits for input (using select()) either from the user or from the spawned program. The

program turns o� echoing at its end, since the spawned program will be doing the echoing.

The program sends any input available from the user to the spawned shell; anything that

the shell sends is echoed to the user, and also saved to the script �le.

procedure capturesession(scriptfile, pty, name, flags)
f := open(scriptfile, flags) | stop("Couldn’t open ", image(scriptfile))
tty := open("/dev/tty" || name, "rw") | stop("Couldn’t open tty!")
shell := getenv("SHELL") | "/bin/sh"
system([shell, "-i"], tty, tty, tty, "nowait")

Parent
close(tty)
system("stty raw -echo")

Handle input
while L := select(pty, &input) do {

270 CHAPTER 15. SYSTEM AND ADMINISTRATION TOOLS

if L[1] === &input then writes(pty, reads()) | break
else if L[1] === pty then {

writes(f, inp := reads(pty)) | break
writes(inp)

}
}

When script gets an EOF on either stream, it quits processing and closes the �le, after

resetting the parameters of the input to turn echoing back on.

(&errno = 0) | write(&errout, "Unexpected error: ", &errortext)
system("stty cooked echo")
close(f)

end

15.5 Filesystem Backups

By now you have probably been told a few thousand times that regular backups of your

�les are a good idea. The problem arises when you are dealing with a system with a large

amount of �le storage, like modern multi-user systems. For these systems, incremental

backups are used. Incremental backups exploit the fact that a very large number of �les on

the system change rarely, if ever. There is no need to save them all to the backup medium

every time. Instead, each backup notes the last time that a backup was performed, and

only saves �les that have been modi�ed since then.

Each backup is given a number; the �les in backup n were modi�ed later than the last

backup of a lower number. A Level 0 backup saves all the �les on the system.

This section presents an incremental backup utility called backup. The backup utility

saves all the �les in a directory speci�ed with the -o �ag. Typically this will be the external

backup storage, like a �oppy disk (for small backups) or a Zip disk. The program re-

creates the directory structure on the external device so that �les may easily be recovered.

The disadvantage of this strategy is that it does not compress the whole archive together,

and therefore requires more storage than is strictly necessary. On the positive side, this

approach avoids the fragility of compressed archives, in which the loss of even a small

amount of data can render the whole archive unreadable.

Note

This program only saves to media that has a directory structure on which regular �les

may be written, such as jump drives. It does not work on backup devices such as tape

drives that require media to be written in a proprietary format.

Another feature of this backup program is that certain directories can be automatically

excluded from the backup, such as temporary directories like /tmp on UNIX systems. One

directory that must be excluded is the output device itself, or you will �nd that a very large

15.5. FILESYSTEM BACKUPS 271

amount of storage is needed! One of the best parts about backup is that you can modify

this program to suit your needs: �le compression, error recovery, support for multiple discs,

or anything else that you require.

#
backup.icn - incremental filesystem backups
#
Usage:
./backup [-nlevel] [-ooutput] [dir]
#
Save all files that have changed since the last backup of higher level
(a level 0 backup is the highest level and saves all files; it is the
default). The files are all saved to the directory "output", which is
probably a mounted backup device like a flash drive.
#
Example:
backup -n3 -o/mnt/zip /home/bob

link options

global dbase, exclude, levels
global output, last

procedure main(args)
dbase := "/var/run/backups.db"
exclude := ["/mnt", "/tmp", "/dev", "/proc"]

Process arguments
opt := options(args, "-n+ -o:")
level := integer(\opt["n"]) | 0
output := opt["o"]
dir := args[1] | "/"

\output | stop("An output directory (option -o) must be specified!")
if level < 0 | level > 9 then stop("Only levels 0..9 can be used.")

Get the time of the previous lower-numbered backup
last := get_time(level)
Now look for files newer than "last"
traverse(dir)

Write the database
save_time(level)

end

272 CHAPTER 15. SYSTEM AND ADMINISTRATION TOOLS

Procedure traverse() is the interesting part of the program. It recursively descends the

�lesystem hierarchy, saving all the �les it �nds that are newer than the last backup. When

a recent plain �le is found, the procedure copy_file() is called.

procedure traverse(dir)
Skip excluded directories
if dir == !exclude then return

Read all the files; for any non-special files, copy them
over to the output dir, creating directories as necessary
d := open(dir) | {

write(&errout, "Couldn’t stat ", dir, " ", &errortext)
return
}

if dir[-1] ˜== "/" then dir ||:= "/"
while name := read(d) do {

if name == ("." | "..") then next
s := stat(dir || name) | {

write(&errout, "Couldn’t stat ", dir||name, " ", &errortext)
next

}
if s.mode[1] == "d" then traverse(dir || name)
else {

Only save plain files
if s.mode[1] == "-" & s.ctime > last then copy_file(dir, name)
}

}
end

To copy a �le, you must �rst ensure that its parent directory exists. If it doesn't, the

parent directory is created; then the �le itself is copied. For e�ciency, backup uses the

system program (cp on UNIX) to copy the �le. When directories are created, backup copies

the owner and mode from the directory being backed up.

Note

This program must be run with administrator privileges for it to be able to read all the

�les on the system and also to be able to set the owner and mode.

procedure copy_file(dir, name)
First, make sure the directory exists
mkdir_p(output, dir)
system("cp " || dir || "/" || name || " " || output || "/" || dir)

end

procedure mkdir_p(prefix, dir)

15.5. FILESYSTEM BACKUPS 273

The name is supposed to be reminiscent of "mkdir -p"
Start at the first component and keep going down it,
copying mode and owner.
dir ||:= "/"
d := ""
dir ? while comp := tab(upto(’/’)) do {

tab(many(’/’))
d ||:= "/" || comp
if \stat(prefix || d) then {

The directory doesn’t exist; create it. d is the
directory being copied over; get its uid and mode.
s := stat(d)
mkdir(prefix || d, s.mode[2:11])
chown(prefix || d, s.uid, s.gid)

}
}

end

The database �le is very simple: for every level, the date of the last backup at that

level is stored. Dates are stored in the system native format so that comparisons with

�le modi�cation dates can be easily performed. If no earlier backup is found, procedure

get_time() returns the earliest possible time (the epoch); all �les will have newer modi�ed

times, and therefore be backed up.

All the dates found are stored in a global table so that they will be accessible when

backup writes out the database later.

procedure get_time(n)
Get the date of earlier backup
levels := table()
f := open(dbase)

while line := read(\f) do
line ? {

lev := integer(tab(upto(’ ’)))
move(1)
date := tab(0)
levels[lev] := date
}

close(\f)
every i := integer(!&digits) do

if i < n then prev := \levels[i]
/prev := 0 # default: the epoch
return prev

end

274 CHAPTER 15. SYSTEM AND ADMINISTRATION TOOLS

Finally, the program saves the database of dates. It fetches the current time to save

with the current level, and deletes all higher-numbered backups from the database.

procedure save_time(n)
levels[n] := &now

f := open(dbase, "w") | stop("Couldn’t open table ", dbase)
every i := integer(!&digits) do

if i <= n then write(f, i, " ", \levels[i])
else break

close(f)
end

15.6 Filtering Email

Unicon's messaging facilities can be used for �ltering email messages obtained from a POP

server. A �ltering rule has two components: a pattern to look for, and an action to perform

if the string is found. The action to be perform can take a few forms: the message can be

saved in a folder; it can be deleted; or it can be forwarded to some other address. We can

use a record to represent a rule:

record rule(pattern, action, args)

Here are some example rules represented as records:

rule("From: .*spammer\.com", "delete")
rule("From: .*unicon-list@lists\.sourceforge\.net", "save", "folders/unicon")
rule("Subject: .*xyzzy", "forward" "shamim@home-domain.org")

We read all the rules from a �le and use them to �lter all messages. To connect to

the POP server, we need some parameters: the server to connect to, the username and the

password. These values are stored in a parameter �le that we read. The parameters from

the �le can be stored in a global table called params. (We will deal with reading the �le

later.) First, we connect to the POP server and for every message, invoke the �lter:

params := get_parameters()
server := \params["server"] | stop("No server specified in .popfilter file")
user := \params["user"] | stop("No user specified in .popfilter file")
password := \params["password"] |

stop("No password specified in .popfilter file")
\params["inbox"] | stop("No inbox specified in .popfilter file")

url := "pop://" || user || ":" || password || "@" || server

mailto:shamim@home-domain.org

15.6. FILTERING EMAIL 275

s := open(url, "m") | stop("Couldn’t connect to ", image(url))
while filter(pop(s), rules) do

Make sure there are no errors
if s["Status-Code"] >= 300 then {

close(s)
stop(&progname, ": POP error: ", s["Status-Code"],

" ", s["Reason-Phrase"] | "")
}

After reading each message, we make sure that there wasn't an error in talking to the

POP server � if there was one, we print the error and exit.

The �ltering procedure tries to match the message against every rule; if one matches,

it hands the message o� to the action procedure. If no rule matches, the message is saved

to the default folder (the inbox).

procedure filter(message, rules)
local filter_rule
every filter_rule := !rules do

if message? ReFind(filter_rule.pattern) then
perform(filter_rule.action, filter_rule.args, message) |

write(&errout, "Error in ",image(filter_rule.action),
" ", image(filter_rule.args))

No action matched so we save it in the inbox
perform("save", params["inbox"], message)

end

Since the patterns are regular expressions, we link in the IPL regexp package for the

procedure ReFind() that will do the pattern matching.

procedure perform(action, args, message)
local procname
procname := \proc("filterproc_" || action, 2) |

stop(&progname, ": action ", image(action), " unknown.")
procname(message, args) | fail
return ""

end

We use Unicon's string invocation (and we'd better remember to put invocable all at the

top of the program) to call the procedure associated with each de�ned action. The function

proc() tries to �nd the procedure with the right name; if it fails, it is an unknown action.

The names of these procedures all have the form ��lterproc_� appeneded with the name of

the action. We make sure that the procedures succeed if there was no error in performing

the action.

276 CHAPTER 15. SYSTEM AND ADMINISTRATION TOOLS

procedure filterproc_delete(message, args)
return "" # We don’t have to do anything

end

procedure filterproc_save(message, filename)
local f
f := open(filename, "a") | fail
write(f, message)
close(f)
return ""

end
procedure filterproc_forward(message, address)

local subject, s

Find the subject of the message and use that
message? (tab(find("Subject: ")) & subject := tab(upto(’\n’)))
subject := "Subject: " || \subject

s := open("mailto://" || address, "m", subject) | fail
write(s, message)
close(s)
return ""

end

It would be easy to implement an action that sends messages to external programs � in

procedure perform(), if the �rst character of the action is the pipe symbol �|� we can open a

pipe and write the message to it instead of calling the right action procedure. (This would

be a good �exercise left to the reader!�)

We still need to read the �les and set up the params table and the list of rules. It is a

good idea to allow blank lines and comments in �les we read, since humans will be editing

these �les and we like comments to remind ourselves what things do. We need a procedure

that reads a �le and strips out comments and blank lines:

Read a line from a file, skipping comments and blank lines
procedure getline(f)

local line, s
while line := read(f) do line? {

s := tab(upto(’#’) | 0)
if *trim(s) = 0 then next
return s

}
end

We read the POP parameters from a �le named .popfilter in the user's home directory

15.6. FILTERING EMAIL 277

and return a table of name-value pairs. The global variable WS is a cset that contains the

space and tab characters; it is initialized in main(), when the program �rst starts executing.

Read the ˜/.popfilter file and return a table of name -> value pairs
procedure get_parameters()

local f, P := table(), line
f := open(getenv("HOME") || "/.popfilter") | return P

while line := getline(f) do line ? {
pname := tab(upto(WS))
tab(many(WS))
P[pname] := tab(0)

}
close(f)
return P

end

The �ltering rules are read from the �le named on the command line. The pattern is

separated from the action by an exclamation point, and (as usual) comments, blank lines

and whitespace (around the �!�) are allowed. Whitespace inside the regular expression is

signi�cant and should not be discarded so we use trim() to make sure we only remove trailing

whitespace. Searches are anchored to the begin of line so we can easily look for individual

headers; instead of separating a message into lines and using the �beginning of line� regular

expression operator, we simply we add a newline character to the front of the pattern.

Read the file and return a list of rules. All the work is
actually done in getline() and parse()
procedure read_rulefile(filename)

local f, rules := []
f := open(filename) | fail
while push(rules, parse(getline(f)))
close(f)
return rules

end

Parse a line into a pattern, an action, and optionally
arguments to the action.
procedure parse(s)

local regexp, action

s ? {
tab(many(WS))
regexp := tab(upto(’!’)) & move(1)
tab(many(WS))

278 CHAPTER 15. SYSTEM AND ADMINISTRATION TOOLS

action := tab(upto(WS) | 0)
pos(0) | (tab(many(WS)) & args := tab(0))

}
return rule("\n" || trim(\regexp), \action, args)

end

Here is an example action �le that includes the example rules from above:

Flush evil spammers!
From: .*spammer\.com !delete
Subject: .*MAKE MONEY FAST !delete # Got enough, thanks!

Cool people get special attention
From: .*unicon-list@lists\.sourceforge\.net !save folders/unicon
From: .*(parlett|jeffery|pereda) !save folders/urgent

The secret password!! Forward it to the pager.
Subject: .*xyzzy !forward pager@shamims-domain.org

And here's an example .pop�lter �le:

Settings for popfilter.icn, a POP client and email filter
July 2002

Where incoming mail is stored locally
inbox /var/mail/shamim

The POP server
server jantar

Remember, this is the username and password on jantar
user spm
password Xyz!1234

We have introduced the main procedure in pieces; here it is all in one place:

link regexp
record rule(pattern, action, args)
global WS

Email and POP parameters
global params

We’re using string invocation

mailto:pager@shamims-domain.org

15.7. SUMMARY 279

invocable all
procedure main()

local server, user, password
WS := ’ \t’ # whitespace
params := get_parameters()
server := \params["server"] | stop("No server specified in .popfilter file")
user := \params["user"] | stop("No user specified in .popfilter file")
password := \params["password"] | stop("No password specified in .popfilter file")
\params["inbox"] | stop("No inbox specified in .popfilter file")
if *args = 0 then stop("Usage: ", &progname, " filter-rule-file")

url := "pop://" || user || ":" || password || "@" || server

filter_rules := read_rulefile(args[1]) |
stop("Couldn’t read filter rules from ", image(args[1]))

filter(testmsg(), filter_rules)

s := open(url, "m") | stop("Couldn’t connect to ", image(url))

while filter(pop(s), filter_rules) do
if s["Status-Code"] >= 300 then {

close(s)
stop(&progname, ": POP error: ", s["Status-Code"], " ", s["Reason-Phrase"] | "")

}
close(s)

end

The complete program popfilter.icn can be obtained from the book's website. There are

still a few things this program would need to be truly useful. For example, it should allow

non-anchored searches, and the user should be able to specify whether case is signi�cant

while looking for a pattern � or perhaps a part of a pattern may be case sensitive by itself.

Also, what if we want a �!� in the regular expression? We hope that you will be inspired

to make these additions yourself.

15.7 Summary

Writing utilities and system administration tools is easy in Unicon. These programs rely

on the system facilities described in Chapter 5. While we do not advocate using Unicon in

every case, it is an advantage that your applications language is also an e�ective scripting

language. Ordinary programs can easily take on scripting tasks, and programs that might

otherwise be written in a scripting language have Unicon's cleaner design and more robust

set of control and data structures available.

280 CHAPTER 15. SYSTEM AND ADMINISTRATION TOOLS

Chapter 16

Internet Programs

The Internet is central to modern computing. Because it is ubiquitous, programmers should

be able to take it for granted. Writing applications that use the Internet should be just

as easy as writing programs for a standalone desktop computer. In many respects this

ideal can be achieved in a modern programming language. The core facilities for Internet

programming were introduced with simple examples as part of the system interface in

Chapter 5. This chapter expands on this important area of software development. This

chapter presents examples that show you how to

• Write Internet servers and clients

• Build programs that maintain a common view of multiple users' actions

16.1 The Client-Server Model

The Internet allows applications to run on multiple connected computers using any topol-

ogy, but the standard practice is to implement a client/server topology in which a user's

machine plays the role of a client, requesting information or services from remote machines,

each of which plays the role of a server. The relationship between clients and servers is

many-to-many, since one client can connect to many servers and one server typically handles

requests from many clients.

Writing a client can be easy. For simple read-only access to a remote �le, it is just as easy

as opening a �le on the hard disk. Most clients are more involved, sending out requests

and receiving replies in some agreed-upon format called a protocol. A protocol may be

human readable text or it may be binary, and can consist of any number of messages back

and forth between the client and server to transmit the required information. The most

common Internet protocols are built-in parts of Unicon's messaging facilities, but some

applications de�ne their own protocol.

Writing a server is more di�cult. A server sits around in an in�nite loop, waiting for

clients and servicing their requests. When only one client is invoking a server, its job is

281

282 CHAPTER 16. INTERNET PROGRAMS

simple enough, but when many simultaneous clients wish to connect, the server program

must either be very e�cient or else the clients will be kept waiting for unacceptably long

periods.

Although the following example programs emphasize how easy it is to write Internet

clients and servers in Unicon, writing "industrial strength" applications requires additional

security considerations which are mostly beyond the scope of this book. For example, user

authentication and encryption are essential in most systems, and many modern servers are

carefully tuned to maximize the number of simultaneous users they support, and minimize

their vulnerability to denial-of-service attacks.

16.2 An Internet Scorecard Server

Many games with numeric scoring systems feature a list of high scores. This feature is

interesting on an individual machine, but it is ten times as interesting on a machine con-

nected to the Internet! The following simple server program allows games to report their

high scores from around the world. This allows players to compete globally. The score-

card server is called scored. By convention, servers are often given names ending in "d" to

indicate that they are daemon programs that run in the background.

The scorecard client procedure

Before examining the server code, take a look at the client procedure that a game calls to

communicate with the scored server. To use this client procedure in your programs, add

the following declaration to your program.

link highscor

The procedure highscore() opens a network connection, writes four lines consisting of

the protocol name "HSP", the name of the game, the user's identi�cation (which could

be a nickname, a number, an e-mail address, or anything else), and that game's numeric

score. Procedure highscore() then reads the complete list of high scores from the server,

and returns the list. Most games write the list of high scores to a window for the user to

ponder.

procedure highscore(game, userid, score, server)
if not find(":", server) then server ||:= ":4578"
f := open(server, "n") | fail

Send in this game’s score
write(f, "HSP\n", game, "\n", userid, "\n", score) |

stop("Couldn’t write: ", &errortext)

16.2. AN INTERNET SCORECARD SERVER 283

Get the high score list
L := ["High Scores"]
while line := read(f) do put(L, line)
close(f)
return L

end

The Scorecard server program

The scorecard server program, scored.icn illustrates issues inherent in all Internet servers.

It must sit at a port, accepting connection requests endlessly. For each connection, a call

to score_result() handles the request. The main() procedure given below allows the user to

specify a port, or uses a default port if none is supplied. If another server is using a given

port, it won't be available to this server, and the client and server have to agree on which

port the server is using.

procedure main(av)
port := 4578 # a random user-level port
if av[i := 1 to *av] == "-port" then port := integer(av[i+1])

write("Internet Scorecard version 1.0")
while net := open(":" || port, "na") do {

score_result(net)
close(net)
}

(&errno = 0) | stop("scored net accept failed: ", &errortext)
end

The procedure score_result() does all the real work of the server, and its implementation

is of architectural signi�cance. Any delay in handling a request implies the server will

be unable to handle other simultaneous client requests. For this reason, many servers

immediately spawn a separate process to handle each request. You could do that with

system(), as illustrated in Chapter 5, or launch a thread for it, but for scored this is overkill.

The server handles each request almost instantaneously.

Some small concessions to security are in order, even in a trivial example such as this.

If a bogus Internet client connects by accident, it will fail to identify our protocol and be

rejected. More subtly, if a rogue client opens a connection and writes nothing, we do not

want to block waiting for input or the client will deny service to others. A call to select() is

used to guarantee the server receives data within the �rst 1000 milliseconds (1 second). A

last security concern is to ensure that the "game" �lename supplied is valid; it must be an

existing �le in the current directory, not something like /etc/passwd for example.

The score_result() procedure maintains a static table of all scores of all games that it

knows about. The keys of the table are the names of di�erent games, and the values in

284 CHAPTER 16. INTERNET PROGRAMS

the table are lists of alternating user names and scores. The procedure starts by reading

the game, user, and score from the network connection, and loading the game's score list

from a local �le, if it isn't in the table already. Both the score lists maintained in memory,

and the high scores �les on the server, are sequences of pairs of text lines containing a

userid followed by a numeric score. The high score �les have to be created and initialized

manually with some N available (userid,score) pairs of lines, prior to their use by the server.

procedure score_result(net)
local s := ""
static t, gamenamechars
initial {

t := table()
gamenamechars := &letters++&digits++’-_’
}

select(net, 1000) | { write(net, "timeout"); fail }
(s ||:= ready(net)) ? {

= "HSP\n" | { write(net, "wrong protocol"); fail }
game := tab(many(gamenamechars)) | { write(net,"no game?"); fail }
= "\n"
owner := tab(many(gamenamechars)) | { write(net,"no owner?"); fail }
= "\n"
score := tab(many(&digits)) | { write("no score?"); fail }
}

if t[game] === &null then {
if not (f := open(game)) then {

write(net, "No high scores here for ", game)
fail
}

t[game] := L := []
while put(L, read(f))
close(f)
}

else
L := t[game]

The central question is whether the new score makes an entry into the high scores list

or not. The new score is checked against the last entry in the high score list, and if it is

larger, it replaces that entry. It is then "bubbled" up to the correct place in the high score

list by repeatedly comparing it with the next higher score, and swapping entries if it is

higher. If the new score made the high score list, the list is written to its �le on disk.

if score > L[-1] then {

16.3. A SIMPLE �TALK� PROGRAM 285

L[-2] := owner
L[-1] := score
i := -1
while L[i] > L[i-2] do {

L[i] :=: L[i-2]
L[i-1] :=: L[i-3]
i -:= 2
}

f := open(game,"w")
every write(f, !L)
close(f)
}

Note

List L and t[game] refer to the same list, so the change to L here is seen by the next

client that looks at t[game].

Lastly, whether the new score made the high score list or not, the high score list is

written out on the network connection so that the game can display it.

every write(net, !L)
end

Is this high score application useful and fun? Yes! Is it secure and reliable? No! It

records any scores it is given for any game that has a high score �le on the server. It is

utterly easy to supply false scores. This is an honor system.

16.3 A Simple �Talk� Program

E-mail is the king of all Internet applications. After that, some of the most popular

Internet applications are real-time dialogues between friends and strangers. Many on-line

services rose to popularity because of their "chat rooms," and Internet Relay Chat (IRC)

is a ubiquitous form of free real-time communication. These applications are evolving

in multiple directions, such as streaming multimedia, and textual and graphical forms of

interactive virtual reality. While it is possible to create arbitrarily complex forms of real-

time communication over the Internet, for many purposes, a simple connection between

two users' displays, with each able to see what the other types, is all that is needed.

The next example program, called italk, is styled after the classic BSD UNIX talk pro-

gram. The stu� you type appears on the lower half of the window, and the remote party's

input is in the upper half. Unlike a chat program, the characters appear as they are typed,

instead of a line at a time. In many cases this allows the communication to occur more

smoothly with fewer keystrokes.

286 CHAPTER 16. INTERNET PROGRAMS

The program starts out innocently enough, by linking in library functions for graphics,

de�ning symbolic constants for font and screen size. Among global variables, vs stands for

vertical space, cwidth is column width, wheight and wwidth are the window's dimensions, and

net is the Internet connection to the remote machine.

link graphics
$define ps 10 # The size of the font to use
$define lines 48 # No. of text lines in the window
$define margin 3 # Space to leave around the margins
$define START_PORT 1234 $define STOP_PORT 1299
global vs, cwidth, wheight, wwidth, net

The main() procedure starts by calling win_init() and net_init() to open up a local window

and then establish a connection over the network, respectively. The �rst command line

argument is the user and/or machine to connect to.

procedure main(args)
win_init()
net_init(args[1] | "127.0.0.1")

Before describing the window interaction or subsequent handling of network and window

system events, consider how italk establishes communication in procedure net_init(). Unlike

many Internet applications, italk does not use a conventional client/server architecture in

which a server daemon is always running in the background. To connect to someone on

another machine, you name him or her in the format user@host on the command line. The

code attempts to connect as a client to someone waiting on the other machine, and if it

fails, it acts as a server on the local machine and waits for the remote party to connect to

it.

procedure net_init(host)
host ?:= {

if user := tab(find("@")) then move(1)
tab(0)
}

net := (open_client|open_server|give_up)(host, user)
end

The attempt to establish a network connection begins by attempting to open a connec-

tion to an italk that is already running on the remote machine. The italk program works with

an arbitrary user-level set of ports (de�ned above as the range 1234-1299). An italk client

wades through these ports on the remote machine, trying to establish a connection with

the desired party. For each port at which open() succeeds, the client writes its user name,

reads the user name for the process on the remote machine, and returns the connection if

the desired party is found.

16.3. A SIMPLE �TALK� PROGRAM 287

procedure open_client(host, user)
port := START_PORT
if \user then {

while net := open(host || ":" || port, "n") do {
write(net, getenv("USER") | "anonymous")
if user == read(net) then return net
close(net)

port +:= 1
}

}
else {

net := open(host || ":" || port, "n")
write(net, getenv("USER") | "anonymous")
read(net) # discard
return net
}

end

The procedure open_server() similarly cycles through the ports, looking for an available

one on which to wait. When it receives a connection, it checks the client user and returns

the connection if the desired party is calling.

procedure open_server(host, user)
repeat {
port := START_PORT

until net := open(":" || port, "na") do {
port +:= 1
if port > STOP_PORT then fail
}

if not (them := read(net)) then {
close(net)
next
}

if /user | (them == user) then {
write(net, getenv("USER") | "anonymous")
WAttrib("label=talk: accepted call from ", them)
return net
}

WAttrib("label=talk: rejected call from ", them)
write(net, getenv("USER") | "anonymous")
close(net)
}

end

This connection protocol works in the common case, but is error prone. For example,

288 CHAPTER 16. INTERNET PROGRAMS

if both users typed commands at identical instants, both would attempt to be clients, fail,

and then become servers awaiting the other's call. Perhaps worse from some users' point of

view would be the fact that there is no real authentication of the identity of the users. The

italk program uses whatever is in the USER environment variable. The UNIX talk program

solves both of these problems by writing a separate talk server daemon that performs the

marshalling. The daemons talk across the network and negotiate a connection, check to

see if the user is logged in and if so, splash a message on the remote user's screen inviting

her to start up the talk program with the �rst user's address.

The next part of italk's code to consider is the event handling. In reality, each italk

program manages and multiplexes asynchronous input from two connections: the window

and the network. The built-in function that is used for this purpose is select(). The select()

function will wait until some (perhaps partial) input is available on one of its �le, window,

or network arguments.

The main thing to remember when handling input from multiple sources is that you

must not block for I/O. This means: use listener mode for new connections or a timeout

parameter with open(), and when handling network connections, never use read(), only use

reads() or better yet ready(). For windows you must also avoid read()'s library procedure

counterpart, WRead(). The code below checks which connection has input available and

calls Event() as events come in on the window, and calls reads() on the network as input

becomes available on it. In either case the received input is echoed to the correct location

on the screen. Ctrl-D exits the program. To accept a command such as "quit" would have

meant collecting characters till you have a complete line, which seems like overkill for such

a simple application.

repeat {
*(L := select(net, &window))>0 | stop("empty select?")
if L[1] === &window then {

if &lpress >= integer(e := Event()) >= &rdrag then next
if string(e) then {

writes(net, e) | break
handle_char(2, e) | break
WSync()
}

}
else {

s := reads(net) | break
handle_char(1, s) | break
WSync()
}

}
close(net)

end

16.3. A SIMPLE �TALK� PROGRAM 289

After such a dramatic example of input processing, the rest of the italk program is a bit

anticlimactic, but it is presented anyhow for completeness sake. The remaining procedures

are all concerned with managing the contents of the user's window. Procedure handle_char(w,

c), called from the input processing code above, writes a character to the appropriate part

of the window. If w = 1 the character is written to the upper half of the window. Otherwise,

it is written to the lower half. The two halves of the window are scrolled separately, as

needed.

procedure handle_char(w, c)
Current horiz. position for each half of the window
static xpos
initial xpos := [margin, margin]
if c == "\ˆd" then fail # EOF

Find the half of the window to use
y_offset := (w - 1) * wheight/2

if c == ("\r"|’\n’) | xpos[w] > wwidth then {
ScrollUp(y_offset+1, wheight/2-1)
xpos[w] := margin
}

if c == ("\r"|’\n’) then return
#handles backspacing on the current line
if c =="\b" then {

if xpos[w] >= margin + cwidth then {
EraseArea(xpos[w]-cwidth, y_offset+1+wheight/2-1-vs,cwidth,vs)
xpos[w] -:= cwidth
return
}

}
DrawString(xpos[w], wheight/2 + y_offset - margin, c)
xpos[w] +:= cwidth
return

end

Scrolling either half of the window is done a line at a time. The graphics procedure

CopyArea() is used to move the existing contents up one line, after which EraseArea() clears

the line at the bottom.

procedure ScrollUp(vpos, h)
CopyArea(0, vpos + vs, wwidth, h-vs, 0, vpos)
EraseArea(0, vpos + h - vs, wwidth, vs)

end

290 CHAPTER 16. INTERNET PROGRAMS

The window is initialized with a call to the library procedure, WOpen(), which takes

attribute parameters for the window's size and font. These values, supplied as de�ned

symbols at the top of the program, are also used to initialize several global variables such

as vs, which gives the vertical space in pixels between lines.

procedure win_init()
WOpen("font=typewriter," || ps, "lines=" || lines, "columns=80")
wwidth := WAttrib("width")
wheight := WAttrib("height")
vs := WAttrib("fheight")
cwidth := WAttrib("fwidth")
DrawLine(0, wheight/2, wwidth, wheight/2)
Event()

end

Lastly, the procedure give_up() writes a message and exits the program, if no network

connection is established. If user is null and the non-null test (the backslash operator) fails,

the concatenation is not performed and alternation causes the empty string to be passed

as the second argument to stop().

procedure give_up(host, user)
stop("no connection to ", (\user || "@") | "", host)

end

What enhancements would make italk more interesting? An obvious extension would

be to use a standard network protocol, such as that of UNIX talk, so that italk could

communicate with other users that don't have italk. UNIX talk also o�ers a more robust

connection and authentication model (although you are dependent on the administrator of

a remote machine to guarantee that its talkd server is well behaved). Another feature of

UNIX talk is support for multiple simultaneously connected users.

One neat extension you might implement is support for graphics, turning italk into a

distributed whiteboard application for computer-supported cooperative work. To support

graphics you would need to extend the window input processing to include a simple drawing

program, and then you would need to extend the network protocol to include graphics

commands, not just keystrokes. One way to do this would be to represent each user action

(a keystroke or a graphics command) by a single line of text that is transmitted over the

network. Such lines might look like:

key H
key i
key !
circle 100,100,25

16.4. SUMMARY 291

and so forth. At the other end, the program deciphering these commands translates them

into appropriate output to the window, which would be pretty easy, at least for simple

graphics. The nice part about this solution is that this particular collaborative whiteboard

application would work �ne across di�ering platforms (Linux, Microsoft Windows, and so

on) and require only a couple hundred lines of code!

16.4 Summary

Writing Internet programs can be easy and fun, although it is easy to underestimate the

security needed. There are several di�erent ways to write Internet programs in Unicon. The

database interface presented in Chapter 6 allows you to develop client/server applications

without any explicit network programming when the server is a database. A SQL server

is overkill for many applications such as the high score server, and it is not appropriate for

other non-database network applications such as the italk program.

For these kinds of programs, it is better to "roll your own" network application proto-

col. Once a connection is established (perhaps using a client/server paradigm), the actual

communication between programs is just as easy as �le input and output. If you do roll

your own network application, keep the protocol simple; it is easy enough to write yourself

into deadlocks, race conditions, and all the other classic situations that make parallel and

distributed programming perilous.

292 CHAPTER 16. INTERNET PROGRAMS

Chapter 17

Genetic Algorithms

The previous three chapters showed you how to write Unicon programs with many kinds

of Internet and system capabilities that are expected of most modern applications. Unicon

is great for generic computing tasks, but it really excels when its advanced features are

applied in application areas where the development of the algorithms is complex. This

chapter describes how to use Unicon to build an entire, somewhat complex application with

reusable parts. The �eld of genetic algorithms (GAs) is an exciting application domain with

lots of opportunities for exploratory programming. When you're �nished with this chapter,

you will

• Understand the basics of genetic algorithms.

• See how to build genetic algorithm engine in Unicon.

• Use that GA engine to build programs for your own projects.

17.1 What are Genetic Algorithms?

The broad �eld of evolutionary computation has been an area of active research since the

1950s. Initially, it was led by computer scientists that believed evolution could be used

as an optimization tool for engineering problems. Genetic Programming (GP) focuses on

evolving computer programs to perform various tasks. On the other hand, GAs focus

on the simpler task of evolving data that is used to solve a problem. The GAs that

we'll study have a binary representation. Increasingly there has been a shift towards non-

binary representations such as �oating-point numbers in GA-related projects. That �eld

has typically been given the more general name of evolutionary algorithms. GAs have one

of the most well-de�ned mathematical foundations in all of evolutionary computation, and

are a good place to start exploring.

John Holland invented the �rst GAs in the 1960s. His goal was to study adaptation

as it occurs in nature and then to create computer systems to model the adaptive process.

293

294 CHAPTER 17. GENETIC ALGORITHMS

Holland combined four elements that are common to all GAs:

• A population of individuals

• Selection based on �tness

• Mating of individuals

• Random mutation

Consider the very simple problem of �nding the largest number encoding in binary with

six digits. Assume the GA knows nothing about binary encoding.

While making use of a population might seem to be a necessary element for any evo-

lutionary computation, it is not. Instead, you could focus all your e�orts on improving

one individual. In this case, �tness is exactly the numerical value of an individual. For

example, you could examine the �tness of this one individual with an exhaustive search:

best := 0
every i := 0 to 2ˆ6 do

best <:= i

Suppose you only make use of the elements of a population and selection based on

�tness. You could have a population of six individuals, randomly initialized, and you could

attempt to improve the overall �tness of the six by replacing the lowest �tness individual

with a random one. The code below shows how to implement this idea:

maxi := 2ˆ6
population := [?maxi, ?maxi, ?maxi, ?maxi, ?maxi, ?maxi]
every i := 1 to 100 do {

worst := 1
every i := 1 to 5 do

if population[worst] <= population[i] then
worst := i

population[i] := ?maxi
}

Before modeling mating and mutation, you'll have to create a more detailed represen-

tation of the internals of an individual.

17.2 Operations: Fitness, Crossover, and Mutation

An individual is represented by a string from a binary alphabet. Incidentally, natural

evolution of DNA is based on a quaternary alphabet, but the size of the alphabet is unim-

portant for a computer model. In Unicon, you could represent these individuals with lists

of integers. However, strings of "1" and "0" characters provide a representation that is easier

to use. So, here is a more explicit representation of a population:

17.2. OPERATIONS: FITNESS, CROSSOVER, AND MUTATION 295

population := ["010111", "000101", "111101", "111011", "111110", "010110"]

Fitness

The �tness can be computed by converting the string representation into an integer as

follows: integer("2r" || population[1]). The 2r means that this is a literal representation of an

integer in base two form. There are many di�erent possible selection schemes used in GAs.

This chapter uses one that has proven to be very robust in a large number of di�erent

GA applications, called tournament selection. The general idea is to group the individuals

and have them compete head-to-head. The winners of the tournaments are selected to

live in the next generation; their bits are copied into an element in the new population.

Tournaments of size two work well. All you must do is randomly pair up the individuals,

and move the one with the higher �tness to the next generation. Because you generally

will want the population size to remain constant, you'll have to do this pairing twice. Here

is a tournament selection on the above population:

population[1] := "010111" # 23 winner
population[6] := "010110" # 22
population[3] := "111101" # 61 winner
population[4] := "111011" # 59
population[5] := "111110" # 62 winner
population[2] := "000101" # 5

The second round of selections is listed here:

population[5] := "111110" # 62 winner
population[6] := "010110" # 22
population[2] := "000101" # 5
population[3] := "111101" # 61 winner
population[4] := "111011" # 59 winner
population[1] := "010111" # 23

The end result of tournament selection is listed here:

next_gen[1] := population[1] := "010111" # 23
next_gen[2] := population[3] := "111101" # 61
next_gen[3] := population[5] := "111110" # 62
next_gen[4] := population[5] := "111110" # 62
next_gen[5] := population[3] := "111101" # 61
next_gen[6] := population[4] := "111011" # 59

Notice how there are two copies of population[3] and population[5] in next_gen. On the

other hand, there are no copies of population[2].

296 CHAPTER 17. GENETIC ALGORITHMS

Crossover

Mating, more technically known as crossover, involves the sharing of information between

members of the population. Again there are many di�erent types of mating schemes,

but this chapter describes one called two-point crossover (Figure 17-1) that has proven

to be very robust for a wide range of GA applications. Once again, randomly pair up

the individuals, but this time instead of competing, individuals will mate. First you must

transform the linear strings into circular rings. For each pair, randomly select two points

in the ring and cut the rings at the two selected points. Then swap the ring segments to

form two new rings.

Figure 17-1: Two-point crossover.

The code for two-point crossover is presented below. The ?(lchrom+1) expression picks

a random number between one and the length of the chromosome. Variables a and b are

initialized to two di�erent values in this range; a is made the smaller of the two indices.

Two children in the new generation are formed by splicing portions of parent1 and parent2

within the range from a to b.

a := ?(lchrom+1)
while ((b := ?(lchrom+1)) = a)
if a > b then a :=: b
ncross +:= 1
child1 := parent1[1:a] || parent2[a:b] || parent1[b:0]
child2 := parent2[1:a] || parent1[a:b] || parent2[b:0]

17.3. THE GA PROCESS 297

Mutation

The last GA operation is mutation. Mutation works at the independent level of single

binary digits. To implement mutation, take a look at each bit of each individual of the

population. With a �xed probability, �ip the value of the bit. This is the basic mechanism

for injecting completely new information into the population. Almost all of that information

will be useless, but as the GA evolves it will weed out the useless information and keep the

useful information.

17.3 The GA Process

Now that you have a handle on the basic operations, it is time to describe the basic GA

algorithm for applying these operations.

1. Generate a random population of n individuals each with l -bits.

2. Calculate the �tness of each individual.

3. Perform tournament selection on the population to produce a new generation.

4. With probability pc, mate pairs of individuals using two-point crossover.

5. With probability pm, mutate the bits in the population.

6. Replace the old population with the new generation.

7. Go to step 2, until the population meets some desired condition.

Even with this mechanical algorithm, applying a GA to any speci�c problem remains

an art. For example, step 7 leaves the desired stopping condition up to the implementer.

Typically the stopping condition might be something like: until the average �tness has not

risen signi�cantly in the last �ve generations. This is one of many implementation choices

you have to make, from variations on crossover to adjusting the mutation and mating rates.

Here are some time-tested rules of thumb:

1. Encode the solutions to a problem with as few bits as possible but not at the

expense of making the encoding very complex.

2. Let the size of the population be at least twenty but not so large that your computer

program is intolerably slow.

3. Mating rates between 30 percent and 90 percent work for a large range of problems.

4. Mutation rates should be near 1/(the number of bits), so that each individual

undergoes about one mutation on average per generation.

5. Once the average �tness of the population does not change signi�cantly after ten

generations, the population has converged on the solution. At this point, stop the GA and

study the population of solutions.

298 CHAPTER 17. GENETIC ALGORITHMS

17.4 ga_eng: a Genetic Algorithm Engine

The ga_eng engine is a general purpose reusable GA engine that can quickly and easily be

adapted to solve a variety of problems. This section presents its key elements. The full

source code for ga_eng is on the book's web site.

From the preceding sections, you can tell that a GA maintains a large amount of in-

formation as it transitions from one generation to the next. What is the state information

that the engine needs to track? Below is a list of the most obvious things to record:

• n − the size of the population

• l − the length of the individual's bit representation

• pc − the probability of crossover mating

• pm − the probability of mutation

• population − a list of a current population's individuals

Given the above state information, what can a GA engine do?

• init() − initialize the state information and population

• evolve() − move a population from one generation to the next

• tselect() − perform tournament of selection on the population

• stats() − collect statistics about the current population to monitor progress

The �tness function

A key application-speci�c interface issue is the �tness function. The user of the GA engine

sets the �tness values of each member of the population. If that value is not set, the default

value will be the average of the �tness of each of the parents. Each parent's contribution to

the �tness is weighted by how many bits it contributed to the o�spring. This has the nice

property of not requiring that each individual's �tness be computed at every generation.

To use the GA engine, the programmer supplies an application-speci�c �tness function

f(x) that is applied to each individual of the population every generation. Given a binary

string s, f(s) would return a numeric �tness value.

17.4. GA_ENG: A GENETIC ALGORITHM ENGINE 299

Methods and attributes of class ga_eng

Class ga_eng implements the engine. It provides two public methods, evolve() and

set_params(), as well as eight private methods:

method evolve()
method set_params(fitness_func, popsize, lchrom, pcross, pmutation, log_file)
method tselect()
method crossover2(parent1, parent2)
method generation()
method stats(Pop)
method report(Pop)
method random_chrom()
method initpop()
method init()

The set_params() method sets the �tness function, the population size, the length of the

chromosomes, the probability of crossover, the probability of mutation, and the log �le for

generating a trace of a run. The constructor ga_eng() takes the same input parameters as

set_params() but it also re-initializes the engine by creating a new population from scratch.

The evolve() method moves the population from one generation to the next.

The tselect() method operates on the whole population by performing tournament se-

lection. The crossover2() method takes two individuals and returns two new individuals in

a list after doing two-point crossover. The stats() method collects statistics on the given

population, and report() writes the results out to the log �le if it is not set to &null. The init()

and initpop() methods initialize the GA.

You might be asking what is a population of individuals? The key pieces of information

about an individual are its chromosomes, which are represented as a string of zeros and

ones. For implementation reasons, we bundle the following information for each individual

using the following Unicon record:

record individual(chrom, fitness, parent1, parent2, xsite)

This stores the �tness values, the index of two parents, and the crossover sites from

when the parents were mated.

The class ga_eng makes use of the following instance variables:

• oldpop, newpop − two populations; selection goes from oldpop into newpop

• popsize, lchrom − the population size and the length of the chromosomes

• gen, maxgen − current and max generation number

• pcross, pmutation − the probability of crossover and mutation

300 CHAPTER 17. GENETIC ALGORITHMS

• sumfitness − the sum of the �tness of the entire population

• nmutation − number of mutation in the current generation

• ncross − number of crossovers (or matings) in the current generation

• avg, max, min − average, maximum, and minimum �tness in the population

• best − the location of the individual with the highest �tness

• log_file − a text �le where statistics are written during a GA run

• fitness_func − the user-supplied �tness function. It reads a string of zeros and ones

and returns a number representing the �tness.

A Closer Look at the evolve() method

Space limitations preclude discussing every method of ga_eng, but evolve() is a method that

is called by user code, and de�nes the basic architecture of the engine. The evolve() method

initializes the population the �rst time the method is invoked by each instance of ga_eng.

After initialization and in subsequent calls, evolve() does three things: it collects statistics,

writes the results to a log �le, and then evolves the population for one generation. The

method generation() then becomes the focus of activity. The code for evolve() is:

method evolve()
if /initialized := 1 then {

gen := 0
init()
statistics(oldpop)
if \log_file then report(oldpop)
}

gen +:= 1
generation()
statistics(newpop)
if \log_file then report(newpop)
oldpop := newpop

end

Generation consists of three high-level operations. Tournament selection is performed

via a call to tselect(), which makes copies of selected individuals from oldpop to newpop.

After this, all operations take place on individuals in newpop. The next two operations are

performed in a loop, on pairs of individuals. The crossover2() method does the mating; it

encapsulates the relatively low-level operation of mutation. The last high-level operation

that a GA does is call the user supplied fitness_func to assign a �tness value to each individual

in the new population. The GA keeps track of only two generations for the evolve() method

17.4. GA_ENG: A GENETIC ALGORITHM ENGINE 301

to continue as long as needed. Once each individual has been evaluated, that generation is

complete. The oldpop variable is assigned the value of the newpop, and the process is ready

to start again. Listing 17-1 shows the code for the method generation():

Listing 17-1

A method for producing a new generation.

method generation()
local j := 1, mate1, mate2, jcross, kids, x, fitness1, fitness2, selected
newpop := list(popsize)
nmutation := ncross := 0
selected := tselect()
repeat {

mate1 := selected[j]
mate2 := selected[j+1]
kids := crossover2(oldpop[mate1].chrom, oldpop[mate2].chrom)
fitness1 := fitness_func(oldpop[mate1].chrom)
fitness2 := fitness_func(oldpop[mate2].chrom)
newpop[j]:= individual(kids[1], fitness1, mate1, mate2, kids[3])
newpop[j+1] := individual(kids[2], fitness2, mate1, mate2, kids[3])
if j > popsize then break
j +:= 2
}

end

Using ga_eng

GAs are extremely robust. It is easy to create a buggy GA that works so well that the bugs

go undetected. Masking of bugs by robust algorithms is not unique to GA; it occurs in

many numerical algorithms. To prevent this, the following code tests the GA on a simple

problem where having one bit increases the �tness values by one. This is a ready to compile

and run GA application, albeit a very simple one. As you can see, ga_eng() and evolve()

are all the interface methods you need to build a complete genetic algorithm. Listing 17-2

shows all the code needed to use the GA engine for a simple test problem.

Listing 17-2

Using ga_eng() for a simple test problem

procedure decode(chrom)
local i := 0
every !chrom == "1" do i +:= 1
return i

end

302 CHAPTER 17. GENETIC ALGORITHMS

a simple test of the engine, fitness is based on number of 1 bits in chrom
procedure main()

log_file := open("test_ga.log", "w") | stop("cannot open log_file.log")
ga := ga_eng(decode, 100, 20, 0.99, 1.0/real(20), log_file)
every 1 to 100 do ga.evolve()
write(log_file, "best location => ", ga.best)
write(log_file, "best fitness => ", ga.newpop[ga.best].fitness)

end

Log �les

The log �le test_ga.log contains a lot of statistics. Listing 17-3 is a fragment of the log �le

that is generated. The complete log �le has over twelve thousand lines.

Listing 17-3

A trace of the GA for a simple test problem

Log_File for Genetic Algorithm (GA)

Population size = 100
Chromosome length = 20
Maximum # of generations =
Crossover probability = 0.99
Mutation probability = 0.05

Initial population maximum fitness = 5.00e-1
Initial population average fitness = 5.00e-1
Initial population minimum fitness = 5.00e-1
Initial population sum of fitness = 5.00e1
--
Population Report

Generation 0

parents xsite chromo fitness
--

1) (0, 0) 0 00010001110001000010 5.00e-1
2) (0, 0) 0 11011101011010001100 5.00e-1
3) (0, 0) 0 01101100000110100111 5.00e-1

..........
100) (0, 0) 0 11011100110011001010 5.00e-1

--
Statistics:
min = 5.00000000e-1 avg = 5.00000000e-1 max = 5.00000000e-1
no. of mutations = 0

17.5. COLOR BREEDER: A GA APPLICATION 303

no. of crossovers = 0
location of best chromo = 1
--
dateline = Wednesday, January 27, 1999 10:37 pm
.................
Population Report

Generation 100

parents xsite chromo fitness
--

1) (1, 2) 15:21 00011011011000010100 9.19e0
2) (1, 2) 15:21 11011001011111100010 1.08e1
3) (90, 72) 14:18 10011111111111111111 1.78e1

.....
100) (57, 27) 13:15 11111010110110111110 1.78e1

--
Statistics:
min = 9.19999999e0 avg = 1.77200000e1 max = 1.99500000e1
no. of mutations = 111
no. of crossovers = 51
location of best chromo = 46
--
dateline = Wednesday, January 27, 1999 10:37 pm
best location => 46
best fitness => 19.95

17.5 Color Breeder: a GA Application

Normally, the human eye is capable of distinguishing millions of di�erent colors. If you

have a device capable of producing a large number of di�erent colors such as a PC with a

color monitor or color printer, then �nding exactly the color that you have in mind can be

a tricky task. The color space is quite large. For example, imagine that you want to create

a Web page with a blue background. But this is no ordinary blue; you want a blue that is

like the blue you saw on the Mediterranean skyline on your last trip to Greece.

One option is to look at a color wheel and click on the part that represents the blue

that you have in mind. Unfortunately, the color you choose is typically only a very small

part of the color wheel. Also the color is surrounded by many di�erent colors that may be

distracting or misleading in your evaluation. When you use the same color for the entire

background, you get a di�erent sense of the color.

A second option is to tinker with numeric color codes by hand. Through trial and error,

by examining a large number of colors you can select the right one. This can be very time

consuming and you may become impatient and only experiment with a small number of

304 CHAPTER 17. GENETIC ALGORITHMS

colors, in which case you settle for a quick approximation of the color you intended.

The following color breeder program has properties from both of the color wheel and

the tinkering methods. It uses a GA to explore the problem space. The program cb �rst

displays sixteen randomly generated colors. The �tness of an individual color is based

entirely on user preference. Using scrollbars, the user ranks the individuals, and then hits

a breed button to generate a new population of colors.

Scrollbars sbar[i] are indexed with i, where i runs from 1 to 16. The value of the scrollbar

is inverted because scrollbar values correspond to the y-axis by default, which grows from

top to bottom; when the tab is lowered the value of scrollbar goes up. The user of cb sets

higher tabs to indicate higher �tness.

every i := 1 to 16 do {
f := VGetState(vidgets["sbar"||i])
ga.newpop[i].fitness := 1 - f

}

Gradually the population evolves from a set of random colors to a set of colors that

look alike, with ever so slight variations on that Mediterranean sky blue you were thinking

of. You can then save a snapshot of the screen in a GIF format if you wish, and can see

the numeric codes that represents the color by clicking on a color.

Figure 17-2 is a screenshot of cb. The higher the user slides the scrollbar tab, the more

�t the color. There are three color resolutions to select from: 12-, 24-, and 48-bit. The bits

are equally divided into three segments, each representing a color intensity. There are two

mutually exclusive advanced modes: patterns and text. Patterns are square bit patterns

that specify the mix of foreground and background colors in three resolutions: 6x6, 8x8,

and 10x10. In text mode, the foreground color is displayed as text atop the background.

Figure 17-2: cb - a genetic algorithm for picking colors.

17.6. PICKING COLORS FOR TEXT DISPLAYS 305

Breeding textures

The user can turn on bi-level patterns of the form: width, #data as described in Chapter 7.

A bi-level pattern is tiled using the foreground and background color to �ll an area; a 1 in

the pattern denotes the foreground, and a 0 denotes the background. The patterns come

in three resolutions: 8x8, 10x10, and 12x12. In low resolutions it is hard to �nd interesting

patterns; in high resolution, most patterns look like a random mixture and are hard to

evolve into something more structured. Figure 17-3 (left) shows cb in pattern mode.

Figure 17-3: cb in pattern mode (left) and text mode (right)

The user can click on the snap shot button to create a GIF image �le that is a snapshot

of the whole screen. If you left click on a color region, the color and patterns speci�cation

will be displayed in a pop window. For the sake of compactness, the colors and patterns

are represented with hexadecimal strings as opposed to binary strings.

17.6 Picking Colors for Text Displays

Perhaps the most fun use of cb is to pick colors for your Web pages. Figure 17-3 (right)

is a snapshot of cb in text mode. In text mode with 24-bit color, the user can right click

on a color region to generate a sample HTML document such as the one shown in Figure

17-4 that demonstrates how to incorporate the selected color combination inside of a Web

page. It is also possible to get the hexadecimal representation of a pattern or a color by

right clicking on it.

306 CHAPTER 17. GENETIC ALGORITHMS

Figure 17-4: A sample HTML page generated by cb

Summary

GAs are a branch of evolutionary computation that allow a general-purpose optimization

technique. The three main GA operations are selection, mating, and mutation. Object-

oriented techniques enable a generic GA engine that can be adapted to a large variety of

problems. By making the engine very general purpose it is possible to create applications

with novel properties like using user preferences to set the �tness of a color!

Chapter 18

Object-oriented User Interfaces

Many applications interact with users through a graphical user interface. While Unicon's

graphics facilities are excellent for drawing to the screen, the standard elements of graphical

user interfaces are not built-in to the language.

This chapter presents a user interface class library developed by Robert Parlett. Object-

oriented design is used to reduce complexity, resulting in an elegant, extensible library

accessed by importing the package gui. Although this chapter describes the components

provided by the GUI toolkit, you may need to consult Graphics Programming in Icon [Gris-

wold98] to create advanced custom user interfaces with application-speci�c graphics.

The GUI classes are supported by a tool named ivib that allows interfaces to be con-

structed by drawing a dialog on the screen interactively. ivib generates a Unicon program

that can be �lled in to create an application. This chapter shows how to:

• Construct programs that employ a graphical user interface.

• Manipulate the attributes of objects such as buttons and scrollbars.

• Draw a program's interface using Unicon's improved visual interface builder.

18.1 A Simple Dialog Example

Object-orientation seems to be a big help in designing graphical user interfaces. The best

way to see how the GUI classes work is to try out a simple example program. Listing 18-1

shows the source code in full; the code is explained in detail below.

Listing 18-1

The TestDialog Program

import gui
$include "guih.icn"

307

308 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

class TestDialog : Dialog()
method component_setup()

local b, l := Label("label=Click to close","pos=50%,33%", "align=c,c")
add(l)
b := TextButton("label=Button", "pos=50%,66%", "align=c,c")
b.connect(self, "dispose", ACTION_EVENT)
add(b)
attrib("size=215,150", "bg=light gray", "font=serif", "resize=on")

end
end

procedure main()
TestDialog().show_modal()

end

If the program is stored in a �le testdialog.icn, the following command will compile it:

unicon testdialog

The result should be an executable �le called testdialog. This example program, along with

several others, is in the guidemos directory of the Unicon distribution. Run this program,

and the window shown in Figure 18-1 appears; it closes when the button is clicked.

Figure 18-1: TestDialog window

This example program begins by declaring a class, TestDialog. The line

class TestDialog : Dialog()

indicates that TestDialog is a subclass of the class Dialog that is de�ned in the toolkit. This

subclass relationship is true of all dialog windows.

18.1. A SIMPLE DIALOG EXAMPLE 309

Adding Components and Attaching Listeners

The remainder of the class's code is contained in a single method, component_setup(). This

method is invoked by the toolkit; it is a convenient place to setup the dialog's content.

Inside the component_setup() method is the code that adds the label to the dialog:

l := Label("label=Click to close","pos=50%,33%", "align=c,c")
add(l)

This assigns l to a new Label object and sets the label string. The horizontal position is

set to 50 percent of the window width and the vertical to 33 percent of the window height.

The alignment of the object is centered both vertically and horizontally about the position.

Finally, the label is added to the dialog with the line add(l).

The code to add a button is very similar, but a TextButton object is created rather than

a Label object, and the vertical position is 66 percent of the window height.

The next line is more interesting:

b.connect(self, "dispose", ACTION_EVENT)

This adds a listener to the button, and tells the toolkit than whenever the button �res

an ACTION_EVENT, which it will when it is pressed, the dispose() method in the class self,

should be invoked. self of course refers to the TestDialog class, and dispose() is a method

inherited from the base class Dialog, which simply closes the window. So all this means is

that when the button is pressed, the dialog will close.

The next line sets the attributes of the dialog window, including its initial size. Try

changing these values to experiment with other dialog styles.

attrib("size=215,150", "bg=light gray", "font=serif", "resize=on")

After the class comes a standard Icon main() procedure. This simply creates an instance

of the dialog and invokes the method show_modal(). This call displays the dialog window

and goes into the toolkit's event handling loop.

Positioning Objects

The button and label were positioned above using percentages of the window size. An

object can also be positioned by giving an absolute position, or by giving a percentage plus

or minus an o�set. So the following are all valid position speci�ers:

"100"
"10%"
"25%+10"
"33%-10"

310 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

Positions are often speci�ed in constructors with x and y values separated by commas.

By default, positions are relative to the top left corner of the object. The "align" attribute,

which takes two alignment speci�ers, changes this default. The �rst alignment speci�er is

an "l", "c", or "r", for left, center, or right horizontal alignment, respectively; the second is a

"t", "c", or "b", for top, center, or bottom vertical alignment, respectively. Another attribute,

"size", has speci�ers that take the same format as the position attribute. Most of the toolkit

objects default to sensible sizes, and the size attribute can often be omitted. For example,

a button's size defaults �t its string label based on the font in use.

The method attrib(attribs...) in utility class SetFields implements attribute process-

ing, mostly farming out work to special-purpose methods that can be called directly:

set_pos(x,y), set_label(s), set_align(horizontal, vertical), and set_size(w, h). Other than these

setter methods, Icon graphics attributes can be interspersed. For example, the attribute

"bg=green" will set the object's background color.

Here are some examples of position, alignment, and size parameters, and a description

of their meaning. In the call

attrib("pos=50%,100", "align=c,t", "size=80%,200")

the object is centered horizontally in the window, using 80 percent of the width; vertically

its top starts at 100 and its height is 200 pixels. In contrast, the code

attrib("pos=100%,100%", "align=r,b", "size=50%,50%")

speci�es that the object �lls up the bottom right quarter of the window. The call

attrib("pos=33%+20,0%", "size=100,100%")

directs that the object's left hand side is at one-third of the window size plus 20 pixels; it

is 100 pixels wide. It �lls the whole window vertically.

18.2 A More Complex Dialog Example

Now it's time to introduce some more component types. Listing 18-2 shows our next

example program in full.

Listing 18-2

SecondTest Program

import gui
$include "guih.icn"
class SecondTest : Dialog(

text_list, table, list, text_field, oses, languages, shares
)

18.2. A MORE COMPLEX DIALOG EXAMPLE 311

#
Add a line to the end of the text list
#
method put_line(s)

local l := text_list.get_contents()
put(l, s)
text_list.set_contents(l)
text_list.goto_pos(*l)

end

#
Event handlers - produce a line of interest.
#
method handle_check_box_1(ev)

put_line("Favorite OS is " || oses[1])
end
method handle_check_box_2(ev)

put_line("Favorite OS is " || oses[2])
end
method handle_check_box_3(ev)

put_line("Favorite OS is " || oses[3])
end
method handle_text_field(ev)

put_line("Contents = " || text_field.get_contents())
end
method handle_list(ev)

put_line("Favorite language is " || languages[list.get_selection()])
end
method handle_text_menu_item_2(ev)

put_line("You selected the menu item")
end

#
The quit menu item
#
method handle_quit(ev)

dispose()
end

method handle_table(ev)
local i := table.get_selections()[1]
put_line(shares[i][1] || " is trading at " || shares[i][2])

end

312 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

method handle_table_column_1(ev)
put_line("Clicked on column 1")

end
method handle_table_column_2(ev)

put_line("Clicked on column 2")
end
#
Invoked for components that may potentially want to handle an event
(by firing an event to its listeners for example). A dialog is just
another component. It can override this method to do any custom processing.
#
method handle_event(ev)

put_line("Icon event " || ev)
self.Dialog.handle_event(ev)

end

method component_setup()
local menu_bar, menu, panel_1, panel_2, panel_3, panel_4, panel_5,

label_1, label_2, label_3, label_4, label_5,
quit_menu_item, text_menu_item_2,
check_box_1, check_box_2, check_box_3,
table_column_1, table_column_2, check_box_group

#
Initialize some data for the objects.
#
oses := ["Windows", "Linux", "Solaris"]
languages := ["C", "C++", "Java", "Icon"]
shares := [["Microsoft", "101.84"], ["Oracle", "32.52"], ["IBM", "13.22"],

["Intel", "142.00"]]

#
Set the attributes, then setup a simple menu system
#
attrib("size=490,400", "min_size=490,400", "font=sans",

"bg=light gray","label=Second example", "resize=on")
menu_bar := MenuBar()
menu := Menu("label=File")
quit_menu_item := TextMenuItem("label=Quit")
quit_menu_item.connect(self, "handle_quit", ACTION_EVENT)
menu.add(quit_menu_item)
text_menu_item_2 := TextMenuItem("label=Message")
text_menu_item_2.connect(self,"handle_text_menu_item_2",ACTION_EVENT)

18.2. A MORE COMPLEX DIALOG EXAMPLE 313

menu.add(text_menu_item_2)
menu_bar.add(menu)
add(menu_bar)

#
Set-up the checkbox panel
#
check_box_group := CheckBoxGroup()
panel_1 := Panel("pos=20,50", "size=130,130")
label_2 := Label("pos=0,0", "internal_alignment=l", "label=Favorite OS")
panel_1.add(label_2)
check_box_1 := CheckBox("pos=0,30")
check_box_1.set_label(oses[1])
check_box_1.connect(self, "handle_check_box_1", ACTION_EVENT)
check_box_group.add(check_box_1)
panel_1.add(check_box_1)
check_box_2 := CheckBox("pos=0,60")
check_box_2.set_label(oses[2])
check_box_group.add(check_box_2)
check_box_2.connect(self, "handle_check_box_2", ACTION_EVENT)
panel_1.add(check_box_2)
check_box_3 := CheckBox("pos=0,90")
check_box_3.set_label(oses[3])
check_box_group.add(check_box_3)
check_box_3.connect(self, "handle_check_box_3", ACTION_EVENT)
panel_1.add(check_box_3)
add(panel_1)
#
The text-list of messages.
#
panel_2 := Panel("pos=220,50", "size=100%-240,50%-60")
label_1 := Label("pos=0,0", "internal_alignment=l", "label=Messages")
panel_2.add(label_1)
text_list := TextDisplay("pos=0,30", "size=100%,100%-30")
text_list.set_contents([])
panel_2.add(text_list)
add(panel_2)
#
The table of shares.
#
panel_3 := Panel("pos=220,50%","size=100%-240,50%-40")
table := Table("pos=0,30","size=100%,100%-30", "select_one")
table.connect(self, "handle_table", SELECTION_CHANGED_EVENT)
table.set_contents(shares)

314 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

table_column_1 := TableColumn("label=Company", "internal_alignment=l",
"column_width=100")

table_column_1.connect(self, "handle_table_column_1", ACTION_EVENT)
table.add_column(table_column_1)
table_column_2 := TableColumn("label=Share price", "internal_alignment=r",

"column_width=100")
table_column_2.connect(self, "handle_table_column_2", ACTION_EVENT)
table.add_column(table_column_2)
panel_3.add(table)
label_5 := Label("pos=0,0", "internal_alignment=l", "label=Shares")
panel_3.add(label_5)
add(panel_3)
#
The drop-down list of languages.
#
panel_4 := Panel("pos=20,190", "size=180,50")
list := List("pos=0,30", "size=100,")
list.connect(self, "handle_list", SELECTION_CHANGED_EVENT)
list.set_selection_list(languages)
panel_4.add(list)
label_3 := Label("pos=0,0", "internal_alignment=l", "label=Favorite language")
panel_4.add(label_3)
add(panel_4)
#
The text field.
#
panel_5 := Panel("pos=20,280", "size=180,50")
label_4 := Label("pos=0,0", "internal_alignment=l", "label=Enter a string")
panel_5.add(label_4)
text_field := TextField("pos=0,30", "size=130,", "draw_border=t")
text_field.connect(self, "handle_text_field", TEXTFIELD_CHANGED_EVENT)
panel_5.add(text_field)
add(panel_5)

end
end
#
Simple main procedure just creates the dialog.
#
procedure main()

SecondTest().show_modal()
end

18.2. A MORE COMPLEX DIALOG EXAMPLE 315

Figure 18-2: SecondTest window

Constructing Component Hierarchies

Examine this program's the component_setup() method at the end; it initializes some data

and sets attributes. This includes built-in graphics attributes, as well as the minimum

size, which is an attribute of the Dialog class. The next part creates a menu bar structure.

Menus are presented in detail later in this chapter, but notice that this code creates two

text menu items within a Menu object, which is itself within a MenuBar object, which is

added to the dialog. Both menu items are connected to event handler methods.

The next section sets up three check boxes, placed with the label "Favorite OS" in a

Panel, a container that allows objects to be treated as a whole. Objects within a Panel have

their size and position computed relative to the Panel rather than the window. For example,

the �rst Label object is positioned with "pos=0,0". This places it at the top left-hand corner

of the Panel. Percentage speci�cations relate to the enclosing Panel.

Each CheckBox is a separate object. To make the three check boxes behave as a group so

that when one is checked another is unchecked, they are placed in a CheckBoxGroup object;

this just �brackets� them together. When grouped together in this way the checkboxes are

called radio buttons because they work like the tuner buttons found on old car radios. Note

that each CheckBox is added to the CheckBoxGroup and the Panel.

The next section is a Panel that holds a label ("Messages") and a TextList object. In

this case the object holds a list of message strings that scroll by like a terminal window.

316 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

A TextList object can also be used for selecting one or more items from a list of strings and

there is an EditableTextList, which can be used for editing text.

The third panel contains a label ("Shares"), and a Table object, which is used for dis-

playing tabular data. Note that class Table has nothing to do with Icon's table data type.

Adding a TableColumn object to the table sets up each column. A table column's initial

column width is speci�ed with attribute column_width and the alignment of the column's

contents is set with attribute internal_alignment. Attribute select_one con�gures the table to

allow one row to be highlighted at a time. The default is not to allow highlighting of rows;

the other option is to allow several to be highlighted at once with select_many.

The next panel contains another label ("Favorite language") and a drop-down list of

selections, created using the List class. The selections are set using the set_selection_list()

method. The �nal panel contains a label ("Enter a string") and a TextField object, which is

used to obtain entry of a string from the keyboard.

Several of the components are connected to event handlers in the class. Each handler

method adds a line to the list of strings in the TextList by calling the put_line() method. The

text list thus gives an idea of the events being produced by the toolkit. The exception is

the menu item Quit, which exits the program.

This dialog overrides the handle_event() method that is invoked by the toolkit for any

component (including dialogs) that may elect to handle an event. In this case, the dialog

just prints out the Icon event code for the particular event. This method also checks for

the Alt-q keyboard combination, which closes the dialog.

More About Event Handling

As shown above, components generate events when something of interest happens. For

example, a button generates an ACTION_EVENT when it is pressed. Di�erent components

generate di�erent events, but some basic events are generated by all components:

MOUSE_PRESS_EVENT a mouse press within the component's region.

MOUSE_DRAG_EVENT a mouse drag within the component's region.

MOUSE_RELEASE_EVENT a mouse release within the component's region.

For any non-mouse events, the Dialog class �res an ICON_EVENT.

Events are passed to listeners in a Notification object. This object contains three �elds,

with corresponding getter methods, as follows:

get_source() Returns the component which �red the event.

get_type() Returns the type code, eg ICON_EVENT

get_param()
Returns an arbitrary parameter depending on the type. In nearly

all cases this is the original underlying Icon graphics event.

The get_param() method is necessary, for example, to distinguish between a left mouse

18.3. CONTAINERS 317

click and a right mouse click on a MOUSE_RELEASE_EVENT; for instance

method on_release(ev)
if ev.get_param() === &rrelease then

... process right mouse up
end

18.3 Containers

Containers are components that contain other components. The Dialog class is a container,

as is the Panel class seen in the last example. Two other useful container objects in the

standard toolkit are TabSet and OverlaySet.

TabSet

This class contains several tabbed panes, any one of which is displayed at any given time.

The user switches between panes by clicking on labeled tabs at the top of the object. The

TabSet contains several TabItems, each of which contains the components for that particular

pane. To illustrate this, Listing 18-3 presents a simple example of a TabSet that contains

three TabItems, each of which contains a single label.

Listing 18-3

TabSet Program

import gui
$include "guih.icn"
#
Simple example of a TabSet
#
class Tabs : Dialog(quit_button)

method change(e)
write("The tabset selection changed")

end

method component_setup()
local tab_set, tab_item_1, tab_item_2, tab_item_3
attrib("size=355,295", "font=sans", "bg=light gray",

"label=TabSet example", "resize=on")
#
Create the TabSet
tab_set := TabSet("pos=20,20", "size=100%-40,100%-80")
#
First, second, and third panes

318 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

#
tab_item_1 := TabItem("label=Pane 1")
tab_item_1.add(Label("pos=50%,50%", "align=c,c", "label=Label 1"))
tab_set.add(tab_item_1)
tab_item_2 := TabItem("label=Pane 2")
tab_item_2.add(Label("pos=50%,50%", "align=c,c", "label=Label 2"))
tab_set.add(tab_item_2)
tab_item_3 := TabItem("label=Pane 3")
tab_item_3.add(Label("pos=50%,50%", "align=c,c", "label=Label 3"))
tab_set.add(tab_item_3)
tab_set.set_which_one(tab_item_1)
tab_set.connect(self, "change", SELECTION_CHANGED_EVENT)
add(tab_set)
#
Add a quit button; close the dialog when it is pressed
quit_button := TextButton("pos=50%,100%-30", "align=c,c", "label=Quit")
quit_button.connect(self, "dispose", ACTION_EVENT)
add(quit_button)
connect(self, "dispose", CLOSE_BUTTON_EVENT)

end
end
procedure main()

Tabs().show_modal()
end

The resulting window is shown in Figure 18-3:

Figure 18-3: TabSet example window

One interesting point in this dialog is the line:

18.4. MENU STRUCTURES 319

connect(self, "dispose", CLOSE_BUTTON_EVENT)

A dialog generates an event whenever the close button is pressed. Connecting this event

to the dispose method con�gures the dialog to close when this button is pressed.

OverlaySet

An OverlaySet is like a TabSet, but the pane on display is under program control; there are

no tabs to click. Instead of adding items to TabItem structures, OverlayItem objects are used.

An empty OverlayItem can be used when the area should be blank. The current OverlayItem

on display is set by set_which_one(x), where x is the desired OverlayItem.

18.4 Menu Structures

The toolkit provides the standard building blocks required to create a menu system (see

Table 18-1). Customized components can be added; this is discussed later.

Table 18-1

Standard Menu System Components

Component Description

MenuBar
The menu area along the top of the window, containing one

or more Menus.
MenuButton A �oating menu bar containing one Menu.

Menu
A drop down menu pane containing other Menus or menu

components.
TextMenuItem A textual menu item.

CheckBoxMenuItem
A checkbox in a menu which can be part of a CheckBoxGroup

if desired.
MenuSeparator A vertical separation line between items.

Items in a Menu can have left and right labels as well as customized left and right images.

To see how this all �ts together, Listing 18-4 shows our next example program.

Listing 18-4

A Menu Example Program

import gui
$include "guih.icn"

class MenuDemo : Dialog()
method component_setup()

local file_menu, menu_bar, check_box_group, text_menu_item,

320 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

labels_menu, images_menu, checkboxes_menu, group_menu,
alone_menu, menu_button, check_box_menu_item, button_menu

attrib("size=426,270", "font=sans", "bg=light gray", "label=Menu example")
check_box_group := CheckBoxGroup()

#
Create the menu bar. The position and size default to
give a bar covering the top of the window.
The first menu ("File") - just contains one text item.
menu_bar := MenuBar()
file_menu := Menu("label=File")
text_menu_item := TextMenuItem("label=Quit")
text_menu_item.connect(self, "dispose", ACTION_EVENT)
file_menu.add(text_menu_item)
menu_bar.add(file_menu)

#
The second menu ("Labels") - add some labels, followed by
a separator and another text item
labels_menu := Menu("label=Labels")
labels_menu.add(TextMenuItem("label=One"))
labels_menu.add(TextMenuItem("label=Two", "label_left=ABC"))
labels_menu.add(MenuSeparator())
labels_menu.add(TextMenuItem("label=Three", "label_right=123"))
#
A sub-menu in this menu, labeled "Images", contains
three text items with custom images. The rather unwieldy
strings create a triangle, a circle and a rectangle.
images_menu := Menu("label=Images")
text_menu_item := TextMenuItem("label=One")
text_menu_item.set_img_left("15,c1,˜˜˜˜˜˜˜0˜˜˜˜˜˜˜_

˜˜˜˜˜˜˜0˜˜˜˜˜˜˜˜˜˜˜˜˜000˜˜˜˜˜˜˜˜˜˜˜˜000˜˜˜˜˜˜_
˜˜˜˜˜00˜00˜˜˜˜˜˜˜˜˜˜00˜00˜˜˜˜˜˜˜˜˜00˜˜˜00˜˜˜˜_
˜˜˜˜00˜˜˜00˜˜˜˜˜˜˜00˜˜˜˜˜00˜˜˜˜˜˜00˜˜˜˜˜00˜˜˜_
˜˜00˜˜˜˜˜˜˜00˜˜˜˜00˜˜˜˜˜˜˜00˜˜˜00˜˜˜˜˜˜˜˜˜00˜_
˜0000000000000˜000000000000000")

images_menu.add(text_menu_item)
text_menu_item := TextMenuItem("label=Two")
text_menu_item.set_img_left("15,c1,˜˜˜˜˜˜000˜˜˜˜˜˜_

˜˜˜˜0000000˜˜˜˜˜˜000˜˜˜˜˜000˜˜˜˜00˜˜˜˜˜˜˜00˜˜_
˜00˜˜˜˜˜˜˜˜˜00˜˜0˜˜˜˜˜˜˜˜˜˜˜0˜00˜˜˜˜˜˜˜˜˜˜˜00_
00˜˜˜˜˜˜˜˜˜˜˜0000˜˜˜˜˜˜˜˜˜˜˜00˜0˜˜˜˜˜˜˜˜˜˜˜0˜_
˜00˜˜˜˜˜˜˜˜˜00˜˜˜00˜˜˜˜˜˜˜00˜˜˜˜000˜˜˜˜˜000˜˜_

18.4. MENU STRUCTURES 321

˜˜˜˜0000000˜˜˜˜˜˜˜˜˜˜000˜˜˜˜˜˜")
images_menu.add(text_menu_item)
text_menu_item := TextMenuItem("label=Three")
text_menu_item.set_img_left("15,c1,_

000000000000000000000000000000_
00˜˜˜˜˜˜˜˜˜˜˜0000˜˜˜˜˜˜˜˜˜˜˜0000˜˜˜˜˜˜˜˜˜˜˜00_
00˜˜˜˜˜˜˜˜˜˜˜0000˜˜˜˜˜˜˜˜˜˜˜0000˜˜˜˜˜˜˜˜˜˜˜00_
00˜˜˜˜˜˜˜˜˜˜˜0000˜˜˜˜˜˜˜˜˜˜˜0000˜˜˜˜˜˜˜˜˜˜˜00_
00˜˜˜˜˜˜˜˜˜˜˜0000˜˜˜˜˜˜˜˜˜˜˜00_
000000000000000000000000000000")

images_menu.add(text_menu_item)
labels_menu.add(images_menu)
menu_bar.add(labels_menu)

#
The third menu ("Checkboxes")
Sub-menu - "Group" - two checkboxes in a checkbox group.
#
checkboxes_menu := Menu("label=Checkboxes")
group_menu := Menu("label=Group")
check_box_menu_item := CheckBoxMenuItem("label=One")
check_box_group.add(check_box_menu_item)
group_menu.add(check_box_menu_item)
check_box_menu_item := CheckBoxMenuItem("label=Two")
check_box_group.add(check_box_menu_item)
group_menu.add(check_box_menu_item)
checkboxes_menu.add(group_menu)
#
Sub-menu - "Alone" - two checkboxes on their own
#
alone_menu := Menu()
alone_menu.set_label("Alone")
check_box_menu_item_3 := CheckBoxMenuItem("label=Three")
alone_menu.add(check_box_menu_item_3)
check_box_menu_item_4 := CheckBoxMenuItem("label=Four")
alone_menu.add(check_box_menu_item_4)
checkboxes_menu.add(alone_menu)
menu_bar.add(checkboxes_menu)
add(menu_bar)
#
Finally, create a menu button - a mini floating menu with
one menu inside it.
#
menu_button := MenuButton("pos=350,50%", "align=c,c")

322 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

#
This is the menu, its label appears on the button. It just
contains a couple of text items for illustration purposes.
#
button_menu := Menu("label=Click")
button_menu.add(TextMenuItem("label=One"))
button_menu.add(TextMenuItem("label=Two"))
menu_button.set_menu(button_menu)
add(menu_button)

end
end

procedure main()
MenuDemo().show_modal()

end

The output of this program with the middle menu and its submenu open appears in

Figure 18-4.

Figure 18-4: Menus

18.5 Other Components

This section gives examples of some components that have not yet been encountered. For

full details of how to use these classes, and the available methods and options, please see

the GUI class library reference in Appendix C.

18.5. OTHER COMPONENTS 323

18.5.1 Trees

The toolkit contains a tree component, which can be used to represent hierarchical data.

To use it, it is necessary to create a tree-like data structure of Node objects. Children are

added to a Node using its add() method. For example:

root := Node("label=Root")
child1 := Node("label=Child1")
child2 := Node("label=Child2")
root.add(child1)
root.add(child2) # ...etc

After setting up the tree of Nodes, the root is passed to the Tree for display:

tree := Tree("pos=0,0", "size=100,100") tree.set_root_node(root)

The tree data structure can change dynamically over time. When this occurs, the Tree

must be noti�ed of the change by invoking the tree_structure_changed() method.

The Tree class generates events when the selected Node (or Nodes) changes, and also

when part of the tree is expanded or collapsed by the user.

The next example uses a Tree with a Table and a Sizer to provide a �le system explorer

program. The Sizer is a narrow area between the tree and the table which can be dragged

to resize both dynamically. Because of the toolkit's relatively simple layout mechanism,

the resizing code in handle_sizer() is quite awkward.

324 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

Figure 18-5: Explorer

Listing 18-5

The Explorer Program

import gui

$include "keysyms.icn"
$include "guih.icn"

#
A very simple filesystem explorer with a tree and a table.
#
class Explorer : Dialog(tree, sizer, tbl)

#
Given a Node n, get the full file path it represents by
traversing up the tree structure to the root.
#
method get_full_path(n)

local s := ""
repeat {

s := n.get_label() || s
n := n.get_parent_node() | break
}

return s
end

#
Invoked when a sub-tree is expanded (ie: the little + is
clicked). An expansion event also includes contractions too
#
method handle_tree_expansion()

local n := tree.get_last_expanded()
#
Check whether it was an expansion or a contraction. If
an expansion, load the subtree and refresh the tree.
#
if n.is_expanded() then {

load_subtree(n)
tree.tree_structure_changed()
}

end

#

18.5. OTHER COMPONENTS 325

Invoked when a row in the tree is selected (or de-selected).
If something is selected, load the table. We may not have something
selected if the user contracted the parent node of the selected node.
#
method handle_tree_selection()

local n
if n := tree.object_get_selections()[1] then

load_table(n)
end

#
Given a Node n, load its children with the sub-directories.
#
method load_subtree(n)

local name, r1, dir_list := get_directory_list(get_full_path(n))
n.clear_children()
every name := !dir_list[1] do {

if (name ˜== "./") & (name ˜== "../") then {
r1 := Node("always_expandable=t")
r1.set_label(name)
n.add(r1)

}
}

end

#
Given a Node n, load the table with the sub-files and sub-directories.
#
method load_table(n)

local s := get_full_path(n), l := [], t := get_directory_list(s)
every el := !sort(t[1] ||| t[2]) do {

p := stat(s || el) | stop("No stat")
put(l, [el, p.size, ctime(p.mtime)[5:17], p.mode])
}

tbl.set_contents(l)
tbl.goto_pos(1, 0)

end

#
The sizer has moved, so reset the sizes and positions of the
table, tree and sizer. Then call resize() to reposition
everything.
#

326 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

method handle_sizer(ev)
result_x := sizer.get_curr_pos()
tree.set_size(result_x - 10, tree.h_spec)
sizer.set_pos(result_x, sizer.y_spec)
tbl.set_pos(result_x + 10, tbl.y_spec)
tbl.set_size("100%-" || string(result_x + 20), tbl.h_spec)
resize()

end

#
Catch Alt-q to close the dialog.
#
method quit_check(ev)

if ev.get_param() === "q" & &meta then dispose()
end

#
Override resize to set the sizer’s min/max locations.
#
method resize()

self.Dialog.resize()
sizer.set_min_max(135, get_w_reference() - 160)

end

method component_setup()
local root_node

attrib("size=750,440", "resize=on", "label=Explorer")
connect(self, "dispose", CLOSE_BUTTON_EVENT)
connect(self, "quit_check", ICON_EVENT)
tree := Tree("pos=10,10", "size=250,100%-20", "select_one")
tree.connect(self, "handle_tree_expansion", TREE_NODE_EXPANSION_EVENT)
tree.connect(self, "handle_tree_selection", SELECTION_CHANGED_EVENT)
add(tree)

tbl := Table("pos=270,10", "size=100%-280,100%-20", "select_none")
tbl.add_column(TableColumn("label=File", "column_width=150"))
tbl.add_column(TableColumn("label=Size", "column_width=75", "internal_alignment=r"))
tbl.add_column(TableColumn("label=Date", "column_width=100"))
tbl.add_column(TableColumn("label=Bits", "column_width=100"))
add(tbl)

sizer := Sizer("pos=260,10", "size=10,100%-20")
sizer.connect(self, "handle_sizer", SIZER_RELEASED_EVENT)

18.5. OTHER COMPONENTS 327

add(sizer)

#
Initialize the tree data structure.
#
root_node := Node("label=/")
load_subtree(root_node)
tree.set_root_node(root_node)
tree.object_set_selections([root_node])
load_table(root_node)

end
end

procedure main()
Explorer().show_modal()

end

18.5.2 Borders

This class provides decorative borders. Optionally, a single other component can be the

title of the Border. This would normally be a Label object, but it could also be a CheckBox

or an Icon, or whatever is desired. The set_title(c) method is used to set the title. Here is a

program fragment to create a border with a label as its title:

b := Border()
#
Add a Label as the title
#
l := Label("label=Title String")
b.set_title(l)
add(b)

The Border class acts as a container (like a Panel), and so objects may be placed within

it in the same way.

18.5.3 Images and icons

The toolkit supports both images loaded from �les and bitmap icons de�ned by strings.

Images stored in �les are manipulated using the Image class. The method set_filename(x)

speci�es the location of the �le to be displayed. The image is scaled down to the size of the

object, and optionally may be scaled up if it is smaller. A border may be used if desired.

Icons are created using the Icon class. The icon string is set using the set_img() method;

again a border can be used if desired. Finally, the IconButton class lets icons serve as buttons,

producing events when they are clicked.

328 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

18.5.4 Scroll bars

Horizontal and vertical scroll bars are available with the ScrollBar class. Scroll bars can be

used either in the conventional way, in which the button in the bar represents a page size,

and the whole bar represents a total, or as a slider in which case the button simply moves

over a speci�ed range of numbers.

18.5.5 Custom Components

This section looks at how you can create customized components that can be added to

dialogs. You might want to do this to have circular rather than rectangular buttons in

your dialog, for example. Or perhaps you might want to add a substantial new component

type in an application, such as the main grid area in a spreadsheet program.

Creating new components

Every component is a subclass of the Component class. This class contains several methods

and variables that can be used by a new component. Custom components will extend this

class by implementing its abstract class display(), and very possibly overriding and replacing

one or more of Component's methods, such as resize().

A full list of the methods and variables de�ned in the Component class is given in the

GUI class library reference in Appendix C. Please refer to that section when reading this

next example, which comes from the gui package itself: a simple "progress bar" component.

Listing 18-6

A ProgressBar Component

package gui
$include "guih.icn"

#
A progress bar
#
class ProgressBar : Component(

p, # The percentage on display.
bar_x, bar_y,
bar_h, bar_w) # Maximum bar height and width.

method resize()
#
Set a default height based on the font size.
/h_spec := WAttrib(cwin, "fheight") + 2 * DEFAULT_TEXT_Y_SURROUND
#
Call the parent class’s resize method (this is mandatory).

18.5. OTHER COMPONENTS 329

self.Component.resize()
#
Set bar height and width figures - this just gives a
sensible border between the "bar" and the border of the
object. By using these constants, a consistent
appearance with other objects is obtained.
bar_x := x + DEFAULT_TEXT_X_SURROUND
bar_y := y + BORDER_WIDTH + 3
bar_w := w - 2 * DEFAULT_TEXT_X_SURROUND
bar_h := h - 2 * (BORDER_WIDTH + 3)

end

method display(buffer_flag)
#
Erase and re-draw the border and bar
EraseRectangle(cbwin, x, y, w, h)
DrawRaisedRectangle(cbwin, x, y, w, h)
FillRectangle(cbwin, bar_x, bar_y, bar_w * p / 100.0, bar_h)
#
Draw the string in reverse mode
cw := Clone(cbwin, "drawop=reverse")
center_string(cw, x + w / 2, y + h / 2, p || "%")
Uncouple(cw)
#
Copy from buffer to window if flag not set.
#
if /buffer_flag then CopyArea(cbwin, cwin, x, y, w, h, x, y)

end

#
Get the current percentage.
#
method get_percentage()

return p
end

#
Set the percentage.
#
method set_percentage(p)

p <:= 0
p >:= 100
self.p := p
invalidate()

330 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

end

#
Provide an extra attribute, "percentage"
#
method set_one(attr, val)

case attr of {
"percentage" : set_percentage(int_val(attr, val))
default: self.Component.set_one(attr, val)
}

end

initially(a[])
self.Component.initially()
set_percentage(0)
set_fields(a)

end

An example of a ProgressBar in use is shown in Figure 18-6.

Figure 18-6: Progress bar in use

More complex components use other components within themselves. For example, the

TextList class contains two ScrollBars, each of which in turn contains two IconButtons. The

Component class has support for contained objects built in, so creating components of this

sort is quite easy.

Figure 18-7 shows a dialog window containing another example component which con-

tains an IconButton and a Label as subcomponents. A list of strings is given as an input

parameter. When the button is pressed the label changes to the next item in the list, or

goes back to the �rst one. The user can thus select any of the items.

18.5. OTHER COMPONENTS 331

Figure 18-7: Circulate component in use

In this example, sub-components b and l are initialized in the component's constructor,

and added to the component using the add method. This ensures they are properly initial-

ized. A listener is connected to the button so that the selection moves on one when it is

pressed. The set_selection() method is available to a client program to change the selection

programmatically. Note how this method invokes invalidate(). This tells the toolkit that

the component needs to be re-displayed. To keep the GUI responsive, the toolkit will only

schedule this re-display when there are no user input events to be processed. So, invalidate()

doesn't actually invoke the component's display() method directly.

The resize() method sets the sub-components' position and size, and then calls the

resize() method for each of them. The display() method erases the component's rectangular

area, draws a border, and draws the two sub-components into the area. The set_one()

method is also overridden to provide some custom attributes for the component. For all

other attributes, the parent class's set_one() method is invoked, meaning all the standard

attributes work too. So, a client can construct a Circulate with something like :

c := Circulate("size=,250", "pos=20,20",
"selection_list=hot,warm,cold", "selection=2", "bg=green")

Note how the height is omitted; the resize() method will set a default value.

Listing 18-7

Circulate component

package gui
link graphics

$include "guih.icn"

332 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

#
Selection from a list
#
class Circulate : Component(selection, selection_list, b, l)

#
Set the list from which selections are made.
#
@param x the list of selection strings
method set_selection_list(x)

selection_list := x
set_selection(1)
return x

end

#
Set the selection to the given index into the selection list.
#
@param x an index into the selection list
method set_selection(x)

selection := x
l.set_label(selection_list[selection])
invalidate()
return x

end

#
Return the current selection, as an index in the selection list.
#
@return an integer, being the current selection
method get_selection()

return selection
end

#
Called once at startup, and whenever the window is resized.
#
method resize()

/h_spec := WAttrib(cwin, "fheight") + 16
compute_absolutes()

#
Set button position and size
b.set_pos(BORDER_WIDTH, BORDER_WIDTH)

18.5. OTHER COMPONENTS 333

b.set_size(h - 2 * BORDER_WIDTH, h - 2 * BORDER_WIDTH)
b.resize()

l.set_pos(h - BORDER_WIDTH + DEFAULT_TEXT_X_SURROUND, h / 2)
l.set_align("l", "c")
l.set_size(w - h - 2 * DEFAULT_TEXT_X_SURROUND,

h - 2 * BORDER_WIDTH)
l.resize()
return

end

#
Display the object. In this case, double buffering is not necessary.
#
method display(buffer_flag)

W := if /buffer_flag then cwin else cbwin
EraseRectangle(W, x, y, w, h)
DrawSunkenRectangle(W, x, y, w, h)
l.display(buffer_flag)
b.display(buffer_flag)
do_shading(W)

end

#
The handler for the button - move the selection forward.
#
method on_button_pressed(ev)

set_selection(1 + selection % *selection_list)
create_event_and_fire(SELECTION_CHANGED_EVENT, e)

end

method set_one(attr, val)
case attr of {

"selection" : set_selection(int_val(attr, val))
"selection_list" : set_selection_list(val)
default: self.Component.set_one(attr, val)

}
end

initially(a[])
self.Component.initially()
l := Label()
l.clear_draw_border()
add(l)

334 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

b := IconButton()
b.connect(self, "on_button_pressed", ACTION_EVENT)
add(b)
b.set_draw_border()
b.set_img("13,c1,˜˜˜˜0000˜˜˜˜˜_

˜˜˜000000˜˜˜˜˜˜00˜˜˜˜00˜˜˜˜00˜˜˜˜˜˜00˜˜_
˜00˜˜˜˜˜˜00˜˜˜00˜˜˜˜˜˜˜˜˜˜˜00˜˜˜˜˜˜˜˜˜˜_
˜00˜˜˜˜˜˜0˜˜˜˜00˜˜˜˜˜000˜˜˜00˜˜˜˜00000˜_
˜00˜˜˜0000000˜00˜˜˜˜˜˜00˜˜˜00˜˜˜˜˜˜00˜˜_
˜00˜˜˜˜˜˜00˜˜˜˜00˜˜˜˜00˜˜˜˜˜˜000000˜˜˜˜_
˜˜˜˜0000˜˜˜˜˜")

set_fields(a)
end

Customized menu components

Listing 18-8 contains a custom menu component. The class hierarchy for menu structures

is di�erent to other components, and so this component is a subclass of SubMenu, rather

than Component. The component allows the user to select one of a number of colors from

a Palette by clicking on the desired box. Again, please read this example in conjunction

with the reference section on menus.

Listing 18-8

Color Palette Program

import gui

#
Include the standard constants. Define width of one colour cell in pixels.
#
$include "guih.icn"
$define CELL_WIDTH 30

class Palette : SubMenu(
w, h, # width and height
colour, # Color number selected
palette, # List of colors
box_size, # Width/height in cells
temp_win # Temporary window
)

#
Get the result
#

18.5. OTHER COMPONENTS 335

method get_colour()
return palette[colour]

end

#
Set the palette list
#
method set_palette(l)

box_size := integer(sqrt(*l))
return palette := l

end

#
This is called by the toolkit; it is a convenient place to initialize sizes.
#
method resize()

w := h := box_size * CELL_WIDTH + 2 * BORDER_WIDTH
end

#
Called to display the item. The x, y co-ordinates have been set up
for us and give the top left hand corner of the display.
#
method display()

if /temp_win then {
#
Open a temporary area for the menu and copy.
temp_win := WOpen("canvas=hidden", "size=" || w || "," || h)
CopyArea(parent_component.get_parent_win(),

temp_win, x, y, w, h, 0, 0)
}

cw := Clone(parent_component.cwin)

#
Clear area and draw rectangle around whole, then draw the color grid
EraseRectangle(cw, x, y, w, h)
DrawRaisedRectangle(cw, x, y, w, h)
y1 := y + BORDER_WIDTH
e := create "fg=" || !palette
every 1 to box_size do {

x1 := x + BORDER_WIDTH
every 1 to box_size do {

WAttrib(cw, @e)

336 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

FillRectangle(cw, x1, y1, CELL_WIDTH, CELL_WIDTH)
x1 +:= CELL_WIDTH

}
y1 +:= CELL_WIDTH

}
Uncouple(cw)

end

#
Test whether pointer in palette_region, and if so which cell it’s in
#
method in_palette_region()

if (x <= &x < x + w) & (y <= &y < y + h) then {
x1 := (&x - x - BORDER_WIDTH) / CELL_WIDTH
y1 := (&y - y - BORDER_WIDTH) / CELL_WIDTH
return 1 + x1 + y1 * box_size
}

end

#
Will be called if our menu is open.
#
method handle_event(e)

if i := in_palette_region() then {
if integer(e) = (&lrelease | &rrelease | &mrelease) then {

colour := i
This is a helper method in the superclass which
closes the menu system and fires an ACTION_EVENT
succeed(e)

}
} else {

if integer(e) = (&lrelease | &rrelease | &mrelease |
&lpress | &rpress | &mpress) then

This is a helper method in the superclass which
closes the menu system, without firing an event.
close_all()

}
end

#
Close this menu. Restore window area.
#
method hide()

EraseRectangle(parent_component.cwin, x, y, w, h)

18.5. OTHER COMPONENTS 337

CopyArea(temp_win, parent_component.get_parent_win(), 0, 0, w, h, x, y)
WClose(temp_win)
temp_win := &null

end

Support a "palette" attrib
method set_one(attr, val)

case attr of {
"palette" : set_palette(val)
default : self.MenuComponent.set_one(attr, val)
}

end

initially(a[])
self.SubMenu.initially()
#
Set the image to appear on the Menu above ours. We could design a tiny
icon and use that instead of the standard arrow if we wished.
Call set_fields to support the attrib style constructor.
#
set_img_right(img_style("arrow_right"))
set_fields(a)

end

#
Test class dialog.
#
class TestPalette : Dialog(palette)

method on_palette(ev)
write("Colour selected : " || palette.get_colour())

end

method on_anything(ev)
write("Anything item selected")

end

method component_setup()
local menu_bar, menu, text_menu_item, close
attrib("size=400,200")

#
Create a MenuBar which includes our palette as a sub-menu
menu_bar := MenuBar("pos=0,0")
menu := Menu("label=Test")

338 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

text_menu_item := TextMenuItem("label=Anything")
text_menu_item.connect(self, "on_anything", ACTION_EVENT)
menu.add(text_menu_item)

palette := Palette("label=Test menu",
"palette=red,green,yellow,black,white,purple,gray,blue,pink")

palette.connect(self, "on_palette", ACTION_EVENT)
menu.add(palette)
menu_bar.add(menu)
add(menu_bar)

#
Add a close button.
close := TextButton("pos=50%,66%", "align=c,c", "label=Close")
close.connect(self, "dispose", ACTION_EVENT)
add(close)

end
end

procedure main()
TestPalette().show_modal()

end

The resulting window, with the Palette menu active is shown in Figure 18-8.

Figure 18-8: TestPalette window

18.5.6 Tickers

GUI programs spend most of their time waiting for user input events. The toolkit allows

this spare time to be exploited by user programs by the use of "tickers". These are classes

18.5. OTHER COMPONENTS 339

which subclass Ticker, and implement a single method, tick(), which is invoked at a speci�ed

interval. If the toolkit is busy processing events or updating the display, the actual interval

may be much greater than that requested, but it will never be less.

Many components make use of tickers. For example when the mouse button is dragged

below the bottom of an EditableTextList and held, the cursor scrolls downwards without any

user events occurring. This is handled with a simple ticker:

class FirstTicker : Ticker()
method tick()

write("Doing something in FirstTicker")
end

end

If we had an instance t of this ticker, we would start it with:

t.set_ticker(1000)

and stop it with

t.stop_ticker()

Both calls would have to be made whilst a dialog was open, because it is from within

the toolkit's event processing loop that tickers are scheduled.

For convenience, the base Component class is a subclass of Ticker. This means that a

dialog class (which is itself a subclass of Component, and hence of Ticker too), can simply

implement a tick() method to use the ticker facility. It simply needs to invoke set_ticker()

and stop_ticker() to start and stop the ticker, respectively. Another method, retime_ticker(),

allows the rate of an active ticker to be changed.

One important rule regarding ticker programming has to be borne in mind, and that

is that the tick() method implementation must return quite quickly; at most within a few

tenths of a second. If it does not, then the GUI may become unresponsive to user events,

which cannot be processed whilst control is in the tick() method.

The tick() method must return quickly. If the task you want to implement in the back-

ground is by nature deeply structured and takes a long time, it may be di�cult to get out of

the tick() method promptly and continue in the same state on the next tick. Co-expressions

can be helpful here. A co-expression maintains its own stack and can suspend itself, and

then continue again later with the state (including stack) intact.

Here is an example program which illustrates these points. It generates prime numbers

using the Erastothenes' sieve method, in a ticker, using a co-expression to conveniently

suspend generation after each prime. This program also introduces a new component, a

slider which is used to increase or decrease the ticker rate dynamically.

Listing 18-9

Erastothenes' Sieve Program

340 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

import gui
$include "guih.icn"
$define PRIME_LIMIT 20000

#
A program to calculate prime numbers in a background ticker,
and display them in a dialog.
#
class Sieve : Dialog(prime_ce, interval, count_label, prime_label,

rate_label, start, stop)

#
Bring the label and ticker into line with the interval slider.
If the ticker is running, retime it.
#
method synch_interval()

rate_label.set_label(interval.get_value() || " ms")
if is_ticking() then retime_ticker(interval.get_value())

end

#
Toggle the grey state of the start/stop buttons.
#
method toggle_buttons()

start.toggle_is_shaded()
stop.toggle_is_shaded()

end

#
When the start button is pressed, toggle the grey state and start the ticker.
#
method on_start()

toggle_buttons()
set_ticker(interval.get_value())

end

#
When the stop button is pressed, toggle the grey state and stop the ticker.
#
method on_stop()

toggle_buttons()
stop_ticker()

end

18.5. OTHER COMPONENTS 341

#
The tick method, which is invoked regularly by the toolkit.
It just invokes the co-expression to display the next prime.
#
method tick()

@prime_ce
end

#
This method consitutes the co-expression body.
#
method primes()

local prime_candidate, non_prime_set := set(), prime_count := 0

every prime_candidate := 2 to PRIME_LIMIT do {
if not member(non_prime_set, prime_candidate) then {

#
Update the UI.
count_label.set_label(prime_count +:= 1)
prime_label.set_label(prime_candidate)
#
Update the non-prime set.
every insert(non_prime_set,

2 * prime_candidate to PRIME_LIMIT by prime_candidate)
#
Suspend the co-expression until the next tick.
@&source

}
}

end

method component_setup()
local prime_border, rate, buttons, b

attrib("size=325,200", "label=Sieve")
connect(self, "dispose", CLOSE_BUTTON_EVENT)

prime_border := Border("pos=20,20", "size=100%-40,78")
prime_border.set_title(Label("pos=10,0", "label=Primes"))
prime_ce := create primes()

prime_border.add(Label("pos=20,18", "label=Prime:"))
count_label := Label("pos=77,18", "size=40")
count_label.set_label("")

342 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

prime_border.add(count_label)
prime_border.add(Label("pos=20,40", "label=Value:"))
prime_label := Label("pos=77,40", "size=40")
prime_label.set_label("")
prime_border.add(prime_label)

add(prime_border)

rate := Panel("pos=20,112", "size=100%-40,30")
rate.add(Label("pos=0,50%", "size=45", "align=l,c", "label=Rate:"))
interval := Slider("pos=45,50%", "size=100%-90", "align=l,c",

"range=20,2020", "is_horizontal=t")
interval.set_value(1000)
interval.connect(self, "synch_interval", SLIDER_DRAGGED_EVENT)
rate.add(interval)

rate_label := Label("pos=100%,50%", "size=45", "align=r,c",
"internal_alignment=r")

rate.add(rate_label)
synch_interval()
add(rate)

buttons := Panel("pos=50%,158", "size=161,25", "align=c,t")
start := TextButton("pos=0,0", "label=Start")
start.connect(self, "on_start", ACTION_EVENT)
buttons.add(start)
stop := TextButton("pos=58,0", "label=Stop", "is_shaded=t")
stop.connect(self, "on_stop", ACTION_EVENT)
buttons.add(stop)
b := TextButton("pos=108,0", "label=Quit")
b.connect(self, "dispose", ACTION_EVENT)
buttons.add(b)
add(buttons)

end
end

procedure main()
Sieve().show_modal()

end

18.6. ADVANCED LIST HANDLING 343

Figure 18-9: Sieve

18.6 Advanced List Handling

Several of the more sophisticated components extend a common base class, SelectableScrol-

lArea, namely TextList, Table and Tree. (In fact, Table doesn't directly extend Selectable-

ScrollArea, it contains a header component and a content component that does). It is quite

easy to add some advanced features to these components, such as right-click popup menus,

multi-selection and drag and drop, and this is explained in this section.

18.6.1 Selection

Selection handling is straightforward. First, con�gure the component so that it allows

selection of no, one, or many rows using the methods set_select_none(), set_select_one() or

set_select_many(), or the attributes "select_none", "select_one" or "select_many". Then, listen

for changes by listening for a SELECTION_CHANGED_EVENT to be �red :

comp.connect(self, "handle_selection", SELECTION_CHANGED_EVENT)

When such an event does occur, the current selections can be retrieved in one of two

ways. Either by getting the indexes of the selections using get_selections(), or by getting

the objects selected, using object_get_selections(). The former returns a list of integers, the

latter a list of objects whose type depends on the component. For a TextList, a list of strings

is returned, for a Table, a list of lists (each being a row's data), and for a Tree, a list of

Node objects is returned. There are corresponding setter methods for setting the selection

dynamically.

344 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

18.6.2 Popups

Adding popup menus is also easy. First create a Popup component, ready to be shown.

Then, listen for a MOUSE_RELEASE_EVENT. Finally, when an event occurs check that is a

right mouse release, and that the object is in the state you want. If it is, just activate the

popup via its popup() method.

18.6.3 Drag and drop

The toolkit supports a limited form of drag and drop, which works only between compo-

nents within the same window. To implement drag and drop, a class, DndHandler, must be

subclassed and an instance "plugged-in" to the component which is a source or target of a

potential drag and drop operation, using its set_dnd_handler() method. The DndHandler class

provides �ve callback methods which the toolkit uses to control a drag and drop operation.

When using the SelectableScrollArea family of components, it is best to subclass Selecta-

bleScrollAreaDndHandler, which is a custom subclass of DndHandler, with several methods

already de�ned appropriately.

All of the above features are brought together in the following example program which

provides a Tree and a TextList. Drag and drop is enabled between the two components, and

both provide popup menus for adding/deleting elements.

Figure 18-10: Drag and drop

Listing 18-10 The Drag and drop Program

18.6. ADVANCED LIST HANDLING 345

import gui
$include "guih.icn"

#
A DndHandler for the list
#
class ListDndHandler : SelectableScrollAreaDndHandler()

#
A drop has occurred; we succeed iff we accept it
#
method can_drop(d)

local l, ll
if l := parent.get_highlight() then {

if d.get_source() === parent then # Move within the list itself
parent.move_rows(parent.get_gesture_selections(), l)

else {
#
Copy from tree to list. d.get_content() gives
a list of the nodes being dragged.
ll := []
every el := !d.get_content() do # Don’t drag folders.

if /el.is_folder_flag then put(ll, el.get_label())
parent.insert_rows(ll, l)

}
return

}
end

#
This is invoked after a successful operation when the
list was the source. If the destination (c) wasn’t the
list, then we must delete the rows from the list.
#
method end_drag(d, c)

if c ˜=== parent then
parent.delete_rows(parent.get_gesture_selections())

end
end

#
A DndHandler for the tree
#
class TreeDndHandler : SelectableScrollAreaDndHandler()

#

346 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

Called during a drag event. We succeed iff the user is dragging over
a row (this is handled by the parent) AND the thing we’re over is a folder.
#
method drag_event(d)

if SelectableScrollAreaDndHandler.drag_event(d) then
return \(parent.object_get_highlight().is_folder_flag)

end

#
A drop has occurred; we succeed iff we accept it.
Only consider a drop on a folder.
#
method can_drop(d)

local s, other, n, el
if other := parent.object_get_highlight() & \other.is_folder_flag then {

if d.get_source() === parent then {
#
If parent is the drop source, then we have a dnd from within
the tree. So, we just move the nodes.
d.get_content() will be a list of the nodes that were dragged.
every el := !d.get_content() do {

if el.get_parent_node().delete_node(el) then
other.add(el)

}
} else {

#
Drop from list. In this case d.get_content() will be a list of strings.
every el := !d.get_content() do {

n := TreeNode()
n.set_label(el)
other.add(n)

}
}
#
Notify the tree that the node data structure has altered.
parent.tree_structure_changed()
return

}
end

#
This is invoked after a successful operation when the tree was the source.
If the destination (c) wasn’t the tree, we must delete the nodes from the tree.
#

18.6. ADVANCED LIST HANDLING 347

method end_drag(d, c)
if c ˜=== parent then {

#
Delete all the nodes which will have been dragged.
every n := !parent.object_get_gesture_selections() do

if /n.is_folder_flag then
n.get_parent_node().delete_node(n)

#
Notify the tree that the node data structure has altered.
parent.tree_structure_changed()

}
end

end

#
We use a custom Node subclass to also store an "is_folder_flag" flag.
#
class TreeNode : Node(is_folder_flag)
initially

self.Node.initially()
if \is_folder_flag then

set_bmps([img_style("closed_folder"),
img_style("closed_folder"), img_style("closed_folder")])

end

#
The main dialog.
#
class DNDTest : Dialog(tree, lst, tree_popup, list_popup, new_folder_menu_item,

delete_node_menu_item, delete_rows_menu_item)

#
Delete nodes handler
#
method on_delete_node()

local n, i, l

every n := !(tree.object_get_gesture_selections()) do
n.get_parent_node().delete_node(n)

tree.tree_structure_changed() # Notify tree of the change.
end

#

348 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

Create a new folder
#
method on_new_folder()

local n, o

#
Simply add a new node under the cursor, and notify the
tree that the data structure changed.
#
if o := tree.object_get_cursor() then {

n := TreeNode(1)
n.set_label("New folder")
o.add(n)
tree.tree_structure_changed()
}

end

#
Delete rows from the list
#
method on_delete_rows()

lst.delete_rows(lst.get_gesture_selections())
end

#
Add some rows to the list, at the cursor position, or at
the top if there is no cursor.
#
method on_new_rows()

lst.insert_rows(["new1", "new2", "new3"], lst.get_cursor() | 1)
end

#
Helper method to create a tree structure.
#
method create_tree()

local r := TreeNode(1), n
r.set_label("root")

every s := ("red" | "green" | "blue" | "yellow") do {
n := TreeNode(1)
n.set_label(s)
r.add(n)
every t := 1 to 5 do {

18.6. ADVANCED LIST HANDLING 349

o := TreeNode()
o.set_label(s || "-" ||t)
n.add(o)
}

}
return r

end

#
A selection-up event on the tree
#
method on_tree_release(ev)

local n
#
If the Icon event was a right mouse release, display the popup at the cursor.
if ev.get_param() === &rrelease then {

n := tree.object_get_cursor() | fail
#
Adjust the shading depending on the node type.
if /n.is_folder_flag then

new_folder_menu_item.set_is_shaded()
else

new_folder_menu_item.clear_is_shaded()
if n === tree.get_root_node() then

delete_node_menu_item.set_is_shaded()
else

delete_node_menu_item.clear_is_shaded()
tree_popup.popup()

}
end

#
A mouse release event on the list
#
method on_list_release(ev)

if ev.get_param() === &rrelease then {
#
If some rows to delete...
if lst.get_gesture_selections() then

delete_rows_menu_item.clear_is_shaded()
else

delete_rows_menu_item.set_is_shaded()

list_popup.popup()

350 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

}
end

method component_setup()
local m, quit, mi
attrib("size=350,295", "resize=on")
connect(self, "dispose", CLOSE_BUTTON_EVENT)
tree := Tree("pos=50%-10,10", "size=50%-20,100%-70",

"align=r,t", "select_many", "show_root_handles=f")
tree.set_root_node(create_tree())
tree.set_dnd_handler(TreeDndHandler(tree))
tree.connect(self, "on_tree_release", MOUSE_RELEASE_EVENT)
add(tree)
quit := TextButton("pos=50%,100%-40", "align=c,t", "label=Quit")
quit.connect(self, "dispose", ACTION_EVENT)
add(quit)
Create a TextList, with some arbitrary content.
lst := TextList("pos=50%+10,10", "size=50%-20,100%-70", "select_many",

"contents=one,two,three,four,five,six,seven,eight,nine,ten,eleven,_
twelve,thirteen,fourteen,fifteen,sixteen,red,blue,green")

lst.connect(self, "on_list_release", MOUSE_RELEASE_EVENT)
lst.set_dnd_handler(ListDndHandler(lst))
add(lst)
tree_popup := PopupMenu()
m := Menu()
tree_popup.set_menu(m)
delete_node_menu_item := TextMenuItem("label=Delete")
delete_node_menu_item.connect(self, "on_delete_node", ACTION_EVENT)
m.add(delete_node_menu_item)
new_folder_menu_item := TextMenuItem("label=New folder")
new_folder_menu_item.connect(self, "on_new_folder", ACTION_EVENT)
m.add(new_folder_menu_item)
add(tree_popup)
list_popup := PopupMenu()
m := Menu()
list_popup.set_menu(m)
delete_rows_menu_item := TextMenuItem("label=Delete")
delete_rows_menu_item.connect(self, "on_delete_rows", ACTION_EVENT)
m.add(delete_rows_menu_item)
mi := TextMenuItem("label=Insert rows")
mi.connect(self, "on_new_rows", ACTION_EVENT)
m.add(mi)
add(list_popup)

end

18.7. PROGRAMMING TECHNIQUES 351

end

procedure main()
DNDTest().show_modal()

end

18.7 Programming Techniques

Some of the earlier example dialogs were e�ectively �application windows.� In other words,

the top-level window of a program. This section looks at some techniques for integrating

dialog windows that are secondary or helper windows into a program.

Thread-safety

It is important to note that the design and implementation of the GUI classes was completed

before the introduction of concurrency to the Unicon language. The same remark applies

to the underlying graphical operations that the GUI classes use. Thus, neither is thread

safe. Furthermore, some platforms restrict graphical operations to the main thread.

The most portable strategy is therefore to restrict the use of the GUI classes to the

main thread. Any results from concurrently executing threads that a�ect the display must

be communicated to the main thread (either via global variables or via Unicon's message

passing facilities) and mutual exclusion must be employed � as in any concurrent program

using shared data. The main thread cannot wait inde�nitely for new results, because this

will �freeze� the display if no new data is forthcoming. Instead, the main thread must poll

for new data, probably best achieved by using the toolkit's ticker facilites.

Parameters

A dialog window will normally have parameters that the calling program will want to pass

to it before it is displayed using the show() method. Possibly the attribute syntax "key=val"

should be supported, and perhaps a default value should be set. All of these things are

easily supported by following the following structure:

class AnyDialog : Dialog(a_variable)
method set_a_variable(x)

a_variable := x
end
...
method set_one(attr, val)

case attr of {
"a_variable" :

set_a_variable(string_val(attr, val))

352 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

default: self.Dialog.set_one(attr, val)
}

end

method component_setup()
Initialize Components, possibly depending upon the value of a_variable
...
Configure the window itself...
attrib("size=300,200")

end

initially(a[])
self.Dialog.initially()
a_variable := "default value"
set_fields(a)

end

You then use the following code in the calling program:

d := AnyDialog()
d.set_a_variable("something")

or

d := AnyDialog("a_variable=something")

or just

d := AnyDialog()

to use the default for a_variable. Furthermore, the standard dialog attributes can still be

used as you would expect :

d := AnyDialog("a_variable=something", "font=times", "bg=green", "fg=red")

Subclassing can follow the same pattern. For example:

class AnotherDialog : AnyDialog(another_variable)
method set_another_variable(x)

another_variable := x
end
...
method set_one(attr, val)

case attr of {
"another_variable" :

18.8. IVIB 353

set_another_variable(string_val(attr, val))
default: self.AnyDialog.set_one(attr, val)

}
end

method component_setup()
self.AnyDialog.component_setup()
...

end

initially(a[])
self.AnyDialog.initially()
another_variable := "default value"
set_fields(a)

end

At �rst sight, it might seem that set_fields() will be invoked twice, which may cause

problems. In fact, because we are calling the AnyDialog constructor with no parameters,

the set_fields() call in that constructor has no e�ect. We just have to remember to call

set_fields(a) in the AnotherDialog constructor itself. This will delegate its work up to the

parent classes' set_one() methods to handle all of the possible attributes we may give it.

Getting results out to the calling program is easy. The dialog can just set a result

variable that can be retrieved by the caller using one of the dialog's methods.

18.8 ivib

It can take many compiles and runs to get the components correctly sized and positioned in

a dialog window with many components. Much of the code in a dialog is tedious to write.

An interface builder called Ivib reduces the e�ort required for many common dialogs. Ivib

allows a user to draw (interactively place and con�gure) components in a window area.

Ivib's saved �les are program source code that implement the interface. Ivib was inspired

by VIB, a program written by Mary Cameron and greatly extended by Gregg Townsend.

The main window of Ivib, with a dialog under construction, is shown in Figure 18-11.

354 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

Figure 18-11: Ivib main window

To create a dialog window using Ivib, start the program with the name of a new source

�le. For example:

ivib myprog.icn

The Ivib window will appear with a blank "canvas" area, which represents the dialog

window to be created. At startup, the attributes of this window are the default Icon window

attributes. Before you learn how to change these attributes, here is how you add a button

to the dialog. Clicking the button in the top left-hand corner of the toolbar does this. Try

moving and resizing the resulting button by left-clicking on it with the mouse. To change

the label in the button, click on it so that the red borders appear in the edges. Then

press Alt-D. The dialog shown in Figure 18-12 (left) appears. Change the label by simply

changing the text in the "Label" �eld and clicking "Okay".

18.8. IVIB 355

Figure 18-12 Button (left) and Dialog (right) con�guration windows

As just mentioned, the dialog's attributes are initially the default window attributes.

To change these, select the menu option Canvas -> Dialog prefs. The window shown in

Figure 18-12 (right) appears. To change the dialog attributes:

1. Click on the Attribs tab

2. Click on the Add button

3. Edit the two text �elds so that they hold the attribute name and the attribute value

respectively; for example try adding "bg" and "pale blue".

4. Click on Apply.

5. Click on Okay.

Note that the button changes its background to pale blue too. Each object has its own

attributes that it can set to override the dialog attributes. Click on the button and press

Alt-D to bring up the button's con�guration dialog again. Now click on the Attribs tab of

this dialog and set the background color to white, for example. Then click okay and you

will see that the button's background changes to white.

You will recall from the previous example programs that some objects can be contained

in other objects, such as the Panel class. This is handled conveniently in Ivib. Add a Panel

object to the dialog by clicking on the Panel button (on the second row, fourth from the

left). A panel appears. Now drag the button into the panel. A message should appear

in the information label below the toolbar, "Placed inside container." Now try dragging

the panel about, and you will observe that the button moves too - it is now "inside" the

panel. Dragging it outside the panel's area moves it back out. This method applies to all

the container objects.

356 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

There are several buttons that operate on objects. The large "X" button deletes the

currently selected objects. Try selecting the button and deleting it. The arrow buttons are

"redo" and "undo" operations. Clicking on the undo button will undo the delete operation

and the button should reappear.

Now try saving your canvas. Press Alt-S, and select a �lename, or accept the default.

At the end of an ivib-enhanced Unicon source �le is a gigantic comment containing ivib's

layout information. This comment is ASCII text, but it is not really human-readable. If

the program is called, for example, myprog.icn, then this can be compiled with

unicon myprog

to give an executable �le myprog that, when run, will produce the same dialog shown in the

canvas area. Of course, the resulting dialog will not do anything, and it is then up to the

programmer to �ll in the blanks by editing myprog.icn.

Hopefully, following the above steps will give you an idea of how the Ivib program works.

Below are more details regarding the individual components, dialogs, and operations.

Moving, selecting and resizing

Select an object by clicking on it with the mouse. Its selection is indicated by red edges

around the corners. Multi-select objects by holding the shift key down and clicking on the

objects. The �rst selected object will have red corners; the others will have black corners.

There are several functions which operate on multiple objects and map some attribute of

the �rst selected object to the others; hence the distinction.

To move an object, select it by clicking on it with the left mouse button, and then

drag it. Note that dragging an object even by one pixel will set the X or Y position to an

absolute �gure, disturbing any carefully set up percentage speci�cation! Because this can

be irritating when done accidentally, the X and/or Y position may be �xed in the dialog

so that it cannot be moved in that plane. Alternatively, when selecting an object that you

do not intend to move, use the right mouse button instead.

To resize an object, select it and then click on one of the corners. The mouse cursor

will change to a resize cursor and the corner may be dragged. Note that, like the position

speci�cation, resizing an object will set the size to an absolute number and will also reset

the "use default" option. Again, this can be avoided by �xing the width and/or height in

the object's dialog box.

Dialog con�guration

This dialog, accessed via the menu selection Canvas -> Dialog prefs allows the user to con-

�gure some general attributes of the dialog being created. The tabs are described in this

section.

18.8. IVIB 357

Size The minimum width and height entries simply set the minimum dimensions of the

window. The width and height may be con�gured here, or more simply by resizing the

canvas area by clicking on the red bottom right-hand corner.

Attribs This has been described brie�y above; the Add button produces a new entry

that is then edited. The edited entry is placed in the table with Apply. The Delete button

deletes the currently highlighted selection.

Code generation The part of the code to setup the dialog is written into a method called

setup. If the "interpose in existing �le" option is checked, then the program will read the

present contents of the selected output �le up to the current setup method, interpose the

new setup, and copy the remainder out. This is useful if some changes have been made to

the �le output by a previous run. It is important to take a copy of the existing �le before

using this option, in case unexpected results occur.

The other options simply select which other methods should be produced. If a main

procedure is produced, then the result will be an executable program.

Other This tab allows the name of the dialog to be set, together with a �ag indicating

whether it is "modal" or not. If so, then a method called pending is produced. This method

is repeatedly called by the toolkit while it is waiting for events to occur.

Component con�guration

Each component dialog has a standard tabbed pane area for con�guration of attributes

common to all components. The tabs are as follows:

Position & size The X, Y, W and H options set the position and size of the object. The

drop-down list can be used for convenience, or a value may be entered by hand. The "�x"

buttons prevent the object from being moved or sized outside the given parameter in the

Canvas area. This is useful once an object's position has been �nalized, and you don't wish

to accidentally move it. The "use default" buttons mean that the width/height will be set

as the default for the object based on the parameters and the attributes. For example, a

button's size will be based on the label and the font. For some objects there is no default

size, so these buttons are shaded. The alignment of the object is also set from this tab.

Attribs This works in exactly the same way as the Attribs tab for the dialog, except that

these attributes apply only to the object.

358 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

Other This tab allows the name used in the output program code to be set. The "Draw

Border" button applies to some objects (see the reference section in Appendix C for further

information). If the "Is Shaded" button is clicked, then the initial state of the object will

be shaded. If the "Has initial focus" button is clicked, then this object will have the initial

keyboard focus when the dialog is opened.

Component details

Components are added to the dialog by clicking on the toolbar buttons, and dialogs are

produced by selecting the object and pressing Alt-D, as explained above. Most of the

dialogs are hopefully straightforward, but some warrant further explanation.

TextButton The dialog for this component includes an option for the button to be added

to a ButtonGroup structure. This is explained in detail shortly.

Border To select this component, rather than clicking inside the border, click in the area

at the bottom right hand corner. It can then be resized or moved. Now try dragging

another object, such as a CheckBox or Label and release it so that its top left-hand corner is

within the area in the bottom right-hand corner of the Border object. The CheckBox/Label

or whatever is now the title of the Border. Thus, any object can be in the title. To remove

the object from the Border, just drag it out. The alignment of the title object is set in the

dialog, but is by default left aligned.

Image Initially the Image object has an outline. When a �lename is entered into the

dialog however, the image itself is displayed.

CheckBox Customized up/down images may be set from the dialog, and a CheckBoxGroup

may be selected if one is available; this is explained in more detail shortly.

MenuBar This dialog enables a complete multi-level menu to be created. Clicking on

a line allows an item to be inserted at that point. Only menus can be inserted into the

lowest level. Clicking on an item will allow insertion, deletion, or editing of the particular

item. A CheckBoxGroup can be created by selecting multiple check boxes (by holding down

the Shift key while clicking on the lines) and clicking the button.

ScrollBar Both vertical and horizontal scroll bars are available; for details of how the

various options work, please see the reference manual for the toolkit.

18.8. IVIB 359

Table A table column is added by clicking the Add button; the details should then be

edited and the Apply button pressed to transfer the details to the table. A selected column

can be deleted with the Delete button. The drop-down list selects whether or not lines in

the table can be selected by clicking them.

TabSet Add a TabItem (a tabbed pane) by clicking the Add button. A single pane is

automatically present when the object is created. To switch between panes, select a TabItem

button. An asterisk appears by the entry. When the dialog exits, this TabItem is on the

front of the TabSet. To add items to the current pane, drag and drop them into it. The

whole of the item must be in the pane, and a con�rmation message appears to indicate

that the item has been added to the container. To take it out of the container, drag it out

of the pane. Note that the selected pane is the one that is con�gured to be initially at the

front when the dialog is opened.

MenuButton The MenuButton component is a menu system with one root menu. The

dialog is the same as MenuBar's except that the small icon can be con�gured.

OverlaySet The con�guration for an OverlaySet is very similar to that for a TabSet, except

that there are no tab labels to con�gure of course.

CheckBoxGroup This does not create an object, it places several selected CheckBox

objects into a CheckBoxGroup object. They act as coordinated radio buttons. To use this

button, select several CheckBox objects, and press the button.

The CheckBoxGroup is con�gured by selecting the menu item Canvas -> CheckBoxes.

The only attribute to be con�gured is the name of the CheckBoxGroup. Once a CheckBox-

Group has been created, it cannot be deleted. A CheckBox can be taken out or put into a

CheckBoxGroup from its con�guration dialog.

ButtonGroup The ButtonGroup operates in a very similar fashion to CheckBoxGroup, ex-

cept that it places buttons into a ButtonGroup.

Other editing functions

Other editing functions can be applied to the dialog being created. They are accessed either

via the toolbar, the Selection menu, or the Edit menu.

Delete The Delete function simply deletes all the selected objects; note that deleting a

container also deletes all the objects inside it.

360 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

Undo and Redo The Undo and Redo functions undo and redo changes. The size of

the bu�er used for storing undo information can be con�gured in the File -> Preferences

dialog; by default it allows 7 steps backward at any one time.

Center Horizontally The Center Horizontally operation sets the selected objects' X

position speci�cation to "50%", their alignment to center, and �xes them in that horizontal

position. To "un�x" an object, uncheck the "�x" box in its dialog box. Center vertically

naturally works in just the same way for the y position.

Align Horizontally This operation sets the X position and alignment of all the selected

objects to the X position and alignment of the �rst selected object. Whether the objects

end up appearing to be left-, center-, or right-aligned will depend on the alignment of the

�rst selected object. "Align vertically" works just the same way.

Grid To use the Grid function, place several items roughly in a grid, select them all,

perform the operation, and hopefully they will be nicely aligned.

Copy The Copy function simply creates a duplicate of each selected object.

Equalize widths This function simply copies the width of the �rst selected object to all

of the other selections. "Equalize heights" naturally does the same for heights.

Even Space Horizontally This operation moves the objects so that they are equally

spaced between the leftmost and rightmost objects of the current selections, which are not

moved. "Even Space Vertically" does the same vertically.

Reorder The Reorder function is used to reorder the selected objects in the program's

internal lists. This is useful so that they are produced in the program output in the desired

order, for example to ensure that the tab key moves from object to object in the right

sequence. By selecting several objects and using reorder, those objects appear �rst in

sequence in the order in which they were selected.

18.9 Summary

The Unicon GUI toolkit o�ers a full-featured, attractive way of constructing interfaces.

The toolkit has many features�tables, tabbed property sheets, and multi-line text editing

capability�that are not present in Icon's vidgets GUI library. Many components present in

both libraries are more �exible in the GUI toolkit, supporting fonts, colors, and graphics

that the vidgets library does not handle. The ivib interface builder tool provides program-

mers with easy access to the GUI toolkit.

18.9. SUMMARY 361

Object-orientation mainly a�ects this class library's extensibility, although it also con-

tributes to the simplicity of the design. Inheritance, including multiple inheritance, is used

extensively in the 37 classes of the GUI toolkit. Inheritance is the main object-oriented

feature that could not be easily mimicked in a procedural toolkit such as the vidgets library,

and inheritance is the primary extension mechanism.

362 CHAPTER 18. OBJECT-ORIENTED USER INTERFACES

Part IV

Appendices

363

Appendix A

Language Reference

Unicon is expression-based. Nearly everything is an expression, including the common con-

trol structures such as while loops. The only things that are not expressions are declarations

for procedures, methods, variables, records, classes, and linked libraries.

In the reference, types are listed for parameters and results. If an identi�er is used, any

type is allowed. For results, generator expressions are further annotated with an asterisk

(*) and non-generators that can fail are annotated with a question mark (?). A question

mark by itself (short for null?) denotes a predicate whose success or failure is what matters;

the predicate return value (&null) is not signi�cant.

A �Road Narrows� sign in either margin � like the sign reproduced here � indicates

that the function or operation is not thread-safe and should be protected from di�erent

threads executing it at the same time (the sign is intended to suggest that only one thing

should be allowed through at any one time). In some cases, notably the augmented op-

erations (+:= etc.) and the 3D operations, the entire group is not thread-safe. In these

cases the signs that would be beside the individual functions or operations are replaced by

a single cautionary sign at the head of the group. In a few instances, a small sign showing

parallel arrows is used to highlight a general comment about concurrency (rather than a

speci�c thread-safety issue).

A.1 Immutable Types: Numbers, Strings, Csets, Pat-

terns

Unicon's immutable types are integers, real numbers, strings, and csets. Values of these

types cannot change. Operators and functions on immutable types produce new values

rather than modify existing ones. The simplest expressions are literal values, which occur

only for immutable types. A literal value evaluates to itself.

365

366 APPENDIX A. LANGUAGE REFERENCE

Integer

Integers may have an arbitrary magnitude. Decimal integer literals are contiguous se-

quences of the digits 0 through 9, optionally preceded by a + or - sign. Su�xes K, M, G,

T, or P multiply a literal by 1024, 1024�2, 1024�3, 1024�4, and 1024�5, respectively.

Radix integer literals use the format radixRdigits, where radix is a base in the range 2

through 36, and digits consists of one or more numerals in the supplied radix. After values

0-9, the letters A-Z are used for values 10-35. Radix literals are case insensitive, unlike the

rest of the language, so the R may be upper or lower case, as may the following alphabetic

digits.

Large Integers

Unicon automatically converts an integer value into a �large integer� value when its mag-

nitude exceeds the limits of the underlying hardware's native integer representation. Large

integers are interchangeable with native integers in most circumstances, but there are a few

places where only a native integer (here denoted by i, j and k) is acceptable.

� i to j by k and, by implication, !i

� seq(i,j)

� Assignment to integer valued keywords

� expr \ i

� exit(i)

A number of other standard functions will cause a runtime error � or fail, depending

on the value of &error � if given a large integer as a parameter (for example, delay or

the second parameter of get), but it is di�cult to envisage a situation where a large

integer value makes sense in most of these contexts. Perhaps, as the capabilities of

computers increase, this view will come to be seen as a failure of imagination.

The penalty paid for supporting large integers if they are not used is very small so,

although the support for large integers can be removed via a build option, almost all

implementations provide it (and it is enabled by default).

Note that large integer literals in a program are converted to actual large integers when

evaluated during program execution. Consequently, such literals should not be placed in

loops or other places in which they are evaluated frequently. Arithmetic operations on

native integers are considerably faster than using large integers so, if they can avoided

without major e�ort, it is probably worth doing so.

A.1. IMMUTABLE TYPES: NUMBERS, STRINGS, CSETS, PATTERNS 367

Real

Reals are double-precision �oating-point values. Real decimal literals are contiguous se-

quences of the digits 0 through 9, with a decimal point (a period) somewhere within or

at either end of the digits. Real exponent literals use the format numberEinteger ; E may

be upper or lower case. Note that the integer must be a decimal integer (including the

optional + or - sign); Radix integer literals are not supported in an exponent.

String

Strings are sequences of 0 or more characters, where a character is a value with a platform-

dependent size and symbolic representation. On platforms with multi-byte character sets,

multiple Icon characters represent a single symbol using a platform-dependent encoding.

String literals consist of 0 or more characters enclosed in double quotes. A string literal

may include escape sequences that use multiple characters to encode special characters.

The escape sequences are given in Table A-1. Incomplete string literals may be continued

on the next line if the last character on a line is an underscore (_). In that case, the

underscore, the newline, and any whitespace at the beginning of the next line are not part

of the string literal.

Table A-1

Escape Codes and Characters

Code Character Code Character Code Character Code Character

\b backspace \d delete \e escape \f form feed

\l line feed \n newline \r carriage return \t tab

\v vertical tab \' quote \" double quote \\ backslash

\ooo octal \xhh hexadecimal \�x Control-x

Cset

Csets are sets of 0 or more characters. Cset literals consist of 0 or more characters enclosed

in single quotes. As with strings, a cset literal may include escape sequences that use

multiple characters to encode special characters.

Pattern

Patterns are an immutable structure type used in matching, parsing or categorizing strings.

Pattern literals consist of regular expressions enclosed in less than (<) and greater than

(>) symbols. Within such marks, operators and reserved words do not have their normal

meaning; instead concatenation becomes the implicit operator and a few characters have

368 APPENDIX A. LANGUAGE REFERENCE

special interpretations, including asterisk, plus, question mark, curly braces, square brack-

ets, and the period character. In addition to pattern literals, patterns may be composed

using a number of pattern constructor operators and functions.

A.2 Mutable Types: Containers and Files

Mutable types' values may be altered. Changes to a mutable value a�ect its allocated

memory or its associated OS resource. Mutable types include lists, tables, sets, records,

objects, and �les, including windows, network connections and databases. These types are

described in the entries for constructors that create them. Structure types hold collections

of elements that may be of arbitrary, mixed type. Mutable types are not thread-safe.

List

Lists are dynamically sized, ordered sequences of zero or more values. They are constructed

by function, by an explicit operator, or implicitly by a call to a variable argument procedure.

They change size by stack and queue functions.

Table

Tables are dynamically sized, unordered mappings from keys to elements. They are con-

structed by function. The keys may be of arbitrary, mixed type.

Set

Sets are unordered collections. They are constructed by function.

Record

Records are ordered, �xed length sequences of elements accessed via named �elds.

Object

Objects are ordered, �xed length sequences of elements that may be accessed via named

�elds and methods. Accessing an object's �elds from outside its methods (using it as a

record) is legal but deprecated.

File

Files are system resources corresponding to data on secondary storage, areas on users'

displays, network connections, or databases. Operations on �les cause input or output side

A.3. VARIABLES 369

e�ects on the system outside of the program execution.

A.3 Variables

Variables are names for locations in memory where values can be stored. Values are stored

in variables by assignment operators. A variable name begins with a letter or underscore,

followed by zero or more letters, underscores, or digits. Variable names are case-sensitive.

A variable name cannot be the same as one of Icon's reserved words, nor can it be the same

as one of Icon's keywords if it follows an adjacent ampersand character. Variables can hold

values of any type, and may hold di�erent types of values at di�erent times during program

execution.

There are four kinds of variables: global, local, static, and class. Global, local, and

static variables are declared by introducing one of the reserved words (global, local, or

static) followed by a comma-separated list of variable names. Global variables are declared

outside of any procedure or method body, while local and static variables are declared at

the beginning of procedure and method bodies. Local and static variable names may be

followed by an assignment operator and an initial value; otherwise variables other than

procedure and class names begin with the value &null.

Aliasing occurs when two or more variables refer to the same value, such that operations

on one variable might a�ect the other. Aliasing is a common source of program bugs.

Variables holding integer, real, string, or cset values are never aliased, because those types

are immutable.

Global

Global variables are visible everywhere in the program, and exist at the same location for

the entire program execution. Declaring a procedure declares a global variable initialized

to the procedure value that corresponds to the code for that procedure. Global variables

are not thread-safe.

Local

Local variables exist and are visible within a single procedure or method only for the

duration of a single procedure invocation, including suspensions and resumptions, until the

procedure returns, fails, or is vanquished by the return or failure of an ancestor invocation

while it is suspended. Undeclared variables in any scope are implicitly local, but this

dangerous practice should be avoided in large programs.

Variables that are declared as parameters are local variables that are preinitialized to

the values of actual parameters at the time of a procedure or method invocation. The

semantics of parameter passing are the same as those of assignment.

370 APPENDIX A. LANGUAGE REFERENCE

Static

Static variables are visible only within a single procedure or method, but exist at the same

location for the entire program execution. The value stored in a static variable is preserved

between multiple calls to the procedure in which it is declared. Static variables are not

thread-safe.

Class

Class variables are visible within the methods of a declared class. Class variables are created

for each instance (object) of the class. The lifespan of class variables is the life span of the

instance to which they belong. The value stored in a class variable is preserved between

multiple calls to the methods of the class in which it is declared. Class variables are not

thread-safe.

A.4 Keywords

Keywords are names with global scope and special semantics within the language. They

begin with an ampersand character. Some keywords are names of common constant values,

while others are names of variables that play a special role in Icon's control structures. The

name of the keyword is followed by a : if it is read-only, or a := if it is a variable, followed

by the type of value the keyword holds.

&allocated : integer* report memory use

&allocated generates the cumulative number of bytes allocated in heap, static, string, and

block regions during the entire program execution.

&ascii : cset ASCII character set

&ascii produces a cset corresponding to the ASCII characters.

&clock : string time of day

&clock produces a string consisting of the current time of day in hh:mm:ss format. See also

keyword &now.

&collections : integer* garbage collection activity

&collections generates the number of times memory has been reclaimed in heap, static,

string, and block regions.

&column : integer source code column

&column returns the source code column number of the current execution point. This is

especially useful for execution monitoring.

&cset : cset universal character set

A.4. KEYWORDS 371

&cset produces a cset constant corresponding to the universal set of all characters.

¤t :co-expression current co-expression

¤t produces the co-expression that is currently executing.

&date : string today's date

&date produces the current date in yyyy/mm/dd format.

&dateline : string time stamp

&dateline produces a human-readable time stamp that includes the day of the week, the

date, and the current time, down to the minute.

&digits : cset digit characters

&digits produces a cset constant corresponding to the set of digit characters 0-9.

&dump := integer termination dump

&dump controls whether the program dumps information on program termination or not. If

&dump is nonzero when the program halts, a dump of local and global variables and their

values is produced.

&e : real natural log e

&e is the base of the natural logarithms, 2.7182818...

&errno : integer? system error code

&errno is the platform-speci�c error code for the previous failed system call, if there was

one.

&error := integer fail on error

&error controls whether runtime errors are converted into expression failure. By assigning

to this keyword, error conversion can be enabled or disabled for speci�c sections of code.

The integer &error is decremented by one on each error, and if it reaches zero, a runtime

error is generated. Assigning a value of -1 e�ectively disables runtime errors inde�nitely.

There is not one &error integer for each thread � the value applies to the whole program,

not just the thread that sets it.

&errornumber : integer? runtime error code

&errornumber is the error number of the last runtime error that was converted to failure, if

there was one.

&errortext : string? runtime error message

&errortext is the error message of the last error that was converted to failure.

&errorvalue : any? o�ending value

&errorvalue is the erroneous value of the last error that was converted to failure.

&errout : �le standard error �le

372 APPENDIX A. LANGUAGE REFERENCE

&errout is the standard error �le. It is the default destination to which runtime errors and

program termination messages are written.

&eventcode := integer program execution event

&eventcode indicates the kind of behavior that occurred in a monitored program at the time

of the most recent call to EvGet(). This keyword is only supported under interpreters built

with execution monitoring support.

&eventsource := co-expression source of program execution events

&eventsource is the co-expression that transmitted the most recent event to the current

program. This keyword is null unless the program is an execution monitor. See also

&source. Under a monitor coordinator, &eventsource is the coordinator and global variable

Monitored is the target program.

&eventvalue := any program execution value

&eventvalue is a value from the monitored program that was being processed at the time

of the last program event returned by EvGet(). This keyword is only supported under

interpreters built with execution monitoring support.

&fail : none expression failure

&fail never produces a result. Evaluating it always fails.

&features : string* platform features

&features generates strings that indicate the non-portable features supported on the current

platform.

&�le : string? current source �le

&file is the name of the source �le for the current execution point, if there is one. This is

especially useful for execution monitoring.

&host : string host machine name

&host is a string that identi�es the host computer Icon is running on.

&input : �le standard input �le

&input is a standard input �le. It is the default source for �le input functions.

&lcase : cset lowercase letters

&lcase is a cset consisting of the lowercase letters from a to z.

&letters : cset letters

&letters is a cset consisting of the upper and lowercase letters A-Z and a-z.

&level : integer call depth

&level gives the nesting level of the currently active procedure call. This keyword is not

supported under the optimizing compiler, iconc.

A.4. KEYWORDS 373

&line : integer current source line number

&line is the line number in the source code that is currently executing.

&main : co-expression main task

&main is the co-expression in which program execution began.

&now : integer current time

&now produces the current time as the number of seconds since the epoch beginning 00:00:00

GMT, January 1, 1970. See also &clock

&null : null null value

&null produces the null value.

&output : �le standard output �le

&output is the standard output �le. It is the default destination for �le output.

&phi : real golden ratio

&phi is the golden ratio, 1.618033988...

&pi : real pi

&pi is the value of pi, 3.141592653...

&pos := integer string scanning position

&pos is the position within the current subject of string scanning. It is assigned implicitly

by entering a string scanning environment, moving or tabbing within the environment, or

assigning a new value to &subject. &pos may not be assigned a value that is outside the

range of legal indices for the current &subject string. Each thread has its own instance of

&pos; assigning a value to it in one thread does not a�ect the string scanning environment

of any another thread.

&progname := string program name

&progname is the name of the current executing program.

&random := integer random number seed

&random is the seed for random numbers produced by the random operator, unary ?. It is

assigned a di�erent sequence for each execution but may be explicitly set for reproducible

results. Each thread has its own instance of &random; setting it in one thread does not

a�ect the random sequence produced by another thread.

®ions : integer* region sizes

®ions produces the sizes of the static region, the string region, and the block region. The

�rst result is zero; it is included for backward compatibility reasons.

&source : co-expression invoking co-expression

374 APPENDIX A. LANGUAGE REFERENCE

&source is the co-expression that activated the current co-expression.

&storage : integer* memory in use

&storage gives the amount of memory currently used within the static region, the string

region, and the block region. The �rst result is always zero and is included for backward

compatibility reasons.

&subject := string string scanning subject

&subject holds the default value used in string scanning and analysis functions. Assigning to

&subject implicitly assigns the value 1 to &pos. Each thread has its own instance of &subject;

assigning a value to it in one thread does not a�ect the string scanning environment of any

another thread.

&time : integer elapsed time

&time gives the number of milliseconds of CPU time that have elapsed since the program

execution began. For wall clock time see &now or &clock.

&trace := integer trace program

&trace speci�es the number of procedure actions (call, return, suspend, resume, or fail) for

which program execution will be traced. 0 means no tracing. A negative value enables

tracing with no limit. &trace can be set outside the program using the TRACE environment

variable, or set to -1 via the -t compiler option.

&ucase : cset upper case letters

&ucase is a cset consisting of all the upper case letters from A to Z.

&version : string version

&version is a string that indicates which version of Unicon or Icon is executing.

Graphics keywords

Several of the graphics keywords are variables with assignment restricted to value of a

particular type or types. Graphics keywords are more fully described in [Griswold98].

&col := integer mouse location, text column

&col is the mouse location in text columns during the most recent Event(). If &col is assigned,

&x gets a corresponding pixel location in the current font on &window.

&control : integer control modi�er �ag

&control produces the null value if the control key was pressed at the time of the most

recently processed event, otherwise &control fails.

&interval : integer time since last event

&interval produces the time between the most recently processed event and the event that

preceded it, in milliseconds.

A.4. KEYWORDS 375

&ldrag : integer left mouse button drag

&ldrag produces the integer that indicates a left button drag event.

&lpress : integer left mouse button press

&lpress produces the integer that indicates a left button press event.

&lrelease : integer left mouse button release

&lrelease produces the integer that indicates a left button release event.

&mdrag : integer middle mouse button drag

&mdrag produces the integer that indicates a middle button drag event.

&meta : integer meta modi�er �ag

&meta produces the null value if the meta (Alt) key was pressed at the time of the most

recently processed event, otherwise &meta fails.

&mpress : integer middle mouse button press

&mpress produces the integer that indicates a middle button press event.

&mrelease : integer middle mouse button release

&mrelease produces the integer that indicates a middle button release event.

&pick : string* pick 3D objects

&pick generates the object IDs selected at point (&x,&y) at the most recent Event(), if the

event was read from a 3D window with the attribute pick=on.

&rdrag : integer right mouse button drag

&rdrag produces the integer that indicates a right button drag event.

&resize : integer window resize event

&resize produces the integer that indicates a window resize event.

&row := integer mouse location, text row

&row is the mouse location in text rows during the most recent Event(). If &row is assigned,

&y gets a corresponding pixel location in the current font on &window.

&rpress : integer right mouse button press

&rpress produces the integer that indicates a right button press event.

&rrelease : integer right mouse button release

&rrelease produces the integer that indicates a right button release event.

&shift : integer shift modi�er �ag

&shift produces the null value if the shift key was pressed at the time of the most recently

processed event, otherwise &shift fails.

376 APPENDIX A. LANGUAGE REFERENCE

&window := window default window

&window is the default window argument for all window functions. &window may be assigned

any value of type window.

&x := integer mouse location, horizontal

&x is the horizontal mouse location in pixels during the most recent Event(). If &x is assigned,

&col gets a corresponding text coordinate in the current font on &window.

&y := integer mouse location, vertical

&y is the vertical mouse location in pixels during the most recent Event(). If &y is assigned,

&row gets a corresponding text coordinate in the current font on &window.

A.5 Control Structures and Reserved Words

Unicon has many reserved words. Some are used in declarations, but most are used in

control structures. This section summarizes the syntax and semantics introduced by all

the reserved words of the language. The reserved word under discussion is written in a

bold font. The surrounding syntax uses square brackets for optional items and an asterisk

for items that may repeat.

abstract declare unimplemented method

The abstract reserved word declares that a named method must by provided by subclasses

that implement a given class. The presence of one or more abstract methods implies that

a class itself is abstract and should only be instantiated indirectly via a subclass that

implements the abstract methods.

break expr exit loop

The break expression exits the nearest enclosing loop. expr is evaluated and treated as the

result of the entire loop expression. If expr is another break expression, multiple loops will

be exited.

expr1 to expr2 by expr3 step increment

The by reserved word supplies a step increment to a to-expression (the default is 1).

case expr of { ? } select expression

The case expression selects one of several branches of code to be executed.

class name [: superclass]* (�elds) methods [initially] end class declaration

The class declaration introduces a new object type into the program. The class declaration

may include lists of superclasses, �elds, methods, and an initially section.

create expr create co-expression

A.5. CONTROL STRUCTURES AND RESERVED WORDS 377

The create expression produces a new co-expression to evaluate expr.

critical x : expr serialize on x

The critical expression serializes the execution of expr on value x . Value x must be a mutex

or protected object that has a mutex. The critical section causes x to be locked before

evaluating expr and unlocked afterward. Breaking, returning or failing out of expr does

not automatically unlock x .

default : expr default case branch

The default branch of a case expression is taken if no other case branch is taken.

do expr iteration expression

The do reserved word speci�es an expression to be executed for each iteration of a preceding

while, every, or suspend loop (yes, suspend is a looping construct).

if expr1 then expr2 else expr3 else branch

The else expression is executed if expr1 fails to produce a result.

end end of declared body

The reserved word end signi�es the end of a procedure, method, or class body.

every expr1 [do expr2] generate all results

The every expression always fails, causing expr1 to be resumed for all its results.

fail produce no results

The fail reserved word causes the enclosing procedure or method invocation to terminate

immediately and produce no results. The invocation may not be resumed. See also the

keyword &fail, which produces a less drastic expression failure. fail is equivalent to return

&fail

global var [, var]* declare global variables

Reserved word global introduces one or more global variables.

if expr then expr2 [else expr3] conditional expression

The if expression evaluates expr2 only if expr1 produces a result.

import name [, name]* import package

The import declaration introduces the names from package name so that they may be used

without pre�xing them with the package name.

initial expr execute on �rst invocation

The initial expression is executed the �rst time a procedure or method is invoked. Any sub-

sequent invocations (of the procedure or method) will not proceed until the initial expression

has �nished execution. A recursive invocation of the procedure inside the initial expression

causes a runtime error.

378 APPENDIX A. LANGUAGE REFERENCE

initially [(parameters)] initialize object

The initially section de�nes a special method that is invoked automatically when an object

is created. If the initially section has declared parameters, they are used as the parameters

of the constructor for objects of that class.

invocable procedure [, procedure]* allow string invocation

invocable all allow string invocation

The invocable declaration indicates that procedures may be used in string invocation.

link �lename [, �lename]* link code module

The link declaration directs that the code in �lename will be added to the executable when

this program is linked. �lename may be an identi�er or a string literal �le path.

local var [:=initializer] [, var [:= initializer]]* declare local variables

The local declaration introduces local variables into the current procedure or method. Vari-

able declarations must be at the beginning of a procedure or method.

method name (params) body end declare method

The method declaration introduces a procedure that is invoked with respect to instances of

a given class. The params and body are as in procedures, described below.

next iterate loop

The next expression causes a loop to immediate skip to its next iteration.

not expr negate expression failure

The not expression fails if expr succeeds, and succeeds (producing null) if expr fails.

case expr of { ? } introduce case branches

The of reserved word precedes a special compound expression consisting of a sequence of

case branches of the form expr : expr. Case branches are evaluated in sequence until one

matches the expression given between the word case and the of.

package name declare package

The package declaration segregates the global names in the current source �le. In order to

refer to them, client code must either import the package, or prepend name. (the package

name followed by a period) onto the front of a name in the package.

procedure name (params) body end declare procedure

The procedure declaration speci�es a procedure with parameters and code body. The pa-

rameters are a comma-separated list of zero or more variable names. The last parameter

may be su�xed by [] to indicate that following parameters will be supplied to the proce-

dure in a list. The body is an optional sequence of local and static variable declarations,

followed by a sequence of zero or more expressions.

A.5. CONTROL STRUCTURES AND RESERVED WORDS 379

record name (�elds) declare record

The record declaration introduces a new record type into the program.

repeat expr in�nite loop

The repeat expression introduces an in�nite loop that will reevaluate expr forever. Of

course, expr may exit the loop or terminate the program in any number of ways.

return expr return from invocation

The return expression exits a procedure or method invocation, producing expr as its result.

The invocation may not be resumed.

static var [, var]* declare static variables

The static declaration introduces local variables that persist for the entire program execution

into the current procedure or method body. Variable declarations must be at the beginning

of a procedure or method.

suspend expr [do expr] produce result from invocation

The suspend expression produces one or more results from an invocation for use by the

calling expression. The procedure or method may be resumed for additional results if the

calling expression needs them. Execution in the suspended invocation resumes where it

left o�, in the suspend expression. A single evaluation of a suspend expression may produce

multiple results for the caller if expr is a generator. An optional do expression is evaluated

each time the suspend is resumed.

if expr1 then expr2 conditional expression

The expr2 following a then is evaluated only if expr1 following an if succeeds. In that case,

the result of the whole expression is the result of expr2.

thread expr create thread

The thread expression creates and launches a concurrent thread to evaluate expr.

expr1 to expr2 generate arithmetic sequence

The to expression produces the integer sequence from expr1 to expr2. Neither expr1 nor

expr2 may be a large integer.

until expr1 [do expr2] loop until success

The until expression loops as long as expr1 fails.

while expr1 [do expr2] loop until failure

The while expression loops as long as expr1 succeeds.

380 APPENDIX A. LANGUAGE REFERENCE

A.6 Operators and Built-in Functions

Icon's built-ins operators and functions utilize automatic type conversion to provide �ex-

ibility and ease of programming. Automatic type conversions are limited to integer, real,

string, and cset data types. Conversions to a "number" will convert to either an integer or

a real, depending whether the value to be converted has a decimal. Conversions between

numeric types and csets go through an intermediate conversion to a string value and are

not generally useful.

Indexes start at 1. Index 0 is the position after the last element of a string or list. Neg-

ative indexes are positions relative to the end. Subscripting operators and string analysis

functions can take two indices to specify a section of the string or list. When two indices are

supplied, they select the same string section whether they are in ascending or descending

order.

Operators

The result types of operators are the same as the operand types except as noted.

Unary operators

! x : any* generate elements

The generate operator produces the elements of x. If x is a string variable or refers to a

structure value, the generated elements are variables that may be assigned. !i is equivalent

to (1 to i) for integer i. List, record, string, and �le elements are generated in order, with

string elements consisting of one-letter substrings. Set and table elements are generated in

an unde�ned order. If x is a messaging connection to a POP server, !x produces complete

messages as strings. Other types of �les, including network connections, produce elements

consisting of text lines. Care should be taken when generating the elements of a variable

that might change during the generation.

/ x null test

\ x nonnull test

The null and nonnull tests succeed and produce their operand if it satis�es the test.

- number negate

+ number numeric identity

Negation reverses the sign of its operand. Numeric identity does not change its operand's

value other than to convert to a required numeric type.

= pattern anchored pattern match

= string tab/match

A.6. OPERATORS AND BUILT-IN FUNCTIONS 381

The unary equals operator performs a pattern match on its operand in the current string

scanning environment and advances the position beyond the matched string if successful.

When the operand is a string, this is equivalent to calling tab(match(s)) on its operand.

* x : integer? size

The size operator returns the number of elements in string, cset, thread message queue or

structure x. Other types are converted to a string and the size of the string is returned.

Runtime error 112 occurs if the conversion to a string fails.

. x : x dereference

The dereference operator returns the value x.

? x : any random element

The random operator produces a random element from x. If x is a string, ?x produces a

random one-letter substring. The result is a variable that may be assigned. If x is a positive

integer, ?x produces a random integer between 1 and x. ?0 returns a real in the range from

0.0-1.0.

| x : x* repeated alternation

The repeated alternation operator generates results from evaluating its operand over and

over again in an in�nite loop.

� cset cset complement

The complement operator returns a cset consisting of all characters not in its operand.

� co-expression refresh co-expression

The refresh operator restarts a co-expression so the next time it is activated it will begin

with its �rst result.

Binary operators

Most binary operators may be augmented with an assignment � see page 429 for the full

list. If such an operator is followed by a := the left operand must be a variable, and the

expression x op:= y is equivalent to x := x op y. For example, x +:= 5 is equivalent but faster

than the expression x := x+5. In general, augmented operators are not thread-safe. They

are only safe if applied to a local (non static) variable that has an atomic type. For example,

sets are mutable (not safe anywhere) whereas csets are atomic (unsafe if global or static;

safe if local).

number1 � number2 power

number1 * number2 multiply

number1 / number2 divide

number1 % number2 modulo

382 APPENDIX A. LANGUAGE REFERENCE

number1 + number2 add

number1 - number2 subtract

The arithmetic operators may be augmented.

set1 ** set2 intersection

set1 ++ set2 union

set1 -- set2 di�erence

The set operators work on sets, csets, or tables (via their keys). They may be augmented.

In table union and intersection, the result table values are those of the left operand if

available.

x . name �eld

object . name (params) method invocation

object $ superclass .name (params) superclass method invocation

The �eld operator selects �eld name out of a record, object, or package. For objects, name

may be a method, in which case the �eld operator is being used as part of a method

invocation. Superclass method invocation consists of a dollar sign and superclass name

prior to the �eld operator.

number1 = number2 equal

number1 �= number2 not equal

number1 < number2 less than

number1 <= number2 less or equal

number1 > number2 greater than

number1 >= number2 greater or equal

string1 == string2 string equal

string1 �== string2 string not equal

string1 << string2 string less than

string1 <<= string2 string less or equal

string1 >> string2 string greater than

string1 >>= string2 string greater or equal

x1 === x2 equivalence

x1 �=== x2 non equivalence

Relational operators produce their right operand if they succeed. They may be augmented.

var := expr assign

var1 :=: var2 swap

var <- expr reversible assignment

var1 <-> var2 reversible swap

The several assignment operators all require variables for their left operands, and swap

operators also require variables for their right operands.

Assignment operators are usually thread safe but there are some situations where they

A.6. OPERATORS AND BUILT-IN FUNCTIONS 383

are not. See the discussion of thread safe assignment without a mutex (on page 150) for

details. If in doubt, protect the global variable with a mutex.

string ? expr scan string

String scanning evaluates expr with &subject equal to string and &pos starting at 1. It may

be augmented.

string ?? pattern pattern match

Pattern matching produces the substring(s) where pattern occurs within a string. It is

conducted within a new string scanning environment as per string scanning above. It may

be augmented.

x ! y apply

The binary bang (exclamation) operator calls x, using y as its parameters. x may be a

procedure, or the string name of a procedure. y is a list or record.

[x] @ co-expression activate co-expression

The activate operator transfers execution control from the current co-expression to its right

operand co-expression. The transmitted value is x, or &null if no left operand is supplied.

Activation may be augmented.

[x] @> [y] send message

[x] @>> [y] blocking send message

The send operator places a message in another thread's public inbox, or in the current

thread's public outbox. The normal version fails if the box is full; the blocking version

waits for space to become available.

[x] <@ [y] receive message

[x] <<@ [y] blocking receive message

The receive operator obtains a message from another thread's public outbox, or the current

thread's public inbox. The normal version fails if the box is empty; the blocking version

waits for a message to become available.

string1 || string2 concatenation

pattern1 || pattern2 pattern concatenation

list1 ||| list2 list concatenation

The concatenation operators produce new values (or patterns that will match values) con-

sisting of the left operand followed by the right operand. They may be augmented.

x1 & x2 conjunction

expr1 | expr2 alternation

pattern1 .| pattern2 pattern alternation

The conjunction operator produces x2 if x1 succeeds. Conjunction may be augmented. The

alternation operator produces the results of expr1 followed by the results of expr2; it is a

384 APPENDIX A. LANGUAGE REFERENCE

generator. The pattern alternation operator produces a pattern that will match the results

of pattern1 followed by the results of pattern2.

p -> v conditional assignment

p => v immediate assignment

.> v cursor position assignment

The conditional assignment operator assigns the substring matched by its left operand (a

pattern) to a variable (its right operand) at the end of matching, if the whole pattern

match succeeds. The immediate assignment operator assigns the substring matched by its

left operand (a pattern) to a variable (its right operand) at the point during the match that

the pattern match of the left operand occurs, whether or not the whole match succeeds.

The cursor position assignment operator assigns the cursor position at a point during a

pattern match to a variable (its operand).

x1 \ integer limitation

The limitation operator fails if it is resumed after its left operand has produced a number

of results equal to its right operand.

(expr [, expr]*) mutual evaluation

p (expr [, expr]*) invocation

By themselves, parentheses are used to override operator precedence in surrounding ex-

pressions. A comma-separated list of expressions is evaluated left to right, and fails if any

operand fails. Its value is the right of the rightmost operand.

When preceded by an operand, parentheses form an invocation. The operand may be

a procedure, a method, a string that is converted to a procedure name, or an integer that

selects the parameter to use as the result of the entire expression.

[] empty list creation

[expr [, expr]*] list creation

[: expr :] list comprehension

[expr : expr [; expr : expr]*] initialized table creation

expr1 [expr2 [, expr]*] subscript

expr1 [expr2 : expr3] subsection

expr1 [expr2 +: expr3] forward relative subsection

expr1 [expr2 -: expr3] backward relative subsection

With no preceding operand, square brackets create and initialize lists. Initializer values

are comma-separated, except in list comprehension where the expression's values (ob-

tained as if by every) are used to provide the initial list elements. When preceded by

an operand, square brackets form a subscript or subsection. Multiple comma-separated

subscript operands are equivalent to separate subscript operations with repeating square

brackets, so x[y,z] is equivalent to x[y][z].

A.6. OPERATORS AND BUILT-IN FUNCTIONS 385

Subscripting selects an element from a structure and allows that element to be assigned

or for its value to be used. Lists and strings are subscripted using 1-based integer indices,

tables are subscripted using arbitrary keys, and records may be subscripted by either string

�eldname or 1-based integer index. Message connections may be subscripted by string

header to obtain server responses; POP connections may also be subscripted by 1-based

integer message numbers.

Subsectioning works on strings and lists. For strings, the subsection is a variable if the

string was a variable, and assignment to the subsection makes the variable hold the new,

modi�ed string constructed by replacing the subsection. For lists, a subsection is a new list

that contains a copy of the elements from the original list.

expr1 ; expr2 bound expression

A semicolon bounds expr1. Once expr2 is entered, expr1 cannot be resumed for more results.

The result of expr2 is the result of the entire expression. Semicolons are automatically

inserted at ends of lines wherever it is syntactically allowable to do so. This results in

many implicitly bounded expressions.

{ expr [; expr]* } compound expression

p { expr [, expr]* } programmer de�ned control structure

Curly brackets typically cause a sequence of bounded expressions to be treated as a single

expression. Preceded by a procedure value, curly brackets introduce a programmer de�ned

control structure in which a co-expression is created for each argument; the procedure is

called with these co-expressions as its parameters, and can determine for itself whether,

and in what order, to activate its parameters to obtain values.

Built-in functions

Unicon's built-in functions are a key element of its ease of learning and use. They provide

substantial functionality in a consistent and easily memorized manner.

In addition to automatic type conversion, built-in functions make extensive use of op-

tional parameters with default values. Default values are indicated in the function descrip-

tions, with the exception of string scanning functions. String scanning functions end with

three parameters that default to the string &subject, the integer &pos, and the end of string

(0) respectively. The position argument defaults to 1 when the string argument is supplied

rather than defaulted.

abs(N) : number absolute value

abs(N) produces the maximum of N or -N.

acos(r) : real arc cosine

acos(r) produces the arc cosine of r. The argument is given in radians.

386 APPENDIX A. LANGUAGE REFERENCE

any(c, s, i, i) : integer? cset membership

String scanning function any(c,s,i1,i2) produces min(i1,i2)+1 if s[min(i1,i2)] is in cset c, but fails

otherwise.

args(x,i) : any number of arguments

args(p) produces the number of arguments expected by procedure p. If p takes a variable

number of arguments, args(p) returns a negative number to indicate that the �nal argument

is a list conversion of an arbitrary number of arguments. For example, args(p) for a procedure

p with formal parameters (x, y, z[]) returns a -3. args(C) produces the number of arguments in

the current operation in co-expression C, and args(C,i) produces argument number i within

co-expression C.

asin(real) : real arc sine

asin(r1) produces the arc sine of r1. The argument is given in radians.

atan(r, r:1.0) : real arc tangent

atan(r1) produces the arc tangent of r1. atan(r1,r2) produces the arc tangent of r1 and r2.

Arguments are given in radians.

atanh(r) : real inverse hyperbolic tangent

atanh(r) produces the inverse hyperbolic tangent of r. Arguments are given in radians.

bal(cs:&cset, cs:'(', cs:')', s, i, i) : integer* balance string

String scanning function bal(c1,c2,c3,s,i1,i2) generates the integer positions in s at which a

member of c1 in s[i1:i2] is balanced with respect to characters in c2 and c3.

center(s, i:1, s:" ") : string center string

center(s1,i,s2) produces a string of i characters. If i > *s1 then s1 is padded equally on the

left and right with s2 to length i. If i < *s1 then the center i characters of s1 are produced.

channel(TH) : list communications channel

channel(TH) creates a communications channel between the current thread and thread TH.

char(i) : string encode character

char(i) produces a string consisting of the character encoded by integer i.

chdir(s) : string change directory

chdir(s) changes the current working directory to s. chdir() returns the current working

directory, which is shared between threads.

chmod(f, m) : ? �le permissions

chmod(f, m) sets the access permissions ("mode") of a string �lename (or on UNIX systems,

an open �le) f to a string or integer mode m. The mode indicates the change to be performed.

The string is of the form

A.6. OPERATORS AND BUILT-IN FUNCTIONS 387

[ugoa]*[+-=][rwxRWXstugo]*

The �rst group describes the set of mode bits to be changed: u is the owner set, g is the

group and o is the set of all others. The character a designates all the �elds. The operator

(+-=) describes the operation to be performed: + adds a permission, - removes a permission,

and = sets a permission. The permissions themselves are:

r read

w write

x execute

R read if any other set already has r

W write if any other set already has w

X execute if any other set already has x

s setuid (if the �rst part contains u and/or setgid if the �rst part contains g

t sticky if the �rst part has o

u the u bits on the same �le

g the g bits on the same �le

o the o bits on the same �le

If the �rst group is missing, then it is treated as "all" except that any bits in the user's

umask will not be modi�ed in the mode. Not all platforms make use of all mode bits

described here; the mode bits that are used is a property of the �lesystem on which the �le

resides.

classname(r) : string class name

classname(r) produces the name of r's class.

close(f) : �le | integer close �le

close(f) closes �le, pipe, window, network or message connection, or database f and returns

any resources associated with it to the operating system. If f was a window, close(f) causes

it to disappear, but the window can still be written to and copied from until all open

bindings are closed. If f was a pipe or network connection, close() returns the integer exit

status of the connection, otherwise it returns the closed �le.

cofail(CE) : any transmit co-expression failure

cofail(ce) activates co-expression ce, transmitting failure instead of a result.

collect(i:0, i:0) : null collect garbage

collect(i1,i2) calls the garbage collector to ensure that i2 bytes are free in region i1. i1 can be

0 (no region in particular) 1 (static region) 2 (string region) or 3 (block region).

condvar() : condition variable create condition variable

condvar() creates a new condition variable.

constructor(s, ...) : procedure record constructor

388 APPENDIX A. LANGUAGE REFERENCE

constructor(label, field, field, ...) creates a new record type named label with �elds named by

its subsequent arguments, and returns a constructor procedure for this record type.

copy(any) : any copy value

copy(x) produces a copy of x. For immutable types (numbers, strings, csets, procedures)

this is a no-op. For mutable types (lists, tables, sets, records, objects) a one-level deep

copy of the object is made.

cos(r) : real cosine

cos(r) produces the cosine of r. The argument is given in radians.

cset(any) : cset? convert to cset

cset(x) converts x to a cset, or fails if the conversion cannot be performed.

ctime(i) : string format a time value into local time

ctime(i) converts an integer time given in seconds since the epoch, Jan 1, 1970 00:00:00 into

a string in the local timezone. See also keywords &clock and &dateline.

dbcolumns(D,s) : list ODBC column information

dbcolumns(db, tablename) produces a list of record entries with �elds: catalog, schema, table-

name, colname, datatype, typename, colsize, buflen, decdigits, numprecradix, nullable, and re-

marks.The �elds datatype and typename are SQL-dependent and data source dependent,

respectively. Field colsize gives the maximum length in characters for SQL_CHAR or

SQL_VARCHAR columns.. Field decdigits gives the number of signi�cant digits right of

the decimal. Field numprecradix speci�es whether colsize and decdigits are speci�ed in bits

or decimal digits. Field nullable is 0 if the column does not accept null values, 1 if it does

accept null values, and 2 if it is not known whether the column accepts null values.

dbdriver(D) : record ODBC driver information

dbdriver(db) produces a record with �elds name, ver, odbcver, connections, statements, and

dsn that describes the details of the ODBC driver used to connect to database db. Fields

connections and statements are the maximums the driver can support. Fields ver and odbcver

are the driver and ODBC version numbers. Fields name and dsn are the driver �lename

and Windows Data Source Name associated with the connection.

dbkeys(D,string) : list ODBC key information

dbkeys(db,tablename) produces a list of records with �elds columnname, and sequencenumber

containing information about the primary keys in tablename.

dblimits(D) : record ODBC operation limits

dblimits(db) produces a record with �elds maxbinlitlen, maxcharlitlen, maxcolnamelen, maxgroup-

bycols, maxorderbycols, maxindexcols, maxselectcols, maxtblcols, maxcursnamelen, maxindexsize,

maxrownamelen, maxprocnamelen, maxqualnamelen, maxrowsize, maxrowsizelong, maxstmtlen,

A.6. OPERATORS AND BUILT-IN FUNCTIONS 389

maxtblnamelen, maxselecttbls, and maxusernamelen that contains the upper bounds of the

database for many parameters.

dbproduct(D) : record database name

dbproduct(db) produces a record with �elds name and ver that gives the name and the version

of the DBMS product containing db.

dbtables(D) : list ODBC table information

dbtables(db) returns a list of records with �elds qualifier, owner, name, type, and remarks that

describe all of the tables in the database associated with db.

delay(i) : null delay for i milliseconds

delay(i) pauses the current thread for at least i milliseconds. Runtime error 101 occurs if i

is a large integer.

delete(x1, x2, ...) : x1 delete element

delete(x1, x2) deletes elements denoted by the 2nd and following parameters from set, table,

list, DBM database, or POP connection x1 if it is there. In any case, it returns x1. If

x1 is a table or set, elements xi denote keys of arbitrary type. If x1 is a DBM database,

indices must be strings. If x1 is a list or a POP messaging connection, the elements xi

are integer indices of elements to be deleted. POP messages are actually deleted when the

close() operation closes that connection.

detab(string, integer:9,...) : string replace tabs

detab(s,i,...) replaces tabs with spaces, with stops at columns indicated by the second and

following parameters, which must all be integers. Tab stops are extended in�nitely using

the interval between the last two speci�ed tab stops.

display(i:&level, f:&errout, CE:¤t) : null write variables

display(i,f) writes the local variables of i most recent procedure activations, plus global vari-

ables, to �le f.

dtor(r) : real convert degrees to radians

dtor(r) produces the equivalent of r degrees, expressed in radians.

entab(s, i:9,...) : string replace spaces

entab(s,i,...) replaces spaces with tabs, with stops at columns indicated. Tab stops are

extended in�nitely using the interval between the last two speci�ed tab stops.

errorclear() : null clear error condition

errorclear() resets keywords &errornumber, &errortext, and &errorvalue to indicate that no error

is present.

eventmask(CE, cset) : cset | null get/set event mask

390 APPENDIX A. LANGUAGE REFERENCE

eventmask(ce) returns the event mask associated with the program that created ce, or &null

if there is no event mask. eventmask(ce,cs) sets that program's event mask to cs.

EvGet(c, �ag) : string get event from monitored program

EvGet(c,flag) activates a program being monitored until an event in cset mask c occurs.

Under normal circumstances this is a one-character string event code.

EvSend(i, x, CE) : any transmit event

EvSend(x, y, C) transmits an event with event code x and event value y to a monitoring

co-expression C.

exit(i:normalexit) exit process

exit(i) terminates the current program execution, returning status code i. The default is

the platform-dependent exit code that indicates normal termination (0 on most systems).

Runtime error 101 occurs if i is a large integer.

exp(r) : real exponential

exp(r) produces the result of &e ˆ r.

fetch(D, s?) : string | row? fetch database value

fetch(d, k) fetches the value corresponding to key k from a DBM or SQL database d. The

result is a string (for DBM databases) or a row (for SQL databases). For SQL databases,

when the string k is omitted, fetch(d) produces the next row in the current selection, and

advances the cursor to the next row. A row is a record whose �eld names and types are

determined by the columns speci�ed in the current query. fetch(d) fails if there are no more

rows to return from the current query. Typically a call to dbselect() will be followed by a

while-loop that calls fetch() repeatedly until it fails.

�eldnames(R) : string* get �eld names

fieldnames(r) produces the names of the �elds in record r.

�nd(s, s, i, i) : integer* �nd string

String scanning function find(s1,s2,i1,i2) generates the positions in s2 at which s1 occurs as

a substring in s2[i1:i2].

�ock(f, s) : ? apply or remove �le lock

flock(f,s) applies an advisory lock to the �le. Advisory locks enable processes to cooperate

when accessing a shared �le, but do not enforce exclusive access. The following characters

can be used to make up the operation string:

s shared lock

x exclusive lock

b don't block when locking

u unlock

A.6. OPERATORS AND BUILT-IN FUNCTIONS 391

Locks cannot be applied to windows, directories or database �les. A �le may not

simultaneously have shared and exclusive locks.

�ush(f) : �le �ush �le

flush(f) �ushes all pending or bu�ered output to �le f.

function() : string* name the functions

function() generates the names of the built-in functions.

get(L,i:1) : any? get element from queue

get(L) returns an element which is removed from the head of the queue L. get(L, i) removes i

elements, returning the last one removed.

getch() : string? get character from console

getch() waits for (if necessary) and returns a character typed at the keyboard, even if

standard input was redirected. The character is not displayed.

getche() : string? get and echo character from console

getche() waits for (if necessary) and returns a character typed at the console keyboard, even

if standard input was redirected. The character is echoed to the screen.

getenv(s) : string? get environment variable

getenv(s) returns the value of environment variable s from the operating system.

gettimeofday() : record time of day

Returns the current time in seconds and microseconds since the epoch, Jan 1, 1970 00:00:00.

The sec value may be converted to a date string with ctime or gtime. See also keywords

&now, &clock, and &dateline. Return value: record posix_timeval(sec, usec)

globalnames(CE) : string* name the global variables

globalnames(ce) generates the names of the global variables in the program that created

co-expression ce.

gtime(i) : string format a time value into UTC

Converts an integer time in seconds since the epoch, Jan 1, 1970 00:00:00 into a string in

Coordinated Universal Time (UTC).

iand(i, i) : integer bitwise and

iand(i1, i2) produces the bitwise AND of i1 and i2.

icom(i) : integer bitwise complement

icom(i) produces the bitwise complement (one's complement) of i.

image(any) : string string image

image(x) returns the string image of the value x.

392 APPENDIX A. LANGUAGE REFERENCE

insert(x1, x2, x3:&null) : x1 insert element

insert(x1, x2, x3) inserts element x2 into set, table, or list or DBM database x1 if not already

there. Unless x1 is a set, the assigned value for element x2 is x3. For lists, x2 is an integer

index; for other types, it is a key. insert() always succeeds and returns x1.

integer(any) : integer? convert to integer

integer(x) converts value x to an integer, or fails if the conversion cannot be performed.

ior(i, i) : integer bitwise or

ior(i1, i2) produces the bitwise OR of i1 and i2.

ishift(i, i) : integer bitwise shift

ishift(i, j) produces the value obtained by shifting i by j bit positions. If j is positive, the shift

is to the left, and vacated bit positions are �lled with zeros. If j is negative, the shift is to

the right with sign extension.

istate(CE, s) : integer interpreter state

istate(ce, attrib) reports selected virtual machine interpreter state information. attrib must be

one of: “count”, “ilevel”, “ipc”, “ipc_offset”, “sp”, “efp”, “gfp”. Used by monitors.

ixor(i, i) : integer bitwise xor

ixor(i1, i2) produces the bitwise exclusive or of i1 and i2.

kbhit() : ? check for console input

kbhit() checks to see if there is a keyboard character waiting to be read.

key(x) : any* table keys

key(T) generates the key (entry) values from table T. key(L) generates the indices from 1 to

*L in list L. key(R) generates the string �eld names of record R. key(D) generates the string

key values of a DBM database D.

keyword(s,CE:¤t,i:0) : any* produce keyword value

keyword(s,ce,i) produces the value of keyword s in the context of ce's execution, i levels up

in the stack from the current point of execution. Used in execution monitors.

left(s, i:1, s:" ") : string left format string

left(s1,i,s2) formats s1 to be a string of length i. If s1 is more than i characters, it is truncated.

If s1 is fewer than i characters it is padded on the right with as many copies of s2 as needed

to increase it to length i.

list(integer:0, any:&null) : list create list

list(i, x) creates a list of size i, in which all elements have the initial value x. If x is a mutable

value such as a list, all elements refer to the same value, not a separate copy of the value

for each element.

A.6. OPERATORS AND BUILT-IN FUNCTIONS 393

load(s,L,f:&input,f:&output,f:&errout,i,i,i) : co-expression load Unicon

program

load(s,arglist,input,output,error,blocksize,stringsize,stacksize) loads the icode �le named s and

returns that program's execution as a co-expression ready to start its main() procedure with

parameter arglist as its command line arguments. The three �le parameters are used as that

program's &input, &output, and &errout. The three integers are used as its initial memory

region sizes.

loadfunc(s, s) : procedure load C function

loadfunc(filename,funcname) dynamically loads a compiled C function from the object library

�le given by filename. funcname must be a specially written interface function that handles

Icon data representations and calling conventions.

localnames(CE, i:0) : string* local variable names

localnames(ce,i) generates the names of local variables in co-expression ce, i levels up from

the current procedure invocation. The default i of 0 generates names in the currently active

procedure in ce.

lock(x) : x lock mutex

lock(x) locks the mutex x or the mutex associated with thread-safe object x. Mutexes are

recursive (i.e. they may be locked again by the same co-expression or thread without

blocking) but must be unlocked as many times as they are locked. It is an error to unlock

a mutex more times than it has been locked.

log(r, r:&e) : real logarithm

log(r1,r2) produces the logarithm of r1 to base r2.

many(c, s, i, i) : integer? many characters

String scanning function many(c,s,i1,i2) produces the position in s after the longest initial

sequence of members of c within s[i1:i2].

map(s, s:&ucase, s:&lcase) : string map string

map(s1,s2,s3) maps s1, using s2 and s3. The resulting string will be a copy of s1, with the

exception that any of s1's characters that appear in s2 are replaced by characters at the

same position in s3.

match(s, s:&subject, i:&pos, i:0) : integer? match string

String scanning function match(s1,s2,i1,i2) produces i1+*s1 if s1==s2[i1+:*s1], but fails other-

wise.

max(n, ...) : number largest value

max(x, ...) returns the largest value among its arguments, which must be numeric.

394 APPENDIX A. LANGUAGE REFERENCE

member(x, ...) : x? test membership

member(x, ...) returns x if its second and subsequent arguments are all members of set, cset,

list, table or record x but fails otherwise. If x is a cset, all of the characters in subsequent

string arguments must be present in x in order to succeed.

membernames(x) : list class member names

membernames(x) produces a list containing the string names of the �elds of x, where x is

either an object or a string name of a class.

methodnames(x) : list class method names

methodnames(x) produces a list containing the string names of the methods de�ned in class

x, where x is either an object or a string name of a class.

methods(x) : list class method list

methods(x) produces a list containing the procedure values of the methods of x, where x is

either an object or a string name of a class.

min(n, ...) : number smallest value

min(x, ...) returns the smallest value among its arguments, which must be numeric.

mkdir(s, s?) : ? create directory

mkdir(path,mode) creates a new directory named path with mode mode. The optional mode

parameter can be numeric or a string of the form accepted by chmod(). The function

succeeds if a new directory is created.

move(i:1) : string move scanning position

move(i) moves &pos i characters from the current position and returns the substring of

&subject between the old and new positions. This function reverses its e�ects by resetting

the position to its old value if it is resumed.

mutex(x,y) : x create a mutex

mutex() creates a new mutex. For mutex(x) associates the new mutex with structure x. The

call mutex(x,y) associates an existing mutex y (or mutex associated with protected object

y) with structure x.

name(v, CE:¤t) : string variable name

name(v) returns the name of variable v within the program that created co-expression c.

Keyword variables are recognized and named correctly. name() returns the base type and

subscript or �eld information for variables that are elements within other values, but does

not produce the source code variable name for such variables.

numeric(any) : number convert to number

numeric(x) produces an integer or real number resulting from the type conversion of x, but

fails if the conversion is not possible.

A.6. OPERATORS AND BUILT-IN FUNCTIONS 395

open(s, s:"rt", ...) : �le? open �le

open(s1, s2, ...) opens a �le named s1 with mode s2 and attributes given in trailing argu-

ments. The modes recognized by open() are:

"a" append; write after current contents

"b" open for both reading and writing (b does not mean binary mode!)

"c" create a new �le and open it

"d" open a [NG]DBM database

"g" create a 2D graphics window

"gl" create a 3D graphics window

"n" connect to a remote TCP network socket

"na" accept a connection from a TCP network socket

"nau" accept a connection from a UDP network socket

"nl" listen on a TCP network socket

"nu" connect to a UDP network socket

"e" use SSL/TLS protocol to encrypt the network socket

"m" connect to a messaging server (HTTP, HTTPS, SMTP, POP, ...)

"o" open an ODBC connection to a (typically SQL) database

"p" execute a program given by command line s1 and open a pipe to it

"r" read

"t" use text mode, with newlines translated

"u" use a binary untranslated mode

"w" write

Directories may only be opened for reading, and produce the names of all �les, one per

line. Pipes may be opened for reading or writing, but not both. open() fails if the pipe

is open for reading and the command line given by s1 produces no output: &errornumber

may be used to distinguish between a successful command that produces no output and a

command that returns a non zero (unsuccessful) exit code.

When opening a network socket: the �rst argument s1 is the name of the socket to

connect. If s1 is of the form "s:i", it is an Internet domain socket on host s and port i;

otherwise, it is the name of a Unix domain socket. If the host name is null, it represents

the current host. Mode "n" allows an optional third parameter, an integer timeout (in

milliseconds) after which open() fails if no connection has been established by that time.

For a UDP socket, there is not really a connection, but any writes to that �le will send a

datagram to that address, so that the address doesn't have to be speci�ed each time. Also,

read() or reads() cannot be performed on a UDP socket; use receive. UDP sockets must be

in the INET domain; the address must have a colon.

For a DBM database, only one modi�er character may be used: if s1 is "dr" it indicates

that the database should be opened in read-only mode. For an ODBC database, following

the mode letter "o" comes an optional string default table name used by functions such as

396 APPENDIX A. LANGUAGE REFERENCE

dbcolumns(), followed by two generally required strings giving the username and password

authentication for the connection.

The �lename argument is a Uniform Resource Indicator (URI) when opening a messag-

ing connection. Mode "m-" may be given to skip the validation of an encryption certi�cate

for HTTPS connections. Arguments after the mode "m" are sent as headers. The HTTP

User-Agent header defaults to "Unicon Messaging/10.0" and Host defaults to the host

and port indicated in the URI. The SMTP From: header obtains its default from a UNI-

CON_USERADDRESS environment variable if it is present.

For 2D and 3D windows, attribute values may be speci�ed in the following arguments

to open(). open() fails if a window cannot be opened or an attribute cannot be set to a

requested value.

opmask(CE, c) : cset opcode mask

opmask(ce) gets ce's program's opcode mask. The function returns &null if there is no opcode

mask. opmask(ce,cs) sets ce's program's opcode mask to cs. This function is part of the

execution monitoring facilities.

oprec(x) : record get methods vector

oprec(r) produces a variable reference for r's class' methods vector.

ord(s) : integer ordinal value

ord(s) produces the integer ordinal (value) of s, which must be of size 1.

paramnames(CE, i:0) : string* parameter names

paramnames(ce,i) produces the names of the parameters in the procedure activation i levels

above the current activation in ce.

parent(CE) : co-expression parent program

parent(ce) returns &main for ce's parent program. This is interesting only when programs

are dynamically loaded using the load() function.

pipe() : list create pipe

pipe() creates a pipe and returns a list of two �le objects. The �rst is for reading, the second

is for writing. See also function filepair().

pop(L | Message) : any? pop from stack

pop(L) removes an element from the top of the stack (L[1]) and returns it. pop(M) removes

and returns the �rst message in POP mailbox connection M; the actual deletion occurs

when the messaging connection is closed.

pos(i) : integer? test scanning position

pos(i) tests whether &pos is at position i in &subject.

proc(any, i:1, C) : procedure? convert to procedure

A.6. OPERATORS AND BUILT-IN FUNCTIONS 397

proc(s,i) converts s to a procedure if that is possible. Parameter i is used to resolve ambiguous

string names; it must be either 0, 1, 2, or 3. If i is 0, a built-in function is returned if it

is available, even if the global identi�er by that name has been assigned di�erently. If i is

1, 2, or 3, the procedure for an operator with that number of operands is produced. For

example, proc("-",2) produces the procedure for subtraction, while proc("-") produces the

procedure for unary negation. proc(C,i) returns the procedure activated i levels up with C.

proc(p, i, C) returns procedure p if it belongs to the program which created co-expression C.

pull(L,i:1) : any? remove from list end

pull(L) removes and produces an element from the end of a nonempty list L. pull(L, i) removes

i elements, producing the last one removed.

push(L, any, ...) : list push on to stack

push(L, x1, ..., xN) pushes elements onto the beginning of list L. The order of the elements

added to the list is the reverse of the order they are supplied as parameters to the call to

push(). push() returns the list that is passed as its �rst parameter, with the new elements

added.
put(L, x1, ..., xN) : list add to list end

put(L, x1, ..., xN) puts elements onto the end of list L.

read(f:&input) : string? read line

read(f) reads a line from �le f. The end of line marker is discarded.

reads(f:&input, i:1) : string? read characters

reads(f,i) reads up to i characters from �le f. It fails on end of �le. If f is a network

connection, reads() returns as soon as it has input available, even if fewer than i characters

were delivered. If i is -1, reads() reads and produces the entire �le as a string. Care should

be exercised when using this feature to read very large �les.

ready(f:&input, i:0) : string? non-blocking read

ready(f,i) reads up to i characters from �le f. If i is positive it returns immediately with

available data or fails if no data is available. If i is 0, ready() returns all available input or

an empty string if no data is available. It is not currently implemented for window values.

real(any) : real? convert to real

real(x) converts x to a real, or fails if the conversion cannot be performed.

receive(f) : record receive datagram

receive(f) reads a datagram addressed to the port associated with f, waiting if necessary.

The returned value is a record of type posix_message(addr, msg), containing the address of

the sender and the contents of the message respectively.

remove(s) : ? remove �le

398 APPENDIX A. LANGUAGE REFERENCE

remove(s) removes the �le named s.

rename(s, s) : ? rename �le

rename(s1,s2) renames the �le named s1 to have the name s2.

repl(x, i) : x replicate

repl(x, i) concatenates and returns i copies of string or list x.

reverse(x) : x reverse sequence

reverse(x) returns a value that is the reverse of string or list x.

right(s, i:1, s:" ") : string right format string

right(s1,i,s2) produces a string of length i. If i<*s1, s1 is truncated. Otherwise, the function

pads s1 on left with s2 to length i.

rmdir(s) : ? remove directory

rmdir(d) removes the directory named d. rmdir() fails if d is not empty or does not exist.

rtod(r) : real convert radians to degrees

rtod(r) produces the equivalent of r radians, expressed in degrees.

runerr(i, any) runtime error

runerr(i,x) produces runtime error i with value x. Program execution is terminated.

seek(f, any) : �le? seek to �le o�set

seek(f,i) seeks to o�set i in �le f, if it is possible. If f is a regular �le, i must be an integer.

If f is a database, i seeks a position within the current set of selected rows. The position

is selected numerically if i is convertible to an integer; otherwise i must be convertible to a

string and the position is selected associatively by the primary key.

select(x1, x2, ?) : list �les with available input

select(files?, timeout) waits for a input to become available on any of several �les, typically

network connections or windows. Its arguments may be �les or lists of �les, ending with

an optional integer timeout value in milliseconds. It returns a list of those �les among its

arguments that have input waiting.

If the �nal argument to select() is an integer, it is an upper bound on the time elapsed

before select returns. A timeout of 0 causes select() to return immediately with a list of

�les on which input is currently pending. If no �les are given, select() waits for its timeout

to expire. If no timeout is given, select() waits forever for available input on one of its �le

arguments. Directories and databases cannot be arguments to select().

send(s, s) : ? send datagram

send(s1, s2) sends a UDP datagram to the address s1 (in host:port format) with the contents

s2.

A.6. OPERATORS AND BUILT-IN FUNCTIONS 399

seq(i:1, i:1) : integer* generate sequence

seq(i, j) generates the progression i, i+j, i+2*j, j may not be 0. Runtime error 101 occurs

if either i or j is a large integer. Runtime error 203 occurs if the value to be generated is a

large integer.

serial(x) : integer? structure serial number

serial(x) returns the serial number for structure x, if it has one. Serial numbers uniquely

identify structure values. serial() returns the serial number of the current co-expression (or

thread).

set(x, ...) : set create set

set() creates a set. Arguments are inserted into the new set, with the exception of lists.

set(L) creates a set whose members are the elements of list L.

setenv(s) : ? set environment variable

setenv() sets an environment variable s in the operating system.

signal(cv, i:1) : ?? signal a conditional variable

signal(x, y) signals the condition variable x. If y is supplied, the condition variable is signaled

y times. If y is 0, a �broadcast� signal is sent waking up all threads waiting on x. Condition

variables have no memory: signalling a condition variable that has no threads waiting on

it has no e�ect.

sin(r) : real sine

sin(r) produces the sine of r. The argument is given in radians.

sort(x, i:1) : list sort structure

sort(x, i) sorts structure x in ascending order. If x is a table, parameter i is the sort method.

If i is 1 or 2, the table is sorted into a list of lists of the form [key, value]. If i is 3 or 4, the

table is sorted into a list of alternating keys and values. Sorting is by keys for odd-values

of i, and by table element values for even-values of i.

sortf(x, i:1) : list sort by �eld

sortf(x,i) sorts a list, record, or set x using �eld i of each element that has one. Elements

that don't have an i'th �eld are sorted in standard order and come before those that do

have an i'th �eld.

spawn(CE, i, i, i) : thread launch asynchronous thread

spawn(ce) launches co-expression ce as an asynchronous thread that will execute concur-

rently with the current co-expression. The three optional integers specify the memory in

bytes allocated for the thread's block and string regions and stack size. The defaults are

10% of the corresponding sizes for the main thread.

400 APPENDIX A. LANGUAGE REFERENCE

sql(D, s) : integer execute SQL statement

sql(db, query) executes arbitrary SQL code on db. This function allows the program to do

vendor-speci�c SQL and many SQL statements that cannot be expressed otherwise using

the Unicon database facilities. sql() can leave the database in an arbitrary state and should

be used with care.

sqrt(r) : real square root

sqrt(r) produces the square root of r.

stat(f) : record? get �le information

stat(f) returns a record with information about the �le f which may be a path or a �le

object. The return value is of type: record posix_stat(dev, ino, mode, nlink, uid, gid, rdev, size,

atime, mtime, ctime, blksize, blocks, symlink). Many of these �elds are POSIX speci�c, but a

number are supported across platforms, such as the �le size in bytes (the size �eld), access

permissions (the mode �eld), and the last modi�ed time (the mtime �eld).

The atime, mtime, and ctime �elds are integers that may be formatted with the ctime()

and gtime() functions. The mode is a string similar to the long listing option of the UNIX

ls(1) command. For example, "-rwxrwsr-x" represents a plain �le with a mode of 2775 (octal).

stat(f) fails if �lename or path f does not exist.

staticnames(CE:¤t, i:0) : string* static variable names

staticnames(ce,i) generates the names of static variables in the procedure i levels above the

current activation in ce.

stop(s|f, ...) : stop execution

stop(args) halts execution after writing out its string arguments, followed by a newline, to

&errout. If any argument is a �le, subsequent string arguments are written to that �le

instead of &errout. The program exit status indicates that an error has occurred.

string(x) : string? convert to string

string(x) converts x to a string and returns the result, or fails if the value cannot be converted.

system(x, f:&input, f:&output, f:&errout, s) : integer execute system

command

system(x, f1, f2, f3, waitflag) launches execution of a program in a separate process. x can be

either a string or a list of strings. In the former case, whitespace is used to separate the

arguments and the command is processed by the platform's command interpreter. In the

second case, each member of the list is an argument and the second and subsequent list

elements are passed unmodi�ed to the program named in the �rst element of the list.

The three �le arguments are �les that will be used for the new process' standard input,

standard output and standard error. The return value is the exit status from the process.

If the waitflag argument is "nowait", system() returns immediately after spawning the new

process, and the return value is then the process id of the new process.

A.6. OPERATORS AND BUILT-IN FUNCTIONS 401

tab(i:0) : string? set scanning position

tab(i) sets &pos to i and returns the substring of &subject spanned by the former and new

positions. tab(0) moves the position to the end of the string. This function reverses its

e�ects by resetting the position to its old value if it is resumed.

table(k,v, ..., x) : table create table

table(x) creates a table with default value x. If x is a mutable value such as a list, all

references to the default value refer to the same value, not a separate copy for each key.

Given more than one argument, table(k,v,...x) takes alternating keys and values and populates

the table with these initial contents.

tan(r) : real tangent

tan(r) produces the tangent of r in radians.

trap(s, p) : procedure trap or untrap signal

trap(s, proc) sets up a signal handler for the signal s (the name of the signal). The old handler

(if any) is returned. If proc is null, the signal is reset to its default value. Procedure proc will

be called with a single parameter, which is the string name of the signal received. Unicon

knows about 40 names; most folks will care mainly about "SIGINT" and "SIGPIPE".

Caveat: This is not supported by the optimizing compiler (the -C command line option,

which invokes iconc).

trim(s, c:' ', i:-1) : string trim string

trim(s,c,i) removes characters in c from s at the back (i=-1, the default), at the front (i=1),

or at both ends (i=0).

truncate(f, i) : ? truncate �le

truncate(f, len) changes the �le f (which may be a string �lename, or an open �le) to be no

longer than length len. truncate() does not work on windows, network connections, pipes, or

databases.

trylock(x) : x? try locking mutex

trylock(x) attempts to lock the mutex x or the mutex associated with thread-safe object x.

trylock fails if x is locked by a di�erent thread or co-expression. If x is already locked by the

calling thread or co-expression, trylock will lock it again.

type(x) : string type of value

type(x) returns a string that indicates the type of x.

unlock(x) : x unlock mutex

unlock(x) unlocks the mutex x or the mutex associated with thread-safe object x.

upto(c, s, i, i) : integer* �nd characters in set

402 APPENDIX A. LANGUAGE REFERENCE

String scanning function upto(c,s,i1,i2) generates the sequence of integer positions in s up to

a character in c in s[i1:i2], but fails if there is no such position.

utime(s, i, i) : null �le access/modi�cation times

utime(f, atime, mtime) sets the access time for a �le named f to atime and the modi�cation

time to mtime. The ctime is set to the current time. The e�ects of this function are platform

speci�c. Some �le systems support only a subset of these times.

variable(s, CE:¤t, i:0) : any? get variable

variable(s, c, i) �nds the variable with name s and returns a variable descriptor that refers to

its value. The name s is searched for within co-expression c, starting with local variables

i levels above the current procedure frame, and then among the global variables in the

program that created c.

wait(x) : ? wait for thread or condition variable

wait(x) waits for x. If x is a thread, wait() waits for it to �nish. If x is is a condition variable

wait() waits until that variable is subsequently signaled by another thread.

where(f) : integer? �le position

where(f) returns the current o�set position in �le f. It fails on windows and networks. The

beginning of the �le is o�set 1.

write(s|f, ...) : string|�le write text line

write(args) outputs strings, followed by a newline, to a �le or �les. Strings are written

in order to their nearest preceding �le, defaulting to &output. A newline is output to the

preceding �le after the last argument, as well as whenever a non-initial �le argument directs

output to a di�erent �le. write() returns its last argument.

writes(s|f, ...) : string|�le write strings

writes(args) outputs strings to one or more �les. Each string argument is written to the

nearest preceding �le argument, defaulting to &output. writes() returns its last argument.

Graphics functions

The names of built-in graphics functions begin with upper case. The built-in graphics

functions are listed here. These functions are more thoroughly described in [Griswold98].

Extensive procedure and class libraries for graphics are described in [Griswold98] and in

Appendix B. In 2D, arguments named x and y are pixel locations in zero-based integer

coordinates. In 3D windows coordinates are given using real numbers, and functions by

default take three coordinates (x,y,z) per vertex. Attribute dim can be set to 2 or 4, changing

most 3D functions to take vertices in a (x,y) or (x,y,z,w) format. Arguments named row

and col are cursor locations in one-based integer text coordinates. Most functions' �rst

A.6. OPERATORS AND BUILT-IN FUNCTIONS 403

parameter named w defaults to &window and the window argument can be omitted in the

default case. Most 3D functions are not thread-safe.

Active() : window produce active window

Active() returns a window that has one or more events pending. If no window has an event

pending, Active() blocks and waits for an event to occur. Active() starts with a di�erent

window on each call in order to avoid window "starvation". Active() fails if no windows are

open.

Alert() : window alert the user

Alert() produces a visual �ash or audible beep that signi�es to the user the occurrence of

some notable event in the application.

Bg(w,s) : string background color

Bg(w) retrieves the background color. Bg(w,s) sets the background color by name, rgb, or

mutable color value. Bg() fails if the background cannot be set to the requested color.

Clip(w,x:0,y:0,width:0,height:0) : window clip to rectangle

Clip(w,x,y,width,height) clips output to a rectangular area within the window. If width is 0,

the clip region extends from x to the right side of the window. If height is 0, the clip region

extends from y to the bottom of the window.

Clone(w,s,...) : window clone context

Clone(w) produces a new window binding in which a new graphics context is copied from

w and bound to w's canvas. Additional string arguments specify attributes of the new

binding, as in WAttrib(). If the �rst string argument is “g” or “gl”, Clone() binds the new

context to a subwindow with separate canvas and input queue inside of and relative to w.

Clone() fails if an attribute cannot be set to a requested value.

Color(w, i, s,...) : window set mutable color

Color(w,i) produces the current setting of mutable color i. Color(w,i,s,...) sets the color map

entries identi�ed by i[j] to the corresponding colors s[j]. See [Griswold98].

ColorValue(w, s) : string convert color name to rgb

ColorValue(w,s) converts the string color s into a string with three comma-separated 16-bit

integer values denoting the color's RGB components. ColorValue() fails if string s is not a

valid name or recognized decimal or hex encoding of a color.

CopyArea(w1, w2,x:0,y:0,width:0,height:0,x2:0,y2:0) : window copy area

CopyArea(w1,w2,x,y,width,height,x2,y2) copies a rectangular region within w1 de�ned by

x,y,width,height to window w2 at o�set x2,y2. CopyArea() returns w1. &window is not a default

for this function. The default copies all of w1.

Couple(w1, w2) : window couple window to context

404 APPENDIX A. LANGUAGE REFERENCE

Couple(w1,w2) produces a new value that binds the window associated with w1 to the graph-

ics context associated with w2.

DrawArc(w, x, y, width, height:width, a1:0.0, a2:2*&pi, ...) : window draw

arc

DrawArc(w,x,y,width,height,a1,a2,...) draws arcs or ellipses. Each is de�ned by six integer

coordinates. x, y, width and height de�ne a bounding rectangle around the arc; the center of

the arc is the point (x+(width)/2,y+(height)/2). Angles are speci�ed in radians. Angle a1 is the

starting position of the arc, where 0.0 is the 3 o'clock position and the positive direction is

counter-clockwise. Angle a2 is not the end position, but rather speci�es the direction and

extent of the arc.

DrawCircle(w, x, y, radius, a1:0.0, a2:2*&pi, ...) : window draw circle

DrawCircle() draws a circle or arc, centered at (x,y) and otherwise similar to DrawArc() with

width=height.

DrawCube(w, x, y, z, len ...) : record draw cube

DrawCube(w, x, y, z, len. . .) draws a cube with sides of length len at the position (x, y, z) on

the 3D window w. The display list element is returned. This procedure fails if the context

attribute dim is set to 2.

DrawCurve(w, x1, y1, ...) : window draw curve

DrawCurve(w,x1,y1,...,xn,yn) draws a smooth curve connecting each x,y pair in the argument

list. If the �rst and last point are the same, the curve is smooth and closed through that

point. If there is no window argument, and &window is not set, DrawCurve() returns the

points as alternating x, y values in a single list.

DrawCylinder(w, x, y, z, h, r1, r2, ...) : record draw cylinder

DrawCylinder(w, x, y, z, h, r1, r2, . . .) draws a cylinder with a top of radius r1, a bottom with

radius r2, and a height h on 3D window w. The disk is centered at the point (x, y, z). The

display list element is returned. This procedure fails if the context attribute dim is set to 2.

DrawDisk(w, x, y, z, r1, r2, a1, a2, ...) : record draw disk

DrawDisk(W, x, y, z, r1, r2, a1, a2, . . .) draws a disk or partial disk centered at (x, y, z) on 3D

window w. The inner circle has radius r1 and the outer circle has radius r2. The parameters

a1 and a2 are optional. If they are speci�ed, a partial disk is drawn with a starting angle

a1 and sweeping angle a2. The display list element is returned.

DrawImage(w, x, y, s) : window draw bitmapped �gure

DrawImage(w,x,y, s) draws an image speci�ed in string s at location x,y.

DrawLine(w, x1, y1, z1 ...) : window [list] draw line

A.6. OPERATORS AND BUILT-IN FUNCTIONS 405

DrawLine(w,x1,y1,...,xn,yn) draws lines between each adjacent x,y pair of arguments. In 3D,

DrawLine() takes from 2-4 coordinates per vertex and returns the list that represents the

lines on the display list for refresh purposes.

DrawPoint(w, x1, y1, ...) : window [list] draw point

DrawPoint(w,x1,y1,...,xn,yn) draws points. In 3D, DrawPoint() takes from 2-4 coordinates per

vertex and returns the list that represents the points on the display list for refresh purposes.

DrawPolygon(w, x1, y1, [z1,] ...) : window [list] draw polygon

DrawPolygon(w,x1,y1,...,xn,yn) draws a polygon. In 3D, DrawPolygon() takes from 2-4 coordi-

nates per vertex and returns the list that represents the polygon on the display list for

refresh purposes.

DrawRectangle(w, x1, y1, width1, height1 ...) : window draw rectangle

DrawRectangle(w,x1,y1,width1,height1,...) draws rectangles. Arguments width and height de�ne

the perceived size of the rectangle; the actual rectangle drawn is width+1 pixels wide and

height+1 pixels high.

DrawSegment(w, x1, y1, [z1,] ...) : window [list] draw line segment

DrawSegment(w,x1,y1,...,xn,yn) draws lines between alternating x,y pairs in the argument list.

In 3D, DrawSegment() takes from 2-4 coordinates per vertex and returns the list that repre-

sents the segments on the display list for refresh purposes.

DrawSphere(w, x, y, z, r, ...) : record draw sphere

DrawSphere(w, x, y, z, r,. . .) draws a sphere with radius r centered at (x, y, z) on 3D window

w. The display list element is returned. This procedure fails if the context attribute dim is

set to 2.

DrawString(w, x1, y1, s1, ...) : window draw text

DrawString(w,x,y,s) draws text s at coordinates (x, y). This function does not draw any back-

ground; only the characters' actual pixels are drawn. It is possible to use "drawop=reverse"

with this function to draw erasable text. DrawString() does not a�ect the text cursor posi-

tion. Newlines present in s cause subsequent characters to be drawn starting at (x, current_y

+ leading), where x is the x supplied to the function, current_y is the y coordinate the newline

would have been drawn on, and leading is the current leading associated with the binding.

DrawTorus(w, x, y, z, r1, r2, ...) : record draw torus

DrawTorus(w, x, y, z, r1, r2,. . .) draws a torus with inner radius r1, outside radius r2, and

centered at (x,y,z) on 3D window w. The display list element is returned. This procedure

fails if the context attribute dim is set to 2.

EraseArea(w, x:0, y:0, width:0, height:0. ...) : window erase rectangular area

EraseArea(w,x,y,width,height,...) erases rectangular areas within the window to the background

color. If width is 0, the region cleared extends from x to the right side of the window. If height

406 APPENDIX A. LANGUAGE REFERENCE

is 0, the region erased extends from y to the bottom of the window. In 3D, EraseArea(W)

clears the contents of the entire window.

Event(w, i:in�nity) : string|integer read event on window

Event(w, i) retrieves the next event available for window w. If no events are available, Event()

waits for i milliseconds. Keystrokes are encoded as strings, while mouse events are encoded

as integers. The retrieval of an event is accompanied by assignments to the keywords &x,

&y, &row, &col, &interval, &control, &shift, &meta, and if 3D attribute “pick=on”, &pick. Event()

fails if the timeout expires before an event occurs.

Fg(w, s) : string foreground color

Fg(w) retrieves the current foreground color. Fg(w,s) sets the foreground by name or value.

Fg() fails if the foreground cannot be set to the requested color. In 3D, Fg(w, s) changes the

material properties of subsequently drawn objects to the material properties speci�ed by

s. The string s must be one or more semi-colon separated material properties. A material

property is of the form

[di�use | ambient | specular | emission] color name or �shininess n�, 0 <= n <=

128.

If string s is omitted, the current values of the material properties will be returned.

FillArc(w, x, y, width, height, a1, a2, ...) : window draw �lled arc

FillArc(w,x,y,width,height,a1,a2,...) draws �lled arcs, ellipses, and/or circles. Coordinates are

as in DrawArc().

FillCircle(w, x, y, radius, a1, a2, ...) : window draw �lled circle

FillCircle(w,x,y, radius,a1,a2,...) draws �lled circles. Coordinates are as in DrawCircle().

FillPolygon(w, x1, y1, [z1,] ...) : window draw �lled polygon

FillPolygon(w,x1,y1,...,xn,yn) draws a �lled polygon. The beginning and ending points are

connected if they are not the same. In 3D, FillPolygon() takes from 2-4 coordinates per vertex

and returns the list that represents the polygon on the display list for refresh purposes.

FillRectangle(w, x:0, y:0, width:0, height:0, ...) : window draw �lled rectangle

FillRectangle(w,x,y,width,height,...) draws �lled rectangles.

Font(w, s) : string font

Font(w) produces the name of the current font. Font(w,s) sets the window context's font to s

and produces its name or fails if the font name is invalid. The valid font names are largely

system-dependent but follow the format family[,styles],size, where styles optionally add bold

or italic or both. Four font names are portable: serif (Times or similar), sans (Helvetica

or similar), mono (a mono spaced sans serif font) and typewriter (Courier or similar). Font()

fails if the requested font name does not exist.

A.6. OPERATORS AND BUILT-IN FUNCTIONS 407

FreeColor(w, s, ...) : window release colors

FreeColor(w,s1,...,sn) allows the window system to re-use the corresponding color map entries.

Whether this call has an e�ect is dependent upon the particular implementation. If a freed

color is still in use at the time it is freed, unpredictable results will occur.

GotoRC(w, row:1, col:1) : window go to row,column

GotoRC(w,row,col) moves the text cursor to a particular row and column, given in numbers

of characters; the upper-left corner is coordinate (1,1). The column calculation used by

GotoRC() assigns to each column the pixel width of the widest character in the current font.

If the current font is of �xed width, this yields the usual interpretation.

GotoXY(w, x:0, y:0) : window go to pixel

GotoXY(w,x,y) moves the text cursor to a speci�c cursor location in pixels.

IdentityMatrix(w) : record load the identity matrix

IdentityMatrix(w) changes the current matrix to the identity matrix on 3D window w. The

display list element is returned.

Lower(w) : window lower window

Lower(w) moves window w to the bottom of the window stack.

MatrixMode(w, s) : record set matrix mode

MatrixMode(w, s) changes the matrix mode to s on 3D window w. The string s must be

either “projection” or “modelview”; otherwise this procedure fails. The display list element is

returned.

MultMatrix(w, L) : record multiply transformation matrix

MultMatrix(w, L) multiplies the current transformation matrix used in 3D window w by the

4x4 matrix represented as a list of 16 values L.

NewColor(w, s) : integer allocate mutable color

NewColor(w,s) allocates an entry in the color map and returns a small negative integer for

this entry, usable in calls to routines that take a color speci�cation, such as Fg(). If s is

speci�ed, the entry is initialized to the given color. NewColor() fails if it cannot allocate an

entry.

PaletteChars(w, s) : string pallete characters

PaletteChars(w,s) produces a string containing each of the letters in palette s. The palletes

�c1� through �c6� de�ne di�erent color encodings of images represented as string data; see

[Griswold98].

PaletteColor(w, p, s) : string pallete color

PaletteColor(w,s) returns the color of key s in palette p in “r ,g,b” format.

408 APPENDIX A. LANGUAGE REFERENCE

PaletteKey(w, p, s) : integer pallete key

PaletteKey(w,s) returns the key of closest color to s in palette p.

Pattern(w, s) : w de�ne stipple pattern

Pattern(w,s) selects stipple pattern s for use during draw and �ll operations. s may be either

the name of a system-dependent pattern or a literal of the form width,bits. Patterns are

only used when the fillstyle attribute is stippled or opaquestippled. Pattern() fails if a named

pattern is not de�ned. An error occurs if Pattern() is given a malformed literal.

Pending(w, x, ...) : L produce event queue

Pending(w) produces the list of events waiting to be read from window w. If no events are

available, the list is empty (its size is 0). Pending(w,x1,...,xn) adds x1 through xn to the end

of w's pending list in guaranteed consecutive order.

Pixel(w, x:0, y:0, width:0, height:0) : i1...in generate window pixels

Pixel(w,x,y,width,height) generates pixel contents from a rectangular area within window w.

width * height results are generated starting from the upper-left corner and advancing down

to the bottom of each column before the next one is visited. Pixels are returned in integer

values; ordinary colors are encoded nonnegative integers, while mutable colors are negative

integers that were previously returned by NewColor(). Ordinary colors are encoded with

the most signi�cant eight bits all zero, the next eight bits contain the red component, the

next eight bits the green component, and the least signi�cant eight bits contain the blue

component. Pixel() fails if part of the requested rectangle extends beyond the canvas.

PopMatrix(w) : record pop the matrix stack

PopMatrix(w) pops the top matrix from either the projection or modelview matrix stack on

3D window w, depending on the current matrix mode. This procedure fails if there is only

one matrix on the matrix stack. The display list element is returned.

PushMatrix(w) : record push the matrix stack

PushMatrix(w) pushes a copy of the current matrix onto the matrix stack on 3D window w.

The current matrix mode determines on what stack is pushed. This procedure fails if the

stack is full. The “projection” stack is of size two; the “modelview” stack is of size thirty two.

The display list element is returned.

PushRotate(w, a, x, y, z) : record push and rotate

PushRotate() is equivalent to PushMatrix() followed by Rotate().

PushScale(w, x, y, z) : record push and scale

PushScale() is equivalent to PushMatrix() followed by Scale().

PushTranslate(w, x, y, z) : record push and translate

PushTranslate() is equivalent to PushMatrix() followed by Translate().

A.6. OPERATORS AND BUILT-IN FUNCTIONS 409

QueryPointer(w) : x, y produce mouse position

QueryPointer(w) generates the x and y coordinates of the mouse relative to window w. If w

is omitted, QueryPointer() generates the coordinates relative to the upper-left corner of the

entire screen.

Raise(w) : window raise window

Raise(w) moves window w to the top of the window stack, making it entirely visible and

possibly obscuring other windows.

ReadImage(w, s, x:0, y:0) : integer load image �le

ReadImage(w,s,x,y) loads an image from the �le named by s into window (or texture) w at

o�set x,y. x and y are optional and default to 0,0. GIF, JPG, PNG, and BMP formats are

supported, along with platform-speci�c formats. If ReadImage() reads the image into w, it

returns either an integer 0 indicating no errors occurred or a nonzero integer indicating that

one or more colors required by the image could not be obtained from the window system.

ReadImage() fails if �le s cannot be opened for reading or is an invalid �le format.

Refresh(w) : window redraw the window

Refresh(w) redraws the contents of window w. It is used mainly when objects have been

moved in a 3D scene. The window w is returned.

Rotate(w, a, x, y, z) : record rotate objects

Rotate(w, a, x, y, z,. . .) rotates subsequent objects drawn on 3D window w by angle a degrees,

in the direction (x,y,z). The display list element is returned.

Scale(w, x, y, z) : record scale objects

Scale(w, x, y, z,. . .) scales subsequent objects drawn on 3D window w according to the given

coordinates. The display list element is returned.

Texcoord(w, x, y, ...) : list de�ne texture coordinates

Texcoord(W, x1,y1, . . . , xn, yn) sets the texture coordinates to x1, y1, . . . , xn, yn in 3D window w.

Each x, y, pair forms one texture coordinate. Texcoord(W, L) sets the texture coordinates to

those speci�ed in the list L. Texcoord(W, s) sets the texture coordinates to those speci�ed by

s. The string s must be “auto” otherwise the procedure will fail. In all cases the display list

element is returned.

TextWidth(w, s) : integer pixel width of text

TextWidth(w,s) computes the pixel width of string s in the font currently de�ned for window

w.

Texture(w, s) : record apply texture

Texture(w, s) speci�es a texture image that is applied to subsequent objects drawn on 3D

window w. The string s speci�es the texture image as a �lename, a string of the form

410 APPENDIX A. LANGUAGE REFERENCE

width,pallet,data or width,#,data, where pallet is a pallet from the Unicon 2D graphics facilities

and data is the hexadecimal representation of an image. Texture(w1, w2) speci�es that the

contents of 2D or 3D window w2 be used as a texture image that is applied to subsequent

objects on the window w1. The display list element is returned.

Translate(w, x, y, z, ...) : record translate object positions

Translate(w, x, y, z,. . .) moves objects drawn subsequently on 3D window w in the direction

(x,y,z). The display list element is returned.

Uncouple(w) : window release binding

Uncouple(w) releases the binding associated with �le w. Uncouple() closes the window only if

all other bindings associated with that window are also closed.

WAttrib(w, s1, ...) : x, ... generate or set attributes

WAttrib(w, s1, ...) retrieves and/or sets window and context attributes. If called with exactly

one attribute, integers are produced for integer-value attributes; all other values are repre-

sented by strings. If called with more than one attribute argument, WAttrib() produces one

string result per argument, pre�xing each value by the attribute name and an equals sign

(=). If xi is a window, subsequent attributes apply to xi. WAttrib() fails if an attempt is

made to set the attribute font, fg, bg, or pattern to a value that is not supported. A run-time

error occurs for an invalid attribute name or invalid value.

WDefault(w, program, option) : string query user preference

WDefault(w,program,option) returns the value of option for program as registered with the X

resource manager. In typical use this supplies the program with a default value for window

attribute option from a program.option entry in an .XDefaults �le. WDefault() fails if no

user preference for the speci�ed option is available.

WFlush(w) : window �ush window output

WFlush(w) �ushes window output on window systems that bu�er text and graphics output.

Window output is automatically �ushed whenever the program blocks on window input.

When this behavior is not adequate, a call to WFlush() sends all window output immediately,

but does not wait for all commands to be received and acted upon. WFlush() is a no-op on

window systems that do not bu�er output.

WindowContents(w) : list window display list

WindowContents(w) returns a list of display elements, which are records or lists. Each element

has a function name followed by the parameters of the function, or an attribute followed

by its value.

WriteImage(w, s, x:0, y:0, width:0, height:0) : window save image �le

WriteImage(w,s,x,y,width,height) saves an image of dimensions width, height from window w at

o�set x,y to a �le named s. The default is to write the entire window. The �le is written

A.6. OPERATORS AND BUILT-IN FUNCTIONS 411

according to the �lename extension, in either GIF, JPG, BMP, PNG, or a platform speci�c

format such as XBM or XPM. WriteImage() fails if s cannot be opened for writing.

WSection(w, s) : record de�ne window section

WSection(w,s) starts a new window section named s on 3D window w and returns a display

list section marker record. During window refreshes if the section marker's skip �eld is 1,

the section is skipped. The section name s is produced by &pick if a primitive in the block

is clicked on while attribute “pick=on”. WSection(w) marks the end of a preceding section.

WSection() blocks may be nested.

WSync(w, s) : w synchronize with window system server

WSync(w,s) synchronizes the program with the server attached to window w on those window

systems that employ a client-server model. Output to the window is �ushed, and WSync()

waits for a reply from the server indicating all output has been processed. If s is "yes", all

events pending on w are discarded. WSync() is a no-op on window systems that do not use

a client-server model.

Pattern functions

Abort() pattern cancel

Abort() causes an immediate failure of the entire pattern match.

Any(c) match any

Any(c) matches any single character contained in c appearing in the subject string.

Arb() arbitrary pattern

Arb() matches zero or more characters in the subject string.

Arbno(p) repetitive arbitrary pattern

Arbno(p) matches repetitive sequences of p in the subject string.

Bal() balanced parentheses

Bal() matches the shortest non-null string which parentheses are balanced in the subject

string.

Break(c) pattern break

Break(c) matches any characters in the subject string up to but not including any of the

characters in cset c.

Breakx(c) extended pattern break

Breakx(c) matches any characters up to any of the subject characters in c, and will search

beyond the break position for a possible larger match.

412 APPENDIX A. LANGUAGE REFERENCE

Fail() pattern back

Fail() signals a failure in the current portion of the pattern match and sends an instruction

to go back and try a di�erent alternative.

Fence() pattern fence

Fence() signals a failure in the current portion of the pattern match if it is trying to backing

up to try other alternatives.

Len(i) match �xed-length string

Len(i) matches a string of a length of i characters in the subject string. It fails if i is greater

than the number of characters remaining in the subject string.

NotAny(c) match anything but

NotAny(c) matches any single character not contained in character set c appearing in the

subject string.

Nspan(c) optional pattern span

Nspan() matches the longest available sequence of zero or more characters from the subject

string that are contained in c.

Pos(i) cursor position

Pos(i) sets the cursor or index position of the subject string to the position i according the

Unicon index system shown below:

-6 -5 -4 -3 -2 -1 0

| U | n | i | c | o | n |

1 2 3 4 5 6 7

Rem() remainder pattern

Rem() matches the remainder of the subject string.

Span(c) pattern span

Span(c) matches one or more characters from the subject string that are contained in c. It

must match at least one character.

Succeed() pattern succeeds

Succeed() produces a pattern that, when matched, will cause the surrounding pattern match

to succeed without further scrutiny.

Tab(n) pattern tab

Tab(n) matches any characters from the current cursor or index position up to the speci�ed

position of the subject string. Tab() uses the Unicon index system shown in Pos() and

position n must be to the right of the current position.

A.7. PREPROCESSOR 413

Rpos(n) reverse cursor position

Rpos(n) sets the cursor or index position of the subject string to the position n back from

the end of the string, equivalent to using Unicon's negative indices in Pos().

6 5 4 3 2 1 0

| S | N | O | B | O | L |

Rtab(i) pattern reverse tab

Rtab(i) matches any characters from the current cursor or index position up to the speci�ed

position (back from the end) of the subject string, equivalent to using a negative index in

Tab(). Position n must be to the right of the current position.

A.7 Preprocessor

Unicon features a simple preprocessor that supports �le inclusion and symbolic constants.

It is a subset of the capabilities found in the C preprocessor, and is used primarily to

support platform-speci�c code sections and large collections of symbols.

Preprocessor commands

Preprocessor directives are lines beginning with a dollar sign. The available preprocessor

commands are:

$de�ne symbol text symbolic substitution

All subsequent occurrences of symbol are replaced by the text within the current �le. Note

that $de�ne does not support arguments, unlike C.

$include �lename insert source �le

The named �le is inserted into the compilation in place of the $include line.

$ifdef symbol conditional compilation

$ifndef symbol conditional compilation

$else conditional alternative

$endif end of conditional code

The subsequent lines of code, up to an $else or $endif, are discarded unless symbol is

de�ned by some $de�ne directive. $ifndef reverses this logic.

$error text compile error

The compiler will emit an error with the supplied text as a message.

$line number [�lename] source code line #line number [�lename] source code line

The subsequent lines of code are treated by the compiler as commencing from line number

in the �le �lename or the current �le if no �lename is given.

414 APPENDIX A. LANGUAGE REFERENCE

$undef symbol remove symbol de�nition

Subsequent occurrences of symbol are no longer replaced by any substitute text.

EBCDIC transliterations alternative bracket characters

These character combinations were introduced for legacy keyboards that were missing cer-

tain bracket characters.

$(for {
$) for }
$< for [
$> for]

These character combinations are substitutes for curly and square brackets on keyboards

that do not have these characters.

Prede�ned symbols

Prede�ned symbols are provided for each platform and each feature that is optionally

compiled in on some platforms. These symbols include:

Preprocessor Symbol Feature

_V9 Version 9

_CMS CMS

_MSDOS_386 MS-DOS/386

_MS_WINDOWS_NT MS Windows NT

_MSDOS MS-DOS

_MVS MVS

_OS2 OS/2

_PORT PORT

_UNIX UNIX

_POSIX POSIX

_DBM DBM

_VMS VMS

_ASCII ASCII

_EBCDIC EBCDIC

_CO_EXPRESSIONS co-expressions

_CONSOLE_WINDOW console window

_DYNAMIC_LOADING dynamic loading

_EVENT_MONITOR event monitoring

_EXTERNAL_FUNCTIONS external functions

_KEYBOARD_FUNCTIONS keyboard functions

_LARGE_INTEGERS large integers

A.8. EXECUTION ERRORS 415

_MULTITASKING multiple programs

_PIPES pipes

_RECORD_IO record I/O

_SYSTEM_FUNCTION system function

_MESSAGING messaging

_GRAPHICS graphics

_X_WINDOW_SYSTEM X Windows

_MS_WINDOWS MS Windows

_WIN32 Win32

_PRESENTATION_MGR Presentation Manager

_DOS_FUNCTIONS MS-DOS extensions

_DEVMODE developer mode

A.8 Execution Errors

There are two kinds of errors that can occur during the execution of an Icon program:

runtime errors and system errors. Runtime errors occur when a semantic or logic error in a

program results in a computation that cannot perform as instructed. System errors occur

when an operating system call fails to perform a required service.

Runtime errors

By default, a runtime error causes program execution to abort. Runtime errors are reported

by name as well as by number. They are accompanied by an error traceback that shows

the procedure call stack and value that caused the error, if there is one. The errors are

listed below to illustrate the kinds of situations that can cause execution to terminate.

The keyword &error turns runtime errors into expression failure. When an expression

fails due to a converted runtime error, the keywords &errornumber, &errortext, and &errorvalue

provide information about the nature of the error. When a system function fails, keyword

&errno and &errortext are set to indicate the nature of the system call failure; the numbering

systems of &errornumber and &errno are unrelated; &errno numbers are platform dependent.

101 integer expected or out of range

102 numeric expected

103 string expected

104 cset expected

105 �le expected

106 procedure or integer expected

107 record expected

108 list expected

109 string or �le expected

416 APPENDIX A. LANGUAGE REFERENCE

110 string or list expected

111 variable expected

112 invalid type to size operation

113 invalid type to random operation

114 invalid type to subscript operation

115 structure expected

116 invalid type to element generator

117 missing main procedure

118 co-expression expected

119 set expected

120 two csets, two sets, or two tables expected

121 function not supported

122 set or table expected

123 invalid type

124 table expected

125 list, record, or set expected

126 list or record expected

127 pattern expected

128 unevaluated variable or function call expected

129 unable to convert unevaluated variable to pattern

130 incorrect number of arguments

131 string is not a class name

140 window expected

141 program terminated by window manager

142 attempt to read/write on closed window

143 malformed event queue

144 window system error

145 bad window attribute

146 incorrect number of arguments to drawing function

147 window attribute cannot be read or written as requested

148 graphics is not enabled in this virtual machine

150 drawing a 3D object while in 2D mode

151 pushed/popped too many matrices

152 modelview or projection expected

153 texture not in correct format

154 must have an even number of texture coordinates

155 3D graphics is not enabled in this virtual machine

160 nonexistent variable name

161 cannot convert unevaluated variable to pattern

162 uninitialized pattern

A.8. EXECUTION ERRORS 417

163 object, method, or method parameter problem in unevaluated expression

164 unsupported unevaluated expression

165 null pattern argument where name was expected

166 unable to produce pattern image, possible malformed pattern

170 string or integer expected

171 UDP socket expected

172 signal handler procedure must take one argument

173 cannot open directory for writing

174 invalid �le operation

175 network connection expected

180 invalid mutex

181 invalid condition variable

182 illegal recursion in initial clause

183 concurrent threads are not enabled in this virtual machine

184 structure cannot have more than one mutex at the same time

185 converting an active co-expression to a thread is not yet supported

190 dbm database expected

191 cannot open dbm database

201 division by zero

202 remaindering by zero

203 integer over�ow

204 real over�ow, under�ow, or division by zero

205 invalid value

206 negative �rst argument to real exponentiation

207 invalid �eld name

208 second and third arguments to map of unequal length

209 invalid second argument to open

210 non-ascending arguments to detab/entab

211 by value equal to zero

212 attempt to read �le not open for reading

213 attempt to write �le not open for writing

214 input/output error

215 attempt to refresh &main

216 external function not found

217 unsafe inter-program variable assignment

218 invalid �le name

301 evaluation stack over�ow

302 memory violation

303 inadequate space for evaluation stack

304 inadequate space in quali�er list

418 APPENDIX A. LANGUAGE REFERENCE

305 inadequate space for static allocation

306 inadequate space in string region

307 inadequate space in block region

308 system stack over�ow in co-expression

309 pattern stack over�ow

316 interpreter stack too large

318 co-expression stack too large

401 co-expressions not implemented

402 program not compiled with debugging option

500 program malfunction

600 vidget usage error

1040 socket error

1041 cannot initialize network library

1042 fdup of closed �le

1043 invalid signal

1044 invalid operation to �ock/fcntl

1045 invalid mode string

1046 invalid permission string for umask

1047 invalid protocol name

1048 low-level read or select mixed with bu�ered read

1049 nonexistent service or services database error

1050 command not found

1051 cannot create temporary �le

1052 cannot create pipe

1053 empty pipe

1100 ODBC connection expected

1200 system error (see &errno)

1201 malformed URL

1202 missing username in URL

1203 unknown scheme in URL

1204 cannot parse URL

1205 cannot connect

1206 unknown host

1207 invalid �eld in header

1208 messaging �le expected

1209 cannot determine smtpserver

1210 cannot determine user return address

1211 invalid email address

1212 server error

1213 POP messaging �le expected

A.8. EXECUTION ERRORS 419

1214 cannot �nd certi�cate store

1215 cannot verify peer's certi�cate

1300 SSL error

1301 SSL context error

1302 bad ssl attribute

1303 private key error

1304 certi�cate error

1305 certi�cate authority error

1306 cipher error

1307 private key and certi�cate mismatch

1308 unknown protocol

System errors

If an error occurs during the execution of a system function, the program terminates. Unlike

runtime errors, there is no way to convert the error to a failure (and continue execution).

The complete set of system errors is by de�nition platform speci�c. Error numbers above

the value 1000 are used for system errors. Many of the POSIX standard system errors are

supported across platforms, and error numbers between 1001 and 1040 are reserved for the

system errors listed below. Platforms may report other system error codes so long as they

do not con�ict with existing runtime or system error codes.

1001 Operation not permitted

1002 No such �le or directory

1003 No such process

1004 Interrupted system call

1005 I/O error

1006 No such device or address

1007 Arg list too long

1008 Exec format error

1009 Bad �le number

1010 No child processes

1011 Try again

1012 Out of memory

1013 Permission denied

1014 Bad address

1016 Device or resource busy

1017 File exists

1018 Cross-device link

1019 No such device

1020 Not a directory

420 APPENDIX A. LANGUAGE REFERENCE

1021 Is a directory

1022 Invalid argument

1023 File table over�ow

1024 Too many open �les

1025 Not a typewriter

1027 File too large

1028 No space left on device

1029 Illegal seek

1030 Read-only �le system

1031 Too many links

1032 Broken pipe

1033 Math argument out of domain of func

1034 Math result not representable

1035 Resource deadlock would occur

1036 File name too long

1037 No record locks available

1038 Function not implemented

1039 Directory not empty

1040 socket error

1041 cannot initialize network library

1042 fdup of closed �le

1043 invalid signal

1044 invalid operation to �ock/fcntl

1045 invalid mode string

1046 invalid permission string for umask

1047 invalid protocol name

1048 low-level read or select mixed with bu�ered read

1100 ODBC connection expected

1200 system error (see &errno)

1201 malformed URL

1202 missing username in URL

1203 unknown scheme in URL

1204 cannot parse URL

1205 cannot connect

1206 unknown host

1207 invalid �eld in header

1208 messaging �le expected

1209 cannot determine smtpserver (set UNICON_SMTPSERVER)

1210 cannot determine user return address (set UNICON_USERADDRESS)

1211 invalid email address

A.8. EXECUTION ERRORS 421

1212 server error

1213 POP messaging �le expected

422 APPENDIX A. LANGUAGE REFERENCE

A.9 Syntax

The Unicon syntax is described here using �Railroad diagrams�. Note that a newline may

be substituted for the semicolon symbol (i.e. ;) wherever it appears in the diagrams.

Some non-terminal symbols, which could be further expanded using another diagram, are

represented by a single terminal symbol with the name enclosed in guillemets, for example

«infix-operator» .

Program

global «name» ,

link «file name» ,

invocable all

invocable " «name» " ,

procedure declaration

class declaration

record «name» («name» ,)

0:1 package «name» or «file name»

import «name» ,

The n:m symbol is an extension to the usual railway syntax and denotes that a path

may be taken between n and m times. 1 is an abbreviation for 1:1 meaning the path

is compulsory and must appear exactly once.

A.9. SYNTAX 423

procedure declararation

procedure proc header ; proc body ; end

proc header

«name» (parameter , «name» [])

parameter

«name» : «name» : «string or number or cset value»

proc body

var(s) declaration ; initial expr ; expr

var(s) declaration

local

static

«name» := expr ,

class declararation

class «name» : («name» ,)

; method declaration ;

; initially proc header ; proc body ;

end

method declararation

method proc header ; proc body ; end

424 APPENDIX A. LANGUAGE REFERENCE

expr

expr . «name»

:: «name»

«string or number or cset value»

«prefix-operator» expr

expr «infix-operator» expr

&keyword

expr to expr by expr

meth-expr (expr ,)

control expr

expr { expr , }

[: expr :]

{ expr ; }

expr [expr : or +: or -: expr]

expr [expr ,]

A.9. SYNTAX 425

meth-expr

expr

expr $ «name» . «name»

expr $ «name» . initially

control expr

if expr then expr else expr

loop expr

break expr

next

critical expr : expr

case expr of {

; 0:1 default

expr

: expr }

create expr

thread expr

return expr

fail

426 APPENDIX A. LANGUAGE REFERENCE

loop expr

every expr do expr

while expr do expr

until expr do expr

suspend expr do expr

repeat expr

Operator precedence and associativity

Except where mentioned, in�x operators are left�associative. The operators are listed in

two columns and grouped from highest precedence to lowest: the groups are separated by

horizontal lines and all operators in a group have the same precedence (i.e. the order within

a group, or the column an operator is placed in, is not signi�cant).

Operator Precedence

(expr) [expr1, expr2 . . .]

expr (expr1, expr2 . . .) expr1 [expr2, expr3 . . .]

{ expr1; expr2 . . .} expr1 [expr2 : expr3]

expr { expr1; expr2 . . .} expr1 [expr2 +: expr3]

expr.f expr1 [expr2 -: expr3]

expr1$initially(expr2 . . .) expr1$id(expr2 . . .)

expr1$id.initially(expr2 . . .) expr1$id1.id2(expr2 . . .)

[: expr :]

< regexp > (regular expressions have di�erent precedence rules)

<@ @>

<<@ @>>

⇑ higher lower ⇓
not expr | expr

continued . . .

A.9. SYNTAX 427

Operator Precedence (continued)

! expr * expr

+ expr - expr

/ expr \ expr

. expr ++ expr

? expr ~ expr

^ expr @ expr

@> expr @>> expr

<@ expr <<@ expr

|| expr ||| expr

-- expr ** expr

= expr ~= expr

== expr ~== expr

=== expr ~=== expr

.| expr

⇑ higher lower ⇓
expr1 \ expr2

expr1 @ expr2 expr1 ! expr2

expr1 @> expr2 expr1 @>> expr2

expr1 <@ expr2 expr1 <<@ expr2

⇑ higher lower ⇓
expr @> expr @>>

expr <@ expr <<@

⇑ higher lower ⇓
expr1 ^ expr2 (right�associative)

⇑ higher lower ⇓
expr1 * expr2 expr1 / expr2

expr1 ** expr2 expr1 % expr2

⇑ higher lower ⇓
expr1 + expr2 expr1 - expr2

expr1 ++ expr2 expr1 -- expr2

expr1 $$ expr2 expr1 -> expr2

⇑ higher lower ⇓
expr1 || expr2 expr1 ||| expr2

⇑ higher lower ⇓
expr1 < expr2 expr1 <= expr2

expr1 > expr2 expr1 >= expr2

expr1 = expr2 expr1 ~= expr2

expr1 == expr2 expr1 ~== expr2

continued . . .

428 APPENDIX A. LANGUAGE REFERENCE

Operator Precedence (continued)

expr1 === expr2 expr1 ~=== expr2

expr1 << expr2 expr1 <<= expr2

expr1 >> expr2 expr1 >>= expr2

⇑ higher lower ⇓
expr1 | expr2 expr1 && expr2

⇑ higher lower ⇓
expr1 .| expr2

expr1 to expr2 expr1 to expr2 by expr3

⇑ higher lower ⇓
expr1 ?? expr2

⇑ higher lower ⇓
expr1 := expr2 (right�associative)

expr1 <- expr2 (right�associative)

expr1 :=: expr2 (right�associative)

expr1 <=> expr2 (right�associative)

expr1 op:= expr2 (operators that may be augmented are listed below)

⇑ higher lower ⇓
expr1 ? expr2

⇑ higher lower ⇓
expr1 & expr2

⇑ higher lower ⇓
break expr1

case expr of {expr1: expr2; expr3: expr4; . . .}

create expr

every expr1 do expr2

fail

if expr1 then expr2 else expr3

next

repeat expr

return expr

suspend expr1 do expr2

until expr1 do expr2

while expr1 do expr2

critical expr1 : expr2

thread expr

⇑ higher lower ⇓
expr1 ; expr2

A.9. SYNTAX 429

Augmented operators

The following operators may be augmented with :=

|| ||| + - * ++ -- ** / %

= == === ~= ~== ~=== ^ ? & @

>>= >> <<= << >= > <= <

430 APPENDIX A. LANGUAGE REFERENCE

Appendix B

The Icon Program Library

The Icon Program Library (IPL) contains hundreds of complete programs ranging from

simple demonstrations to complex applications. More importantly, it provides hundreds

of library modules with thousands of procedures that can save you a lot of e�ort. To use

these procedures, add link declarations to the modules in which they are declared. On

standard installations, Unicon knows the location of the directory IPL hierarchy relative to

the Unicon binaries. To move these binaries or add your own directories of reusable code

modules, you must set the IPATH (and often LPATH) environment variables so they know

where to �nd the IPL directories, in addition to any of your own you wish to add. Both

IPATH and LPATH are semicolon-separated lists of directories. The names IPATH and

LPATH can be confusing; IPATH directories are searched for .u code modules to be linked,

while LPATH directories are searched for .icn source code �les that you wish to $include.

The Icon Program Library's 20 directories of code, data, and supporting documentation

is included in Unicon distributions. This reference appendix presents only the most useful

components of the IPL, emphasizing those of potential value to other programmers. Many

modules were written by Ralph Griswold; if he was not the author of a given module,

the initials of authors are included in the module description. A list of authors' names

appears at the end of the appendix. This appendix no doubt overlooks some excellent

library modules and programs. The entries in this appendix loosely follow this template:

filename

Each module has a general description, ending with the authors' initials in parentheses.

For some modules, the external interface of the module is then summarized. The number

and type of procedures' parameters and return values are given. Library procedures return

a null value unless otherwise noted. The �lename at the beginning is linked in in order to

use these procedures in a program. After the external interface, related modules are listed.

record types(�elds) with summary descriptions

functions(parameters) : return types with summary descriptions

Links: other library modules (author's initials)

431

432 APPENDIX B. THE ICON PROGRAM LIBRARY

B.1 Procedure Library Modules

These �les appear in the ipl/procs/ directory. Each library module in this directory is a

collection of one or more procedures. Some modules also introduce record types or use

global variables that are of interest to programmers that use the module.

adlutils

This module processes address lists; addresses are represented using a record type label.

Procedures for extracting the city, state, and ZIP code work for U.S. addresses only.

Links: lastname, io, namepfx, title

apply

apply(L:list, argument):any applies a list of functions to an argument. An example is

apply([integer,log],10) which is equivalent to integer(log(10)).

argparse

argparse(s:string):list parses s as a command line and returns a list of arguments. At

present, it does not accept any escape conventions.

array

This module provides a multidimensional array abstraction with programmer-supplied

base indices. create_array(lbs:list, ubs:list, value):array creates an n-dimensional array with

speci�ed lower bounds, upper bounds, and with each array element having the given initial

value. ref_array(A, i1, i2, ...) references the i1-th i2-th ... element of A.

asciinam (RJA)

asciiname(s:string):string returns the name of unprintable ASCII character s.

B.1. PROCEDURE LIBRARY MODULES 433

base64 (DAG)

This module provides base64 encodings for MIME (RFC 2045). Among other things,

this facilitates the writing of programs that read e-mail messages.

base64encode(string) : string returns the base64 encoding of its argument.

base64decode(string) : string? returns a base64 decoding of its argument. It fails if the

string is not base64 encoded.

basename (REG, CAS)

basename(name, suffix) : string removes any path information as well as the speci�ed su�x,

if present. If no su�x is given, the whole �lename (sans path) is returned.

binary (RJA)

These procedures support conversion of Icon data elements to and from binary data

formats. The control procedures pack() and unpack() take a format string that controls

conversions of several values, similar to the printf() C library function.

pack(template, value1, ...) : packed_binary_string packs the value arguments into a binary

structure, returning a string containing the structure. The elements of any lists in the value

parameters are processed individually as if they were spliced into the value parameter list.

The template characters give the order and type of values, as follows:

a ASCII, null padded A ASCII, space padded

b bitstring, low-to-high order B bitstring, high-to-low order

h hexadecimal string, low-nibble-�rst H hexadecimal string, high-nibble-�rst
c signed char C unsigned char
s signed short S unsigned short

i signed integer I unsigned integer

l signed long L unsigned long
n short in "network" order (big-endian) N long in "network" order (big-endian)
v short in VAX order (little endian) V long in VAX order (little endian)

f
single-precision �oat in IEEE Mo-

torola format
d

double precision �oats in IEEE Mo-

torola format

e
extended-precision �oat in IEEE Mo-

torola format 80-bit
E

extended-precision �oat in IEEE Mo-

torola format 96-bit

x
skip forward a byte (null-�ll for

pack())
X back up a byte

@
go to absolute position (null-�ll if nec-

essary for pack())
u uuencoded/uudecoded string

Each letter may be followed by a numeric count. Together the letter and the count make a

�eld speci�er. Letters and numbers can be separated by white space that is ignored. Types

in [AaBbHh] consume one value from the �value� list and produce a string of the length

given as the �eld-speci�er-count. The other types consume ��eld-speci�er-count� values

from the �value� list and append the appropriate data to the packed string.

434 APPENDIX B. THE ICON PROGRAM LIBRARY

unpack(template, string) : value_list does the reverse of pack(): it takes a string representing

a structure and expands it out into a list of values. The template has mostly the same

format as for pack().

bincvt (RJA)

These procedures are for processing of binary data read from a �le.

unsigned(s:string) : integer converts a binary byte string into an unsigned integer.

raw(s:string) : integer puts raw bits of characters of string s into an integer. If the size of

s is less than the size of an integer, the bytes are put into the low order part of the integer,

with the remaining high order bytes �lled with zero. If the string is too large, the most

signi�cant bytes will be lost -- no over�ow detection.

rawstring(i:integer, size) : string creates a string consisting of the raw bits in the low order

size bytes of integer i.

bitint

int2bit(i) : string produces a string with the bit representation of i.

bit2int(s) : integer produces an integer corresponding to the bit representation i.

bitstr,bitstrm

These two modules operate on numeric values represented by arbitrarily long strings of

bits, stored without regard to character boundaries. In conjunction with arbitrary precision

integers, this facility can deal with bit strings of arbitrary size. record BitString(s, buffer,

bufferBits) represents bit strings internally. See the header comments atop the source code

for the public API and examples for these modules.

bufread (CAS)

These procedures provide lookahead within an open �le. The procedures bufopen(),

bufread(), and bufclose() mirror the built-in open(), read(), and close().

bufopen(s:&input): file? opens a �le name s for bu�ered read and lookahead.

bufread(f:&input): string reads the next line from �le f. You cannot bufread() &input unless

you have previously called bufopen() on it.

bufnext(f:&input, n:1): string returns the next nth line from �le f without changing the next

record to be read by bufread().

bufclose(f:&input): file close �le f.

In addition to processing the current line, one may process subsequent lines before

they are logically read.

calls

Procedures to deal with procedure invocations encapsulated in records.

record call(proc, args) encapsulates a procedure and its argument list.

invoke(call) : any* invokes a procedure with an argument from a call record.

call_image(call) : string produces a string image of a call.

make_call(string) : call makes a call record from a string image of an invocation.

make_args(string) : list makes an argument list from a comma-separated string.

B.1. PROCEDURE LIBRARY MODULES 435

call_code(string) : string produces a string of Icon code to construct a call record.

write_calltable(T:table, p:procedure, f:file):null writes a table of calls (all to procedure p) out

to a �le. The format is name=proc:arg1,arg2,?,argn,

read_calltable(f:file) : table reads a call table �le into a table.

Links: ivalue, procname.

capture (DAG)

capture(f:file) replaces write(), writes(), and stop() with procedures that echo those elements

that are sent to &output to the �le f.

uncaptured_write(s:string...), uncaptured_writes(s:string...) and

uncaptured_stop(s:string...) allow output to be directed to &output without echoing to the

capture �le. These are handy for placing progress messages and other comforting informa-

tion on the screen.

caseless (NJL)

These procedures are analogous to the standard string-analysis functions except that

uppercase letters are considered equivalent to lowercase letters. They observe the string

scanning function conventions for defaulting of the last three parameters.

anycl(c, s, i1, i2) succeeds and produces i1 + 1, provided map(s[i1]) is in cset(map(c)) and i2

is greater than i1. It fails otherwise.

balcl(c1, c2:’(’, c3:’)’, s, i1, i2) generates the sequence of integer positions in s preceding

a character of cset(map(c1)) in map(s[i1:i2]) that is balanced with respect to characters in

cset(map(c2)) and cset(map(c3)), but fails if there is no such position.

findcl(s1, s2, i1, i2) generates the sequence of integer positions in s2 at which map(s1)

occurs as a substring in map(s2[i1:i2]), but fails if there is no such position.

manycl(c,s,i1,i2) produces the position in s after the longest initial sequence of characters

in cset(map(c)) within map(s[i1:i2]). It fails if map(s[i1]) is not in cset(map(c)).

matchcl(s1, s2, i1, i2) : integer? produces i1 + *s1 if map(s1) == map(s2[i1+:=*s1]).

uptocl(c, s, i1, i2) generates the sequence of integer positions in s preceding a character of

cset(map(c)) in map(s[i1:i2]). It fails if there is no such position.

cgi (JvM, CLJ)

The cgi library provides support for development of Common Gateway Interface server

side web based applications, commonly called CGI scripts.

global cgi : table contains keys that are the names of input �elds in the invoking HTML

page's form, and values are whatever the user typed in those input �elds.

cgiInput(type, name, values) writes HTML INPUT tags with the given type and name for

each of a list of values. The �rst value's input tag is CHECKED.

cgiSelect(name, values) writes an HTML SELECT with a given name and OPTION tags

for a list of values. The �rst value's OPTION tag is SELECTED.

cgiXYCoord(hlst) : string is used with an ISMAP. If the x and y coordinates are between

certain boundaries, it returns the value of the list element that was entered.

436 APPENDIX B. THE ICON PROGRAM LIBRARY

cgiMyURL() : string returns the URL for the current script, as obtained from the

SERVER_NAME and SCRIPT_NAME environment variables.

cgiPrintVariables(T) prints a Unicon table using simple HTML formatting.

cgiError(L) generates an error message consisting of the strings in list L, with L[1] as the

title and subsequent list elements as paragraphs.

cgiHexVal(c) produces a value from 0 to 15 corresponding to hex chars 0 to F.

cgiHexChar(c1,c2) produces a char corresponding to two char-encoded hex digits.

cgiColorToHex(s) : string produces a 24-bit hex color value corresponding to a string color

name. At present, only the colors black, gray, white, pink, violet, brown, red, orange,

yellow, green, cyan, blue, purple, and magenta are supported.

cgiPrePro(filename, def) copies out parts of a named HTML �le, writing out anything

between pairs of <!−− ALL or <!−− def comments.

cgiRndImg(L, s) writes an HTML IMG tag for a random element of L, which should be a

list of image �lenames. The tag has ALT text given in string s.

cgiOptwindow(opts, args...) : window? attempts to open an Icon window, either on the

X server or else on display :0 of the client's machine (as de�ned by the IP address in

REMOTE_ADDR). The Icon window is typically used to generate a .GIF image to which

a link is embedded in the CGI program's output.

main(args) is included in the CGI library; you do not write your own. The CGI main()

procedure generates an HTML header, parses the CGI input �elds into a global table cgi,

generates a background by calling the user's cgiBBuilder() function, if any, and calls the

user's cgimain() function.

cgiBBuilder(args...) : table is an optional procedure that a CGI program can use to de�ne

the general appearance of its generated web page output. If the user application de�nes

this function, it should return a table which contains keys "background", "bgcolor", "text",

"link", "vlink", and "bgproperties" with appropriate values to go into the BODY tag and

de�ne background color and texture for the CGI page.

cgimain(args) is the entry point for CGI programs. When you use the CGI library, its

main() initializes things and then calls your cgimain() to generate the HTML content body

for the client's web page.

codeobj

This module provides a way of storing Icon values as strings and retrieving them.

encode(x:any) : string converts x to a string s.

decode(s:string): any converts a string in encode() format back to x.

These procedures handle all Unicon values, including structures of arbitrary complexity.

For scalar types (null, integer, real, cset, and string), decode(encode(x)) === x. For structures

(list, set, table, and record types) decode(encode(x)) is not identical to x, but it has the same

"shape" and its elements bear the same relation to the original as if they were encoded

and decode individually. Not much can be done with �les, functions and procedures, and

co-expressions except to preserve type and identi�cation. The encoding of strings and csets

B.1. PROCEDURE LIBRARY MODULES 437

handles characters in a way that is safe to write to a �le and read it back.

Links: escape, gener, procname, typecode. See also: object.icn.

colmize (RJA)

colmize(L:list,mx:80,sp:2,mi:0,tag,tagsp:2,tagmi:0,roww,dist) : string* arranges data items (from

list of strings L) into multiple columns. mx is the maximum width of output lines. sp is the

minimum number of spaces between columns. mi is the minimum column width. tag is a

label to be placed on the �rst line of output. Items are arranged column-wise unless roww

is nonnull; by default the sequence runs down the �rst column, then down the second, etc.

colmize() prints the items in as few vertical lines as possible.

complete (RLG)

complete(s:string,st) : string* takes a partial string, s, and generates those strings in st that

begin with s. st must be a list or set of strings.

complex

The following procedures perform operations on complex numbers.

record complex(r,i) creates a complex number with real part r and imaginary part i

cpxadd(x1,x2) : complex add complex numbers x1 and x2

cpxdiv(x1,x2) : complex divide complex number x1 by complex number x2

cpxmul(x1,x2) : complex multiply complex number x1 by complex number x2

cpxsub(x1,x2) : complex subtract complex numbers x2 from x1

cpxstr(x) : complex convert complex number x to string representation

strcpx(s) : complex convert string to complex number

conffile (DAG)

This module parses �con�guration �les� into Icon structures for easy access. The service

is similar to command-line option handling, except that con�guration �les can contain

structured data such as lists or tables. A con�guration �le supplies values for a set of named

directives. The directives and their values are read in to a table, usually during program

initialization. The types of all allowed directives are speci�ed before the con�guration �le

is accessed.

convert

This module contains numeric conversions between bases. There are several other pro-

cedures related to conversion that are not yet part of this module.

exbase10(i, j) : string converts base-10 integer i to base j.

inbase10(s, i) : integer converts base-i integer s to base 10.

radcon(s, i, j) : integer converts base-i integer s to base j.

created

created(string) : integer returns (approximately) the number of structures of a given type

that have been created. Links: serial.

currency (RJA)

438 APPENDIX B. THE ICON PROGRAM LIBRARY

currency(amt, wid:0, neg:"-", frac:2, whole:1, sign:"$", decimal:".", comma:",") : string formats amt

in a currency format that defaults to U.S. currency. amt can be a real, integer, or numeric

string. wid is the output �eld width; its amount is right-adjusted. The returned string will

be longer than width if necessary to preserve signi�cance. neg is the character string to be

used for negative amounts, and is placed to the right of the amount. frac and whole are

the exact number of digits to use right of the decimal, and the minimum number of digits

to appear left of the decimal, respectively. The currency sign pre�xes the returned string.

The characters used for decimal point and comma may also be supplied.

datecomp (CSM)

These procedures do simple date comparisons. The parameters are strings of the form

mm/dd/yyyy or &date-compatible yyyy/mm/dd.

dgt(date1:string, date2:string) : ? succeeds if date1 is later than date2.

dlt(date1:string, date2:string) : ? succeeds if date1 is earlier than date2.

deq(date1:string, date2:string) : ? succeeds if date1 is equal to date2.

futuredate(date:string) : ? succeeds if date is in the future.

pastdate(date:string) : ? succeeds if date is in the past.

getmonth(date:string) : string returns the month portion of a date.

getday(date:string) : string returns the day portion of a date.

getyear(date:string) : string returns the year portion of a date.

datefns (CH)

Date and calendar adaptations of C functions from "The C Programming Language"

(Kernighan and Ritchie, Prentice-Hall) and "Numerical Recipes in C" (Press et al, Cam-

bridge). They represent dates using the record type below.

record date_rec(year, month, day, yearday, monthname, dayname)

initdate() initializes the global data before using the other functions.

today() : date_rec produces a computationally useful value for today's date

julian(date) : integer converts a date_rec to a Julian day number

unjulian(julianday) : date_rec produces a date from the Julian day number

doy(year, month, day) : integer returns the day-of-year from (year, month, day)

wrdate(leadin, date) writes a basic date string preceded by a leadin to &output

datetime (RJA, REG)

Miscellaneous date and time operations. See also: datefns.icn.

global DateBaseYear : 1970 is a time origin for several functions. An environment variable

by the same name overrides the default value.

ClockToSec(string) : integer converts &clock format to seconds past midnight.

DateLineToSec(dateline,hoursFromGmt) : integer converts &dateline format to seconds past

DateBaseYear. DateToSec(string) : integer converts &date format (yyyy/mm/dd) to seconds

past DateBaseYear.

SecToClock(integer) : string converts a number of seconds past midnight to a string in the

B.1. PROCEDURE LIBRARY MODULES 439

format of &clock. SecToDate(integer) : string converts a number of seconds past DateBaseYear

to a string in Icon &date format (yyyy/mm/dd).

SecToDateLine(sec,hoursFromGmt) : string yields a date in &dateline format.

SecToUnixDate(sec,hoursFromGmt) : string returns a date and time in typical UNIX format:

Jan 14 10:24 1991.

calendat(j) : date1 returns a record with the month, day, and year corresponding to the

Julian Date Number j.

date() : string produces the natural date in English.

dayoweek(day, month, year) : string yields the day of the week for a given date.

full13th(year1, year2) generates records giving the days on which a full moon occurs on

Friday the 13th in the range from year1 through year2.

julian(m,d,y) yields the Julian Day Number for the given month, day, and year.

pom(n, phase) returns record with the Julian Day number of fractional part of the day

for which the nth such phase since January, 1900. Phases are encoded as:

0 = new moon 1 = �rst quarter 2 = full moon 3 = last quarter

GMT is assumed.

saytime() computes the time in natural English. If an argument is supplied it is used as

a test value to check the operation the program.

walltime() : integer produces the number of seconds since midnight. Beware wrap-around

when used in programs that span midnight.

db

These procedures provide an interface to the ODBC database facilities that does not

require knowledge of SQL. It also provides compatibility procedures for an earlier version

of the ODBC interface.

dbdelete(db, filter...):integer deletes rows from db that satisfy �lters. Warning: if the �lter

criteria are omitted, the database will be emptied by this operation!

dbinsert(db, row:record) inserts a record as a tuple (row) into db.

dbselect(db,columns,condition,ordering):integer selects columns from db. columns defaults

to "all", condition defaults to unconditionally, and ordering defaults to unordered.

dbupdate(db:database,row:record) updates the db tuple corresponding to row.

dbopen(dsn, tabl, user, password):f is an alias for open(dsn,"o",...). tabl is optional.

dbclose(db) is an alias for close()

dbfetch(db) is an alias for fetch()

dbsql(db, query) is an alias for sql()

dif (RJA)

dif(strm:list,compare:"===",eof,group:groupfactor):list* generates di�erences between input streams.

Returns a list of records, one for each input stream, with each record containing a list of

items that di�er and their positions in the input stream. The record type is as: record

diff_rec(pos,diffs). dif() fails if there are no di�erences.

440 APPENDIX B. THE ICON PROGRAM LIBRARY

strm is a list of input streams from which dif() will extract its input "records". The

elements can be any of the following types, with corresponding actions:
Type Action

�le �le is "read" to get records

co-expression co-expression is activated to get records

list records are "gotten" (get()) from the list

di�_proc

a record type that has two �elds, a procedure to call and the argu-

ment to pass to it. Its de�nition is: record diff_proc(proc,arg). It allows

procedures supplied by dif's caller to be called to get records.
compare is a procedure that succeeds if two records are "equal", and fails otherwise.

The comparison must allow for the fact that the EOF object might be an argument, and

a pair of EOFs must compare equal.

eof is an object that is distinguishable from other objects in the stream.

group is a procedure that is called with the current number of unmatched items as its

argument. It must return the number of matching items required for �le synchronization

to occur. The default (procedure groupfactor()) is the formula Trunc((2.0 * Log(M)) + 2.0)

where M is the number of unmatched items.

digitcnt

digitcnt(file:&input) : list counts the number of each digit in a �le and returns a ten-element

list with the counts.

equiv

equiv(x,y) : any? tests the equivalence of two values. For non-structures, it returns x1 ===

x2. For structures, the test is for shape. For example, equiv([],[]) succeeds. It handles loops,

but does not recognize them as such. The concept of equivalence for tables and sets is weak

if their elements are themselves structures. There is no concept of order for tables and sets,

yet it is impractical to test for equivalence of their elements without imposing an order.

Since structures sort by "age", there may be a mismatch between equivalent structures in

two tables or sets.

escapesq (RJA)

These procedures manipulate escape sequences in Icon string format.

escapeseq() : string is a matching procedure for Icon string escape sequences

escchar(string) : string produces the character value of an Icon escape sequence

escape() converts a string with escape sequences to the string it represents. For example,

escape("\\143\\141\\164") produces the string "cat".

quotedstring() matches a complete quoted string.

eval

eval(string) : any* analyzes a string representing an Icon function or procedure call and

evaluates the result. Operators can be used in functional form, as in "*(2,3)". This procedure

cannot handle nested expressions or control structures. It assumes the string is well formed.

The arguments can only be Icon literals. Escapes, commas, and parentheses in string literals

B.1. PROCEDURE LIBRARY MODULES 441

are not handled. In the case of operators that are both unary and binary, the binary form

is used. Links: ivalue.

evallist

evallist(expr, n, ucode, ...) : list returns a list of the results written by a program consisting

of expression expr (normally a generator); n is the maximum size of the list, and the trailing

arguments are ucode �les to link with the expression. Requires: system(), /tmp, pipes. Links:

exprfile.

everycat

everycat(x1, x2, ...) : string* generates the concatenation of every string from !x1, !x2, ...

For example, if �rst := ["Mary", 'Joe', "Sandra"] and last := ["Smith", "Roberts"] then

every write(everycat(first, " ", last)) writes Mary Smith, Mary Roberts, Joe Smith, Joe Roberts,

Sandra Smith, Sandra Roberts. x1, x2, ... can be any values for which !x1, !x2, ... are

convertible to strings. In the example, the second argument is a one-character string " ", so

that !" ’ generates a single blank.

exprfile

exprfile(exp, link, ...) : file produces a pipe to a program that writes all the results generated

by exp. The trailing arguments name link �les needed for the expression. exprfile() closes

any previous pipe it opened and deletes its temporary �le. Therefore, exprfile() cannot be

used for multiple expression pipes. If the expression fails to compile, the global expr_error

is set to 1; otherwise 0.

exec_expr(expr_list, links[]) : string* generates the results of executing the expression con-

tained in the lists expr_list with the speci�ed links.

Requires: system(), pipes, /tmp. Links: io.

factors (REG, GMT)

This �le contains procedures related to factorization and prime numbers.

factorial(n) returns n!. It fails if n is less than 0.

factors(i, j) returns a list containing the factors of i, up to maximum j; by default

there is no limit.

gfactorial(n, i) generalized factorial; n x (n - i) x (n - 2i) x ...

ispower(i, j) succeeds and returns root if i is k�j

isprime(n) succeeds if n is a prime.

nxtprime(n) returns the next prime number beyond n.

pfactors(i) returns a list containing the primes that divide i.

prdecomp(i) returns a list of exponents for the prime decomposition of i.

prime() generates the primes.

primel() generates the primes from a precompiled list.

primorial(i,j) product of primes j <= i; j defaults to 1.

sfactors(i, j) is the same as factors(i, j), except output is in string form

with exponents for repeated factors

442 APPENDIX B. THE ICON PROGRAM LIBRARY

Requires: Large-integer arithmetic and prime.lst for primel(). Links: io, numbers.

fastfncs

These procedures implement integer-values using a best known method.

acker(i, j) Ackermann's function

fib(i) Fibonacci sequence

g(k, i) Generalized Hofstader nested recurrence

q(i) "Chaotic" sequence

robbins(i) Robbins numbers
See also: iterfncs.icn, recrfncs.icn. Links: factors, memrfncs.

filedim

filedim(s, p) : textdim computes the number of rows and maximum column width of the �le

named s. The procedure p, which defaults to detab, is applied to each line. For example, to

have lines left as is, use filedim(s, 1). The return value is a record that uses the declaration

record textdim(cols, rows).

filenseq (DAG)

nextseqfilename(dir, pre, ext) : string? creates the next �lename in a series of �les (such

as successive log �les). Usage: fn := nextseqfilename(".", ".", "log") returns the (non-existent)

�lename next in the sequence .\.*.log (* represents 1, 2, 3, ...) or fails.

findre (RLG)

findre(s1,s2,i,j) : integer* is like the built-in function find(), except its �rst argument is

a regular expression similar to the ones the Unix egrep command uses. A no argument

invocation wipes out all static structures utilized by findre(), and then forces a garbage

collection. findre() takes a shortest-possible-match approach to regular expressions. If you

look for "a*", findre() will not even bother looking for an "a". It will just match the empty

string.

gauss (SBW)

gauss_random(x, f) produces a Gaussian distribution about the value x. Parameter f can

be used to alter the shape of the Gaussian distribution (larger values �atten the curve...)

Produce a random value within a Gaussian distribution about 0.0. (Sum 12 random num-

bers between 0 and 1, (expected mean is 6.0) and subtract 6 to center on 0.0.

gdl, gdl2 (RLG)

gdl(dir:string) : list returns a list containing everything in a directory. You

can use this �le as a template, modifying the procedures according to the needs

of the program in which they are used.

gdlrec(dir, findflag) : list does same thing as gdl except it recursively

descends through subdirectories. If findflag is nonnull, the UNIX "�nd"

program is used; otherwise the "ls" program is used.

gener

B.1. PROCEDURE LIBRARY MODULES 443

These procedures generate sequences of results.

days() : string* produces the days of the week, starting with "Sunday".

hex() : string* is the sequence of hexadecimal codes for numbers from 0 to 255

label(s,i) : string* produces labels with pre�x s starting at i

multii(i, j) : integer* produces i * j i's

months() : string* produces the months of the year

octal() : string* produces the octal codes for numbers from 0 to 255

star(s) : string* produces the closure of s starting with the empty string and

continuing in lexical order as given in s

genrfncs

These procedures generate various mathematical sequences of results. Too many are

included to list them all here; consult the source code for a complete listing.

arithseq(i, j) : string* arithmetic sequence starting at i with increment j.

chaosseq() chaotic sequence

factseq() factorial sequence

fibseq(i, j, k) generalized Fibonacci (Lucas) sequence with additive constant k

figurseq(i) series of i'th �gurate number

fileseq(s, i) generate lines (if i is null) or characters (except line terminators)

from �le s.

geomseq(i, j) geometric sequence starting at i with multiplier j

irepl(i, j) j instances of i

multiseq(i, j, k) sequence of (i * j + k) i's

ngonalseq(i) sequence of the i polygonal number

primeseq() the sequence of prime numbers

powerseq(i, j) sequence i � j, starting at j = 0

spectseq(r) spectral sequence integer(i * r), i - 1, 2, 3, ...

starseq(s) sequence consisting of the closure of s starting with the empty string

and continuing in lexical order as given in s

Requires: co-expressions. Links: io, fastfncs, partit, numbers.

getmail (CS)

getmail(x):message_rec* reads an Internet mail folder and generates a sequence of records,

one per message, failing when end-of-�le is reached. Each record contains the message

header and message text components parsed into �elds. The argument x is either the name

or the �le handle. If getmail() is resumed after the last message is generated, it closes

the mail folder and returns failure. If getmail() generates an incomplete sequence (does not

close the folder and return failure) and is then restarted (not resumed) on the same or

a di�erent mail folder, the previous folder �le handle remains open and inaccessible. If

message_records are stored in a list, the records may be sorted by individual components

(like sender, _date, _subject) using the sortf() function.

444 APPENDIX B. THE ICON PROGRAM LIBRARY

getpaths (RLG)

getpaths(args[]) : string* generates the paths supplied as arguments followed by those paths

in the PATH environment variable, if one is available. A typical invocation might look like:

open(getpaths("/usr/local/lib/icon/procs") || filename)

getpaths() will be resumed in the above context until open succeeds in �nding an existing,

readable �le.

graphpak

The procedures here use sets to represent directed graphs. See "The Icon Programming

Language", third edition, pp. 233-236. A graph has two components: a list of nodes and a

two-way lookup table. The nodes in turn are sets of pointers to other nodes. The two-way

table maps a node to its name and vice-versa. Graph speci�cations are given in �les in

which the �rst line is a white-space separated list of node names and subsequent lines give

the arcs, with -> between source and destination.

record graph(nodes:list, lookup:table) represents a graph

read_graph(f:file) : graph reads a graph from a �le

write_graph(g:graph, f:file) : null writes a graph to a �le

closure(node) : set computes the transitive closure of a node.

hexcvt (RJA)

hex(s) : integer converts a string of hex digits into an integer.

hexstring(i,n,lc) : string produces the hexadecimal representation of the argument. If n is

supplied, a minimum of n digits appears in the result; otherwise there is no minimum, and

negative values are indicated by a minus sign. If lc is non-null, lowercase characters are

used instead of uppercase.

html (GMT)

These procedures assist in processing HTML �les:

htchunks(file) : string* generates HTML chunks in a �le. Results beginning with

<!-- are unclosed comments (legal comments are deleted); < begins tags;

others are untagged text.

htrefs(f) : string* generates the tagname/keyword/value combinations that

reference other �les. Tags and keywords are returned in upper case.

httag(string) : string produces the name of a tag contained within a tag string.

htvals(s) : string* generates the keyword/value pairs from a tag.

urlmerge(base,new) : string interprets a new URL in the context of a base URL.

ichartp (RLG)

ichartp implements a simple chart parser - a slow but easy-to-implement strategy for

parsing context free grammars (it has a cubic worst-case time factor). Chart parsers are

�exible enough to handle a variety of natural language constructs, and lack many of the

troubles associated with empty and left-recursive derivations.

Links: trees, rewrap, scan, strip, stripcom, strings. Requires: co-expressions.

B.1. PROCEDURE LIBRARY MODULES 445

iftrace (SBW, REG)

These procedures trace Icon functions by using procedure wrappers to call the functions.

iftrace(fncs[]) sets tracing for a list of function names. Links: ifncs.

image (MG, REG, DY)

Image(x, style:1) : string generalizes image(x), providing detailed information about struc-

tures. The style determines the formatting and order of processing. Style 1 is indented, with

] and) at end of last item. Style 2 is also indented, with] and) on new line. Style 3 puts

the whole image on one line. Style 4 is like style 3, with structures expanded breadth�rst

instead of depth�rst as for other styles.

Structures are identi�ed by a letter identifying the type followed by an integer. The

tag letters are "L" for lists, "R" for records, "S" for sets, and "T" for tables. The �rst time a

structure is seen, it is imaged as the tag followed by a colon, followed by a representation

of the structure. If the structure is encountered again, only the tag is given.

inbits (RLG)

inbits(file,len:integer) : integer re-imports data converted into writable form by outbits(). See

also: outbits.icn.

indices

indices(spec:list, last) : list produces a list of the integers given by the speci�cation spec,

which is a comma separated list of positive integers or integer spans, as in "1,3-10,..." If last

is speci�ed, it is used for a span of the form "10-". In a span, the low and high values need

not be in order. For example, "1-10" and "10-1" are equivalent. Similarly, indices need not

be in order, as in "3-10, 1,...". Empty values, as in "10„12" are ignored. indices() fails if the

speci�cation is syntactically erroneous or if it contains a value less than 1.

inserts

inserts(table,key,value) : table inserts values into a table in which the same key can have

more than one value (i.e., duplicate keys). The value of each element is a list of inserted

values. The table must be created with default value &null. (RJA)

intstr (RJA)

intstr(i:integer,size:integer) : string produces a string consisting of the raw bits in the low

order size bytes of integer i. This procedure is used for processing of binary data to be

written to a �le. Note that if large integers are supported, this procedure still will not

work for integers larger than the implementation de�ned word size due to the shifting in

of zero-bits from the left in the right shift operation.

io

These procedures provide facilities for handling input, output, and �les. Some require

loadfunc(). Links: random, strings.

fcopy(fn1:string,fn2:string) copies a �le named fn1 to �le named fn2.

exists(name:string) : file? succeeds if name exists as a �le but fails otherwise.

446 APPENDIX B. THE ICON PROGRAM LIBRARY

filelist(s,x) : list returns a list of the �le names that match the speci�cation s. If x is

nonnull, any directory is stripped o�. At present it only works for UNIX.

filetext(f) : list reads the lines of f into a list and returns that list

readline(file) : string? assembles backslash-continued lines from the speci�ed �le into a

single line. If the last line in a �le ends in a backslash, that character is included in the

last line read.

splitline(file, line, limit) splits line into pieces at �rst blank after the limit, appending a

backslash to identify split lines (if a line ends in a backslash already, that's too bad). The

pieces are written to the speci�ed �le.

Bu�ered input and output: ClearOut() remove contents of output bu�er without writing

Flush() �ush output bu�er

GetBack() get back line written

LookAhead() look ahead at next line

PutBack(s) put back a line

Read() read a line

ReadAhead(n) read ahead n lines

Write(s) write a line

See also module bufread for a multi-�le implementation of bu�ered input.

Path searching: dopen(s) : file? opens and returns the �le s on DPATH.

dpath(s) : string? returns the path to s on DPATH.

pathfind(fname, path:getenv("DPATH")) : string? returns the full path of fname if found along

the space-separated list of directories "path". As is customary in Icon path searching, "."

is prepended to the path.

pathload(fname,entry) calls loadfunc() to load entry from the �le fname found on the function

path. If the �le or entry point cannot be found, the program is aborted. The function path

consists of the current directory, then getenv("FPATH"), and �nally any additional directories

con�gured in the code.

Parsing �le names: suffix() : list parses a hierarchical �le name, returning a 2-element

list: [pre�x,su�x]. For example, suffix("/a/b/c.d") produces ["/a/b/c","d"]

tail() : list parses a hierarchical �le name, returning a 2-element list: [head,tail]. For

example, tail("/a/b/c.d") produces ["/a/b","c.d"].

components() : list parses a hierarchical �le name, returning a list of all directory names in

the �le path, with the �le name (tail) as the last element. For example, components("/a/b/c.d")

produces ["/","a","b","c.d"].

Temporary �les: tempfile(prefix:"",suffix:"",path:".",len:8) produces a temporary �le that can

be written. The name is chosen so as not to overwrite an existing �le. The prefix and

B.1. PROCEDURE LIBRARY MODULES 447

suffix are prepended and appended, respectively, to a randomly chosen number. The path is

prepended to the �le name. The randomly chosen number is �t into a �eld of len characters

by truncation or right �lling with zeros as necessary. It is the user's responsibility to remove

the �le when it is no longer needed.

tempname(prefix:"", suffix:"", path:".", len:8) returns a temporary �le name.

iolib (RLG, NA)

This library provides control functions for text terminals, based on legacy ANSI and

VT-100 devices. The TERM and TERMCAP environment variables must be set in order

to use this library. TERM tells iolib what driver you are using, e.g. TERM=ansi-color.

The TERMCAP variable gives the location of the termcap database �le, as provided on

your UNIX system.

Requires: UNIX, co-expressions. See also: iscreen.icn.

iscreen (RLG)

This �le contains some rudimentary screen functions for use with iolib.icn.

clear() clears the screen (tries several methods)

clear_emphasize() clears the screen to all-emphasize mode.

emphasize() initiates emphasized (usually reverse video dark on light) mode

boldface() initiates bold mode

blink() initiates blinking mode

normal() resets to normal mode

message(s) displays message s on 2nd-to-last line

underline() initiates underline mode

status_line(s,s2,p) draws status line s on the 3rd-to-last screen line; if s is too short for the

terminal, s2 is used; if p is nonnull then it either centers, left-, or right-justi�es, depending

on the value, "c", "l", or "r".

Requires: UNIX. Links: iolib.

isort (RJA)

isort(x,keyproc,y) : list is a customizable sort procedure. x can be any Icon data type that

supports the unary element generation (!) operator. The result is a sorted list of objects.

The sort keys are obtained by calling keyproc() on each element of strucure x to obtain

the sort key for that element. If keyproc is a procedure, the �rst argument to each call to

keyproc() is the element for which the key is to be computed, and the second argument

is isort's argument y, passed unchanged. The keyproc must produce the extracted key.

Alternatively, keyproc can be an integer, in which case it is a subscript applied uniformly

to each element to select a sort key. If keyproc is omitted, sorting uses the standard Icon

sort order.

itokens (RLG)

itokens(file, nostrip) : TOK* breaks Icon source �les up into tokens for use in things like

pretty printers, preprocessors, code obfuscators, and so forth. itokens() suspends values of

448 APPENDIX B. THE ICON PROGRAM LIBRARY

type record TOK(sym:string, str:string). sym contains the name of the next token, such as "CSET",

or "STRING". str gives that token's literal value. For example, the TOK for a literal semicolon

is TOK("SEMICOL", ";"). For a mandatory newline, itokens() would suspend TOK("SEMICOL",

"\n"). itokens() fails on end-of-�le. It returns syntactically meaningless newlines if the second

argument is nonnull. These meaningless newlines are returned as TOK records with a

null sym �eld (i.e. TOK(&null, "\n")). If new reserved words or operators are added to

a given implementation, the tables in this module have to be altered. Note: keywords

are implemented at the syntactic level; they are not tokens. A keyword like &features

is suspended as an & token followed by an identi�er token. Links: scan. Requires: co-

expressions.

ivalue

ivalue(s):any turns a string from image() into the corresponding Icon value. It handles

integers, real numbers, strings, csets, keywords, structures, and procedures. For the image

of a structure, it produces a result of the correct type and size, but values in the structure

are not correct, since they are not encoded in the image. For procedures, the procedure

must be present in the environment in which ivalue() is evaluated. This generally is true

for built-in procedures (functions). All keywords are supported. The values produced for

non-constant keywords are the values they have in the environment in which ivalue() is

evaluated. ivalue() handles non-local variables (image() does not produce these), but they

must be present in the environment in which ivalue() is evaluated.

jumpque

jumpque(queue:list,y):list moves y to the head if it is in the queue; otherwise it adds y to

the head of the queue. A copy of the queue is returned.

kmap

kmap(string) : string maps uppercase and control characters into the corresponding low-

ercase letters. It is for graphic applications in which the modi�er keys for shift and control

are encoded in keyboard events.

lastc

These string scanning functions follow standard conventions for defaulting the last three

parameters to the current scanning environment. (DAG)

lastc(c:cset, s:string, i1:integer, i2:integer) : integer succeeds and produces i1, provided either

that i1 is 1, or that s[i1 - 1] is in c and i2 is greater than i1.

findp(c:cset, s1:string, s2:string, i1:integer, i2:integer) : integer* generates the sequence of posi-

tions in s2 at which s1 occurs provided that s2 is preceded by a character in c, or is found

at the beginning of the string.

findw(c1:cset, s1:string, c2:cset, s2:string, i1:integer, i2:integer) : integer* generates the sequence

of positions in s2 at which s1 occurs provided that s2 is preceded and followed by the empty

string or a member of c1 and c2, respectively.

lastname

B.1. PROCEDURE LIBRARY MODULES 449

lastname(s:string) : string produces the last name in string s, which must be a name in

conventional form. Obviously, it doesn't work for every possibility.

list2tab

list2tab(list) : null writes a list as a tab-separated string to &output. Carriage returns in

�les are converted to vertical tabs. See also: tab2list, tab2rec, rec2tab.

lists (REG, RLG)

These procedures implement list functions similar to string functions, including an im-

plementation of list scanning, similar to the string scanning functions.

lcomb(L,i):L* produces all sublist combinations of L that have i elements.

ldelete(L,spec:string):L deletes values of L at indices given in spec; see indices.

lequiv(L1,L2):L? tests if acyclic lists L1 and L2 are structurally equivalent.

lextend(L,i,x):L extends L to at least size i, using initial value x.

limage(L):string list image function that shows elements' images, one level deep.

linterl(L1,L2):L interleaves elements of L1 and L2. If L1 and L2 are unequal size,

the shorter list is extended with null values to the size of the larger list.

llpad(L,i,x):L produces a new list that extends L on its front (left) side.

lltrim(L,S):L produces a copy of L with elements of S trimmed on the left.

lmap(L1,L2,L3):L maps elements of L1 according to L2 and L3, similar to function

map(s1, s2,s3). The operation x === y is used to determine if elements

x and y are equivalent. No defaults are provided for omitted arguments.

lpalin(L):L produces a list palindrome of L concatenated with its reverse.

lpermute(L):L* produces all the permutations of list L.

lreflect(L,i:0):L returns L concatenated with its reversal to produce a palindrome.

Parameter i speci�es end conditions: 0 = omit �rst and last elements,

1 = omit �rst element, 2 = omit last element, 3 = don't omit element.

lremvals(L, x1, x2, ...) : list produces a copy of L with x1, x2, ... removed

lrepl(L,i):L replicates L i times.

lrotate(L,i):L produces a list with the elements of L, rotated i positions.

lrpad(L,i,x):L is like lextend(), but produces a new list instead of changing L.

lrtrim(L,S:set):L produces a copy of L with elements of S trimmed on the left.

lswap(L):L produces a copy of L with odd elements swapped with even elements.

lunique(L):L produces a list containing only unique list elements.

List Scanning

List scanning depends on the following underlying state mechanisms.

global l_POS, l_SUBJ are the current list scanning environment

record l_ScanEnvir(subject,pos) represents (nested) list scanning environments

l_Bscan(e1) : l_ScanEnvir enter (possibly nested) list scanning environment

l_Escan(l_OuterEnvir, e2) : any exit list scanning environment

450 APPENDIX B. THE ICON PROGRAM LIBRARY

Within a list scanning environment, the following procedures are equivalent to their string

scanning counterparts.

l_any(L1, L2,i,j) : integer? l_move(i) : list

l_bal(L1,L2,L3,l,i,j) : integer* l_pos(i) : integer

l_find(L1,L2,i,j) : integer* l_tab(i) : list

l_many(L1,L2,i,j) : integer? l_upto(L1,L2,i,j) : integer

l_match(L1,L2,i,j) : integer?

l_any(), l_many(), and l_upto() take either sets of lists or lists of lists. l_bal() has no defaults

for the �rst four arguments, since there is no list analogue to &cset, etc. List scanning

environments are not maintained implicitly as for string scanning. You must use a set of

nested procedure calls l_Bscan() and l_Escan(), as explained in the Icon Analyst 1:6 (June,

1991), p. 1-2. You cannot suspend, return, or otherwise break out of the nested procedure

calls; they can only be exited via failure. Here is an example of how list scanning might be

invoked:

suspend l_Escan(l_Bscan(some_list_or_other), {
l_tab(10 to *l_SUBJ) & {
if l_any(l1) | l_match(l2) then old_l_POS + (l_POS-1)
}
})

The functions compare lists, not strings, so l_find("h", l), for instance, will yield an error

message: use l_find(["h"], l) instead. This becomes confusing when looking for lists within

lists. Suppose l1 := ["junk", [["hello"]," ",["there"]],"!","m","o","r","e","junk"] and you wish to �nd

the position in l1 at which the list [["hello"],’ ",["there’]] occurs. If you assign L2 := [["hello"],"

",["there"]], then the l_find() call needs to look like l_find([l2],l1). Links: indices. See also:

structs.icn.

loadfile

loadfile(exp, link,...) creates and loads a program that generates the results of exp. The

trailing arguments name link �les needed for the expression. loadfile() returns a procedure

that generates the results. Requires: system(), pipes, /tmp. Links: io.

B.1. PROCEDURE LIBRARY MODULES 451

longstr (JN,SBW,KW,RJA,RLG)

String scanning function longstr(l,s,i,j) : integer? works like any(), except that instead of

taking a cset as its �rst argument, it takes instead a list or set of strings (l). Returns i + *x,

where x is the longest string in l for which match(x,s,i,j) succeeds, if there is such an x.

lrgapprx

lrgapprx(i) : string produces an approximate of an integer value in the form i.jx10ˆk. It is

primarily useful for large integers.

lu

lu_decomp(M, I) : real? performs LU decomposition on the square matrix M using the

vector I. Both M and I are modi�ed. The value returned is +1.0 or -1.0 depending on

whether the number of row interchanges is even or odd. lu_decomp() is used in combination

with lu_back_sub() to solve linear equations or invert matrices. lu_decomp() fails if the matrix

is singular.

lu_back_sub(M, I, B) solves the set of linear equations M x X = B. M is the matrix as

modi�ed by lu_decomp(). I is the index vector produced by lu_decomp(). B is the right-

hand side vector and return with the solution vector. M and I are not modi�ed and can

be used in successive calls of lu_back_sub() with di�erent Bs. These procedures are based

on algorithms given in �Numerical Recipes; The Art of Scienti�c Computing� by Press,

Flannery, Teukolsky, and Vetterling; Cambridge University Press, 1986.

mapbit

mapbit(s:string) : string produces a string of zeros and ones corresponding to the

bit patterns for the characters of s. For example, mapbit("Axe") produces the string

"010000010111100001100101". Links: strings.

mapstr (RLG)

mapstrs(string, l1:list, l2:list) : string works like map(), except that instead of taking ordered

character sequences (strings) as arguments 2 and 3, it takes ordered string sequences (lists).

Suppose, for example, you wanted to bowdlerize a string by replacing the words "hell" and

"shit" with "heck" and "shoot." You would call mapstrs as follows:

mapstrs(s, ["hell", "shit"], ["heck", "shoot"]). If you want to replace one string with another,

just use the IPL replace() routine (in strings.icn). If l2 is longer than l1, extra members in

l2 are ignored. If l1 is longer, however, strings in l1 that have no correspondent in l2 are

simply deleted. mapstr() uses a longest-possible-match approach, so that replacing ["hellish",

"hell"] with ["heckish", "heck"] will work as one would expect. Links: longstr.

math

binocoef(n:integer, k:integer) : integer? produces the binomial coe�cient n over k. It fails

unless 0 <= k <= n.

cosh(r:real) : real produces the hyperbolic cosine of r.

sinh(r:real) : real produces the hyperbolic sine of r.

452 APPENDIX B. THE ICON PROGRAM LIBRARY

tanh(r:real) : real produces the hyperbolic tangent of r.

Links: factors.

matrix (SBW, REG)

This �le contains procedures for matrix manipulation. Matrices (arguments beginning

with M) are represented as lists of lists. Links: lu.

matrix_width(M) : integer produces the number of columns in a matrix.

matrix_height(M) : integer produces the number of rows in a matrix.

write_matrix(file, M, x) outputs a matrix to a �le, one row per line. If x is nonnull,

elements are comma-separated and rows are enclosed in square brackets.

copy_matrix(M) : list produces a copy of a matrix.

create_matrix(n,m,x) : list creates an n by m matrix with initial value x.

identity_matrix(n,m) : list produces an identity matrix of size n by m.

add_matrix(M1,M2) : list produces the matrix addition of M1 and M2.

mult_matrix(M1,M2) : list produces the matrix multiplication of M1 and M2.

invert_matrix(M) : list produces the matrix inversion of M.

determinant(M) : real produces the determinant of M.

memlog (GMT)

memlog(f:&output) : integer writes a message to �le f recording the current memory amount

in use, amount reserved, and number of collections in the string and block regions. memlog()

returns the total current usage.

morse (REG, RM)

morse(s:string) : string converts s to its International Morse Code (a.k.a. Continental

Code) equivalent, as used by radio amateurs (hams).

mset (JPR)

same_value(d1,d2) : ? compares d1 and d2 for structural equivalence.

insert2(S:set, el) : set inserts el into S

member2(S:set, el) : ? tests whether el (or its structural equivalent) is in S.

delete2(S:set, el) : set deletes el (or its structural equivalent) from S.

This module implements set operations in which no two identical (structurally equiva-

lent) values can be present in a set.

namepfx

namepfx(s:string) : string produces the "name pre�x" from a name in standard form --

omitting any title, but picking up the �rst name and any initials. namepfx() only knows

how to omit common titles found in module titleset. Obviously, it can't always produce the

�correct� result. Links: lastname, titleset.

ngrams

ngrams(file,n,c:&letters,t) : string* generates a tabulation of the n-grams in the speci�ed �le.

If c is non-null, it is the set of characters from which n-grams are taken (other characters

B.1. PROCEDURE LIBRARY MODULES 453

break n-grams). If t is non-null, the tabulation is given in order of frequency; otherwise in

alphabetical order of n-grams.

numbers (REG, RJA, RLG, TK)

These procedures format numbers in various ways:

amean(L) : real returns arithmetic mean of numbers in L.

ceil(r) : integer returns nearest integer to r away from 0.

commas(s) : string inserts commas in s to separate digits into groups of three.

decipos(r,i:3,j:5):string? position decimal point at i in r in �eld width j.

digred(i) : integer reduces a number by adding digits until one digit is reached.

div(i:number,j:number) : real produces the result of real division of i by j.

fix(i, j:1, w:8, d:3) : string? formats i / j as a real (�oating-point) number in a

�eld of width w with d digits to the right of the decimal point, if possible.

If w is less than 3 it is set to 3. If d is less than 1, it is set to 1. The function

fails if j is 0 or if the number cannot be formatted.

floor(r) : integer nearest integer to r toward 0.

gcd(i,j):integer? returns greatest common divisor of i and j. It fails if both are 0.

gcdl(L:list): integer returns the greatest common division of a list of integers.

gmean(args?) : real? returns the geometric mean of numbers.

hmean(args?) : real? returns the harmonic mean of numbers.

large(i) : integer? succeeds if i is a large integer but fails otherwise.

lcm(i, j) : integer? returns the least common multiple of i and j.

lcml(L): integer? returns the least common multiple of the integers in the list L.

mceil(r) : integer returns the least integer greater than or equal to r.

mfloor(r) : integer returns the greatest integer less than or equal to r.

npalins(n) : string* generates palindromic n-digit numbers

roman(i) : string? converts i to Roman numerals.

round(r:real) : integer returns nearest integer to r.

sign(r) : integer returns sign of r.

spell(i : integer) : string? spells out i in English.

trunc(r:real) : integer returns nearest integer less than r.

unroman(string) : integer converts Roman numerals to integers.

Note that ceil() and floor() are the traditional Icon de�nitions of the ceiling and �oor

functions; mceil() and mfloor() implement the more commonly used mathematical de�nitions.

Links: strings.

openchk (DAG)

OpenCheck() causes subsequent opens and closes to write diagnostic information to

&errout. Useful for diagnosing situations where many �les are opened and closed and there

is a possibility that some �les are not always being closed.

options (RJA, GMT)

454 APPENDIX B. THE ICON PROGRAM LIBRARY

options(args:list, opt:string, err:stop) : table separates, interprets, and removes UNIX-style

command options from a list of strings, returning a table of option values. Options are

introduced by a "-" character or -- characters. An option name is either a single printable

character, as in "-n" or "-?", or a string of letters, as in "-geometry". Options that begin with

-- may have - characters in their names, as in --non-Euclidean-geometry. Valueless single-

character options may be combined, for example as "-qtv". Some options require values.

Generally, the option name is one argument and the value appears as the next argument,

for example: "-F file.txt"

With a single-character argument name, the value may be concatenated, as in "-Ffile.txt".

With multi-character arguments, the value may also be concatenated by using =, as in

"-File=file.txt" (= also works with single character arguments). Options may be interspersed

with non-option arguments. An argument of "-" is treated as a non-option. The special

argument "--" terminates option processing. Non-option arguments are left in args for use

by the caller. options() replaces arguments of the form @filename with arguments retrieved

from the �le "�lename". Each line of the �le is taken as a separate argument, exactly as it

appears in the �le. An argument and its value may also be on the same line separated by

an equals sign or spaces.

The options string is a concatenation, with optional spaces between, of one or more

option specs of the form -name% where - (or --) introduces the option. name is either a

string of letters or any single printable character % is one of the following �ag characters:

! No value is required or allowed : A string value is required

+ An integer value is required . A real value is required
The leading "-" may be omitted for a single-character option. The "!" �ag may be omitted

except when needed to terminate a multi-character name. If the options string is omitted,

any single letter is assumed to be valid and require no data.

Options appear as keys in the table with the leading - character removed, so options

like --name have "-name" as their key. To remove the - character from the key, make the �rst

character of the option string a = character. In this sitation, the procedure will reject -opt

and --opt as duplicates; without the =, they are both allowed (and result in "opt" and "-opt"

keys, respectively, in the table).

The err procedure will be called if an error is detected in the command line options. The

procedure is called with one argument: a string describing the error that occurred. After

err() is called, options() immediately returns the outcome of errproc(), without processing

further arguments. Processed arguments will have been removed from args.

outbits (RLG)

outbits(i:integer, len:integer) string* �ts variable, non-byte-sized blocks into 8-bit bytes, sus-

pending byte-sized chunks of i converted to characters (most signi�cant bits �rst) until

there is not enough left of i to �ll up an 8-bit character. The remainder is stored in a

bu�er until outbits() is called again, at which point the bu�er is combined with the new i

and output in the same manner as before. The bu�er is �ushed by calling outbits() with a

B.1. PROCEDURE LIBRARY MODULES 455

null i argument. len gives the number of bits in i to preserve; bits that are discarded are

the most signi�cant ones. A trivial example of how outbits() might be used:

outtext := open("some.file.name","w")
L := [1,2,3,4]
every writes(outtext, outbits(!L,3))
writes(outtext, outbits(&null,3)) # flush buffer

List L may be reconstructed with inbits():

intext := open("some.file.name")
L := []
while put(L, inbits(intext, 3))

Note that outbits() is a generator, while inbits() is not. See also: inbits.icn.

packunpk (CT, RLG)

pack(num:i,width:i):string produces a binary-coded decimal representation of num

in which each character contains two decimal digits stored in four bits each.

unpack(val:s,width:i):string converts a binary-coded decimal back to a

string representation width characters long of the original source integer.

unpack2(val:string) : integer converts a binary-coded decimal back into its

original source integer.

Links: convert.

partit

partit(i,min:i,max:i):L* generates the partitions of i; that is the ways that i can be

represented as a sum of positive integers with minimum and maximum values.

partcount(i,min:i,max:i):integer returns the number of partitions.

fibpart(i):L returns a list of Fibonacci numbers that is a partition of i.

Links: fastfncs, numbers.

patterns

This module provides string scanning procedure equivalents for most SNOBOL4 pat-

terns and some extensions. It is largely subsumed by Unicon's pattern type.

patword (KW)

patword(s:string) : string returns a letter pattern in which each di�erent character in s is

assigned a letter. For example, patword("structural") returns "abcdebdcfg".

phoname (TRH)

phoname(telno:string) : string* generates the letter combinations corresponding to the digits

in a telephone number. The number of possibilities is very large. This procedure should

be used in a context that limits or �lters its output.

plural

456 APPENDIX B. THE ICON PROGRAM LIBRARY

plural(word:string) : string produces the plural form of a singular English noun. The pro-

cedure here is rudimentary and is not correct in all cases.

polystuf

These procedures are for creating and performing operations on single-variable polyno-

mials (like ax�2 + bx + c). A polynomial is represented as a table in which the keys are

exponents and the values are coe�cients. (EE)

poly(c1, e1, c2, e2, ...) : poly creates a polynomial from the

parameters given as coe�cient-exponent pairs: c1xˆe1 + c2xˆe2 + ...

is_zero(n) : ? determines if n = 0

is_zero_poly(p) : ? determines if a given polynomial is 0x�0

poly_add(p1, p2) : poly returns the sum of two polynomials

poly_sub(p1, p2) : poly returns the di�erence of p1 - p2

poly_mul(p1, p2) : poly returns the product of two polynomials

poly_eval(p, x) : poly �nds the value of polynomial p evaluated at the given x.

term2string (c, e) : string converts one coe�cient-exponent pair into a string.

poly_string(p) : string returns the string representation of an entire polynomial.

printcol (RJA)

printcol(items, fields, title:"", pagelength:30000, linelength:80, auxdata) deals with the problem

of printing tabular data where the total width of items to be printed is wider than the page.

Simply allowing the data to wrap to additional lines often produces marginally readable

output. This procedure facilitates printing such groups of data as vertical columns down

the page length, instead of as horizontal rows across the page. That way many, many �elds

can be printed neatly.transformation can be a nuisance.

The arguments are:

items: a co-expression that produces a sequence of items (usually structured data, but

not necessarily) for which data is to be printed.

fields: a list of procedures to produce the �eld's data. Each procedure takes two argu-

ments. The procedure's action depends upon what is passed in the �rst argument:

header produces the row heading string to be used for that �eld (the �eld name).

width produces the maximum �eld width (including the column header).

other produces the �eld value string for the item passed as the argument.

The second argument is arbitrary data from the procedures with each invocation. The

data returned by the �rst function on the list is used as a column heading (the item name).

auxdata: arbitrary auxiliary data to be passed to the fields procedures (see above).

printf (WHM, CW, PLT)

This module provides formatted output functions modeled on those in the C language.

printf(fmt:string, args[]) formats and writes arguments to &output.

fprintf(f:file,fmt:string,args[]) formats and writes arguments to f.

sprintf(fmt:string, args[]) : string formats arguments and produces a string result.

B.1. PROCEDURE LIBRARY MODULES 457

The format string fmt is modi�ed by substituting arguments in place of the �format

speci�ers� within it, consisting of a percent sign followed by a speci�er code:

code argument printed in the form code argument printed in the form

%d decimal integer %r real number

%e scienti�c (exponential) notation %s string

%i image %x hexadecimal

%o octal

Speci�er code %r uses scienti�c notation if the integer portion is inexact. An hyphen

after the percent sign indicates left justi�cation, otherwise right justi�cation is used. A

number of digits after the percent sign may specify the minimum width of the �eld to use,

or after a period they specify a number of digits of precision. For example, printf("%-5.2r", x)

speci�es that real number x be formatted as a string of at least 5 characters, left justi�ed,

with two digits after the decimal point.

458 APPENDIX B. THE ICON PROGRAM LIBRARY

prockind

prockind(p:procedure) : string? produces a code for the kind of the procedure p as follows:

"p" (declared) procedure "f" (built-in) function, "o" operator, "c" record constructor. It fails

if p is not of type procedure.

procname

procname(p:procedure, x) : string? produces the name of a procedure (including functions,

operators, and record constructors) value. If x is null, the result is derived from image()

in a relatively straightforward way. In the case of operators, the number of arguments is

appended to the operator symbol. If x is nonnull, the result is put in a form that resembles

an Icon expression. procname() fails if p is not of type procedure.

pscript (GMT)

epsheader(f, x, y, w, h, flags) writes an Encapsulated PostScript �le header and initial-

izes the PostScript coordinate system. This procedure is for writing PostScript output

explicitly. It is the caller's responsibility to ensure that the rest of the �le conforms to

the requirements for EPS �les as documented in the PostScript Reference Manual, second

edition. (x,y,w,h) specify the range of coordinates that are to be used in the generated

PostScript code. epsheader() generates PostScript commands that center this region on the

page and clip anything outside it. If the �ags string contains the letter "r" and abs(w) >

abs(h), the coordinate system is rotated to place the region in "landscape" mode. The gen-

erated header also de�nes an "inch" operator that can be used for absolute measurements

as shown in the example below.

f := open(filename, "w") | stop("can’t open ",filename)
epsheader(f, x, y, w, h)
write(f, ".07 inch setlinewidth")
write(f,x1, " ", y1, " moveto ", x2, " ", y2, " lineto stroke") ... write(f, "showpage")

See also: psrecord.icn contains procedures that write PostScript as a side e�ect of normal

graphics calls.

random (REG, GMT)

This �le contains procedures related to pseudo-random numbers.

rand_num() : integer is a linear congruential pseudo-random number generator. Each call

produces another number in the sequence and assigns it to the global variable random. With

no arguments, rand_num() produces the same sequence(s) as the built-in random-number

generator. Arguments can be used to get di�erent sequences. The global variable random

plays the same role that &random does for the built-in random number generator.

rand_int(i) : integer produces a random integer in the range 1 to i.

randomize() sets &random, based on the date and time of day.

randrange(min, max) : integer produces a random number from min <= i <= max.

randrangeseq(i, j) : integer* generates the integers from i to j in random order.

B.1. PROCEDURE LIBRARY MODULES 459

randseq(seed) : integer* generates the values of &random, starting at seed,

that occur as the result of using ?x.

shuffle(x):x shu�es the elements of string, list, or record x. If x is a list or record

it is altered in place instead of creating a new structure for the shu�ed result.

Links: factors.

rational

These procedures perform arithmetic on rational numbers (fractions):

record rational(numer, denom, sign) is used to represent rational values.

str2rat(string):rational? converts a string such as "3/2" to a rational number.

rat2str(r:rational):string converts rational number r to its string representation.

addrat(r1:rational,r2:rational) : rational adds rational numbers r1 and r2.

subrat(r1:rational,r2:rational) : rational subtracts rational numbers r1 and r2.

mpyrat(r1:rational,r2:rational) : rational multiplies rational numbers r1 and r2.

divrat(r1:rational,r2:rational) : rational divides rational number r1 by r2.

negrat(r) : rational produces the negative of rational number r.

reciprat(r:rational) : rational produces the reciprocal of rational number r.

Links: numbers.

readtbl (RLG)

readtbl(f:file) : table reads SGML mapping information from a �le. This module is part of

the strpsgml package. The �le speci�es how each SGML tag in a given input text should be

translated. Each line has the form:

SGML-designator start_code end_code

where the SGML designator is something like "quote" (without the quotation marks),

and the start and end codes are the way in which you want the beginning and end of a

<quote>...</quote> sequence to be translated. Presumably, in this instance, your codes would

indicate some set level of indentation, and perhaps a font change. If you don't have an end

code for a particular SGML designator, just leave it blank. Links: stripunb.

rec2tab

rec2tab(x) : null writes �elds of a record as tab-separated string. Carriage returns in �les

are converted to vertical tabs. (Works for lists too.)

records

field(R, i) : string? returns the name of the ith �eld of R. Other record processing proce-

dures may be added to this module in future editions.

recurmap
recurmap(recur:list) : string maps a recurrence declaration of the form

f(i):
if expr11 then expr12
if expr21 then expr22

...

460 APPENDIX B. THE ICON PROGRAM LIBRARY

else expr

The declaration is a list of strings. The result string is a declaration for an Icon pro-

cedure that computes corresponding values. At present there is no error checking and the

most naive form of code is generated.

reduce

reduce(op, init, args[]) applies the binary operation op to the values in args, using init as

the initial value. For example, reduce("+", 1, ...) produces the sum of the values in ...

regexp (RJA)

This module implements UNIX-like regular expression patterns. String scanning func-

tion default conventions are followed.

ReMatch(pattern,s,i1,i2) : integer* produces the sequence of positions in s past a substring

starting at i1 that matches pattern, but fails if there is no such position.

ReFind(pattern,s,i1,i2) : integer* produces the sequence of positions in s where substrings

begin that match pattern, but fails if there is no such position. Each position is produced

only once. pattern can be either a string or a pattern list -- see RePat().

RePat(s) : list? creates a �pattern element list� from pattern string s, but fails if the

pattern string is not syntactically correct. ReMatch() and ReFind() will automatically convert

a pattern string to a pattern list, but it is faster to do the conversion explicitly if multiple

operations are done using the same pattern.

ReCaseIndependent() : null, ReCaseDependent() : null set the mode for case-independent or

case-dependent matching. The initial mode is case-dependent.

Accessible Global Variables After a match, the strings matched by parenthesized

regular expressions are left in list Re_ParenGroups, and can be accessed by subscript.

Regular Expression Characters and Features Supported The regular expression

format supported by procedures in this �le model very closely those supported by the UNIX

"egrep" program, with modi�cations as described in the Perl programming language de�-

nition. Following is a brief description of the special characters used in regular expressions.

The abbreviation RE means regular expression.

c An ordinary character (not one of the special characters discussed below) is a one-

character RE that matches that character.

\c A backslash followed by any special character is a one-character RE that matches the

special character itself.

. A period is a one-character RE that matches any character.

[string] A non-empty string enclosed in square brackets matches any one character in

that string. If the �rst character is "ˆ" (circum�ex), any character not in the remaining

characters of the string is matched. The "-" (minus), when between two other characters,

B.1. PROCEDURE LIBRARY MODULES 461

indicates a range of consecutive ASCII characters (e.g. [0-9] is equivalent to [0123456789]).

Other special characters stand for themselves in a bracketed string.

* Matches zero or more occurrences of the RE to its left.

+ Matches one or more occurrences of the RE to its left.

? Matches zero or one occurrences of the RE to its left.

{N} Matches exactly N occurrences of the RE to its left.

{N,} Matches at least N occurrences of the RE to its left.

{N,M} Matches from N to M occurrences of the RE to its left.

ˆ A caret at the beginning of an entire RE constrains that RE to match an initial

substring of the subject string.

$ A currency symbol at the end of an entire RE constrains that RE to match a

�nal substring of the subject string.

| Alternation: two regular expressions separated by "|" match either a match for

the �rst or a match for the second.

() A RE enclosed in parentheses matches a match for the regular expression

(parenthesized groups are used for grouping, and for accessing the matched

string subsequently in the match using the \N expression).

\N where N is a digit in the range 1-9, matches a string of characters that was

matched by a parenthesized RE to the left in the same RE. The sub-expression

speci�ed is that beginning with the Nth occurrence of "(" counting from the

left. e.g., �(.*)\1. matches a string consisting of two consecutive occurrences

of the same string.

Extensions beyond UNIX egrep The following extensions to UNIX regular expres-

sions, as speci�ed in the Perl programming language, are supported.

\w matches any alphanumeric (including "_").

\W Matches any non-alphanumeric.

\b matches at a word-boundary (a word is a string of alphanumerics, as in \w).

\B matches only non-word-boundaries.

\s matches any white-space character.

\S matches any non-white-space character.

\d matches any digit [0-9].

\D matches any non-digit.

\w, \W, \s, \S, \d, \D can be used within [string] regular expressions.

repetit

repetit(L:list) : integer returns the length of the smallest range of values that repeat in

a list. For example, if L := [1, 2, 3, 1, 2, 3, 1, 2, 3] , repetit(L) returns 3. If there is no

repetition, repetit() returns the length of the list.

462 APPENDIX B. THE ICON PROGRAM LIBRARY

rewrap (RLG)

rewrap(s:string,i:70) : string? reformats text fed to it into strings <i in length. rewrap()

utilizes a static bu�er, so it can be called repeatedly with di�erent string arguments, and

still produce homogeneous output. This bu�er is �ushed by calling rewrap() with a null �rst

argument. Here's a simple example of how rewrap() could be used. The following program

reads the standard input, producing fully rewrapped output.

procedure main()
every write(rewrap(!&input))
write(rewrap())

end

Naturally, in practice you would want to do things like check for indentation or blank lines

in order to wrap only on a paragraph by paragraph basis.

Note: If you want leading and trailing tabs removed, map them to spaces �rst. rewrap()

only fools with spaces, leaving tabs intact. This can be changed easily enough, by running

its input through the detab() function. See also: wrap.icn.

scan (RLG, DAG, REG, RLS, CW)

This module contains procedures related to string scanning: Where indicated by pa-

rameter names, they follow the string scanning conventions for parameter defaults.

balq(c1,c2,c3,c4:’\’"’,c5:’\’,s,i1,i2):integer* generates integer positions in s preceding a char-

acter of c1 in s[i1:i2] that are (a) balanced with respect to characters in c2 and c3 and (b)

not "quoted" by characters in c4 with "escape" sequences in c5.

balqc(c1,c2,c3,c4:’\’"’,c5,s1:"/*",s2:"*/",s3,i1,i2):integer* is like balq() with the addition that bal-

anced characters within "comments", as delimited by the strings s1 and s2, are also excluded

from balancing. In addition, if s1 is given and s2 is null then the comment terminates at

the end of string.

limatch(L:list, c:cset) : integer? matches items in L delimited by characters in c. Returns

the last cursor position scanned to, or fails

slashbal(c1,c2,c3,s,i,j) : integer* behaves like bal(), except that it ignores, for purposes of

balancing, any c2 or c3 char which is preceded by a backslash.

slashupto(c, s, i, j) : integer? works just like upto(), except that it ignores backslash escaped

characters.

snapshot(title:string, len:integer) writes a snapshot of the state of string scanning, showing

the value of &subject and &pos. Two optional arguments specify a title written at the top

of the snapshot, and a width (in characters) at which to wrap output.

A bar showing &pos is positioned under the &pos’th character (actual positions are

between characters). If &pos is at the end of &subject, the bar is positioned under the

quotation mark delimiting the subject. Escape sequences are handled properly.

scanset

B.1. PROCEDURE LIBRARY MODULES 463

scan_setup(s, i1, i2) : scan_setup_result? sets things up for user-written string-scanning

procedures that are in the spirit of the built-ins. The values passed are the last three argu-

ments to all scanning functions (such as upto(c,s,i1,i2)). scan_setup() supplies any appropriate

defaults and returns needed values. The value returned is a record scan_setup_result(ss, offset)

where ss is the substring of s to be scanned, and o�set is the size of the substring of s

that precedes the substring to be scanned. scan_setup() fails if i1 or i2 is out of range with

respect to s. The user-written procedure can then match in the string ss to compute the

position within ss appropriate to the scan (p). The value returned (or suspended) to the

caller is p + offset (the position within the original string, s). For example, the following

function �nds two words separated by spaces:

procedure two_words(s,i1,i2)
local p, x := scan_setup(s,i1,i2) | fail # fail if out of range
x.ss ? suspend {

tab(upto(&letters)) &
pos(1) | (move(-1) & tab(any(˜&letters))) &
p := &pos & # remember starting position
tab(many(&letters)) & tab(many(’ ’)) &
tab(many(&letters)) &
p + x.offset # return position in original s
}

end

segment (WHM)

These procedures segment a string s into consecutive substrings consisting of characters

that respectively do/do not occur in c.

segment(s,c) : string* generates the substrings, while seglist(s,c) : list produces a list of the

segments. For example, segment("Not a sentence.",&letters) generates six string results: "Not"

" " "a" " " "sentence" "." while seglist("Not a sentence.",&letters) produces a list of size six:

["Not"," ","a","sentence","."]

sentence, senten1 (RLG, PAB)

Two alternative modules provide a function sentence(f) :string* that generates sentences

from �le f. Many grammatical and stylistic analysis programs are predicated on the notion

of a sentence. Some programs count the number of words in each sentence; others count

the number and length of clauses. Still others pedantically check for sentence-�nal particles

and prepositions. Neither module's de�nition of a sentence will handle all possible inputs

properly; you may wish to try both of them to see which one works better on your inputs.

Module sentence requires co-expressions, while module senten1 does not. Module senten1

uses a de�nition of a "sentence" detailed in the source code.

464 APPENDIX B. THE ICON PROGRAM LIBRARY

seqimage

Seqimage{e,i,j}: string produces a string image of the result sequence for the expression

e. The �rst i results are printed. If i is omitted, there is no limit. If there are more than i

results for e, ellipses are provided in the image after the �rst i. If j is speci�ed, at most j

results from the end of the sequence are printed after the ellipses. If j is omitted, only the

�rst i results are produced. For example, the expressions

Seqimage{1 to 12}
Seqimage{1 to 12,10}
Seqimage{1 to 12,6,3}

produce, respectively,

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...}
{1, 2, 3, 4, 5, 6, ..., 10, 11, 12}

If j is given and e has an in�nite result sequence, Seqimage{} does not terminate.

sername

sername(p:"file", s:"", n:3, i:0) : string produces a series of names of the form p<nnn>s. If n is

given it determines the number of digits in <nnn>. If i is given it resets the sequence to start

with i. <nnn> is a right-adjusted integer padded with zeros. Ordinarily, the arguments

only are given on the �rst call. Subsequent calls without arguments give the next name.

For example, sername("image", ".gif", 3, 0) produces "image000.gif", and subsequently, sername()

produces "image001.gif", "image002.gif", and so on. If any argument changes on subsequent

calls, all non-null arguments are reset.

sets (AB, REG)

cset2set(c:cset): set returns a set that contains the individual characters in c.

domain(T:table) returns the domain (set of keys) of the function de�ned by T.

inverse(T:table, x) : table returns the inverse of the function de�ned by T. x values

specify: &null (functional inverse), empty list (relational inverse), empty set:

(relational inverse, but with each table member as a set instead of a list).

pairset(T:table) : set converts T to an equivalent set of ordered pairs.

range(T:table):set returns the range (set of values) of the function de�ned by T.

seteq(S1, S2) : set? tests equivalence of sets S1 and S2.

setlt(S1, S2) : set? tests inclusion (strict subset) of set S1 in S2.

showtbl

showtbl(title:"", T, mode, limit, order, posit, w1:10, w2:10, gutter:3, f1:left, f2:right) displays table T

according to the arguments given. The remaining arguments are:

mode indicates the type of sorting, one of: "ref"|"val" (by key or decreasing value)

B.1. PROCEDURE LIBRARY MODULES 465

limit speci�es the maximum lines of table output, if any

order gives the sort order, one of: "incr"|"decr" (not implemented yet)

posit is the �rst column position, one of: "ref"|"val" (not implemented yet)

w1 is the width of 1st column

w2 is the width of 2nd column

gutter is the width between columns

f1 supplies the formatting function used on the 1st column

f2 supplies the formatting function used on the 2nd column

showtbl() returns a record with the �rst element being a count of the size of the table and

the second element the number of lines written.

shquote (RJA)

This module is useful for writing programs that generate shell commands. Certain

characters cannot appear in the open in strings that are to be interpreted as "words" by

command shells. This family of procedures assists in quoting such strings so that they will

be interpreted as single words. Quoting characters are applied only if necessary -- if strings

need no quoting they are returned unchanged.

shquote(s1, s2,..., sN) : string produces a string of words s1, s2, ..., sN that are properly

separated and quoted for the Bourne Shell (sh).

cshquote(s1, s2,..., sN) : string produces a string of words s1, s2,..., sN that are properly

separated and quoted for the C-Shell (csh).

mpwquote(s1, s2,..., sN) : string produces a string of words s1, s2,..., sN that are properly

separated and quoted for the Macintosh Programmer's Workshop shell.

dequote(s1,s2:"\\") : string produces the UNIX-style command line word s1 with any quot-

ing characters removed. s2 is the escape character required by the shell.

signed (RJA)

signed(s) : integer puts raw bits of characters of string s into an integer. The value is

taken as signed. This procedure is used for processing of binary data read from a �le.

sort (RJA,RLG,REG)

sortff(L, fields[]) is like sortf(), except it takes an unlimited number of �eld arguments.

sortgen(T, m) : any* generates sorted output in a manner given by m:

"k+" sort by key in ascending order "k-" sort by key in descending order

"v+" sort by value in ascending order "v-" sort by value in descending order

sortt(T, i) is like sort(T, i) but produces a list of two-element records instead of a list of

two-element lists.

soundex, soundex1 (CW, JDS)

soundex(name:string) : string produces a code for a name that tends to bring together

variant spellings from Knuth, The Art of Computer Programming, Vol.3. Module soundex1

employs an approach proposed by M. K. Odell and R. C. Russell.

466 APPENDIX B. THE ICON PROGRAM LIBRARY

statemap

statemap() : table produces a �two-way� table to map state names (in the postal sense)

to their postal abbreviations and vice-versa.

str2toks (RLG)

Scanning procedure str2toks(c:˜(&letters++&digits), s, i1, i2) : string* suspends portions of

s[i1:i2] delimited by characters in c. str2toks() is not a primitive scanning function in the

sense that it suspends strings, and not integer positions. The code:

"hello, how are ya?" ? every write(str2toks())

writes to &output, on successive lines, the words "hello", "how", "are", and �nally "ya" (skipping

the punctuation). The beginning and end of the line count as delimiters. Note that if i > 1

or j < *s+1 some tokens may end up appearing truncated.

strings

These procedures perform operations on strings.

cat(s1, s2,...) : string concatenates an arbitrary number of strings.

charcnt(s, c) : integer returns the number of instances of characters in c in s.

collate(s1, s2) : string collates the characters of s1 and s2. For example,

collate("abc", "def") produces "adbecf".

comb(s, i) : string* generates combinations of characters of s taken i at a time.

compress(s, c:&cset) : string collapses consecutive occurrences of members of c in s.

csort(s) : string produces the characters of s in lexical order.

decollate(s, i:1) : string produces a string consisting of every other

character of s. If i is odd, the odd-numbered characters are selected, while if

i is even, the even-numbered characters are selected.

deletec(s, c) : string deletes occurrences of characters in c from s.

deletep(s, L) : string deletes all characters at positions speci�ed in L.

deletes(s1, s2) : string deletes occurrences of s2 in s1.

diffcnt(s) : integer returns count of the number of di�erent characters in s.

extend(s, n) : string replicates s to length n.

interleave(s1, s2) : string interleaves characters s2 extended to the length of s1

with s1. ispal(s) : string? succeeds and returns s if s is a palindrome

maxlen(L, p:proc("*",1)) : integer returns the length of the longest

string in L. p is applied to each string as a "length" procedure.

meander(s, n) : string produces a "meandering" string that contains all

n-tuples of characters of s.

minlen(L, p: proc("*", 1)) : integer returns the length of the shortest

string in L. p is applied to each string as a "length" procedure.

ochars(s) : string produces unique characters in the order that they appear in s.

palins(s, n) : string* generates the n-character palindromes from characters in s.

B.1. PROCEDURE LIBRARY MODULES 467

permute(s) : string* generates all the permutations of the string s.

pretrim(s, c:’ ’) : string trims characters from beginning of s.

reflect(s1, i, s2:"") : string returns s1 concatenated with s2 and the reversal of s1 to

produce a partial palindrome. The values of i determine end conditions for the

reversal: 0 = omit �rst and last characters, 1 = omit �rst character,

2 = omit last character, 3 = don't omit character.

replace(s1, s2, s3) : string replaces all occurrences of s2 in s1 by s3.

replacem(s,...) : string performs multiple replacements in the style of replace(),

where multiple argument pairs may be given, as in

replacem(s, "a", "bc", "d", "cd") which replaces all a's by "bc"

and all d's by "cd". Replacements are performed sequentially, not in parallel.

replc(s, L) : string replicates characters of s by amounts given by the values in L.

rotate(s, i:1) : string rotates s i characters left (negative i rotates to the right).

schars(s) : string produces the unique characters of s in lexical order.

scramble(s) : string scrambles (shu�es) the characters of s randomly.

selectp(s, L) : string selects characters of s that are at positions given in L.

transpose(s1, s2, s3) : string transposes s1 using label s2 and transposition s3.

stripcom (RLG)

stripcom(s) : string? strips comments from a line of code. Fails on lines which, either

stripped or otherwise, come out as an empty string. stripcom() can't handle lines ending in

an underscore as part of a broken string literal, since stripcom() is not intended to be used

on sequentially-read �les. It just removes comments from individual lines.

stripunb (RLG)

stripunb(c1,c2,s,i,j,t:table) : string strips material from a line which is unbalanced with

respect to the characters de�ned in arguments 1 and 2 (unbalanced being de�ned as bal()

de�nes it, except that characters preceded by a backslash are counted as regular characters,

and are not taken into account by the balancing algorithm). If you call stripunb() with a

table argument as follows, stripunb(’<’,’>’,s,&null,&null,t) and if t is a table having the form

key: "bold" value: outstr("\e[2m", "\e1m")
key: "underline" value: outstr("\e[4m", "\e1m") etc.

then every instance of "<bold>" in string s will be mapped to "\e2m," and every instance of

"</bold>" will be mapped to "\e[1m." Values in table t must be records of type outstr(on, off).

When "</>" is encountered, stripunb() will output the .off value for the preceding .on string

encountered. Links: scan.

tab2list, tab2rec

tab2list(string):list takes tab-separated strings and inserts them into a list.

Vertical tabs in strings are converted to carriage returns.

tab2rec(s, x) : null takes tab-separated strings and assigns them into �elds of

468 APPENDIX B. THE ICON PROGRAM LIBRARY

a record or list x. Vertical tabs in strings are converted to carriage returns.

See also: list2tab.icn, rec2tab.icn.

tables (REG, AB)

keylist(T) : list produces a list of keys in table T.

kvallist(T) : list produces values in T ordered by sorted order of keys.

tbleq(T1, T2) : table? tests the equivalence of tables T1 and T2.

tblunion(T1, T2) : table approximates T1 ++ T2.

tblinter(T1, T2) : table approximates T1 ** T2.

tbldiff(T1, T2) : table approximates T1 -- T2.

tblinvrt(T) : table produces a table with the keys and values of T swapped.

tbldflt(T) : any produces the default value for T.

twt(T) : table produces a two-way table based on T.

vallist(T) : list produces list of values in table T.

For the operations on tables that mimic set operations, the correspondences are only

approximate and do not have the mathematical properties of the corresponding operations

on sets. For example, table "union" is not symmetric or transitive. Where there is potential

asymmetry, the procedures "favor" their �rst argument. The procedures that return tables

return new tables and do not modify their arguments.

tclass

tclass(x) : string returns "atomic" or "composite" depending on the type of x.

title, titleset

title(name:string) : string produces the title of a name, such as "Mr." from

"Mr. John Doe". The process is imperfect. Links titleset.

titleset() : set produces a set of strings that commonly appear as titles in

names. This set is (necessarily) incomplete.

trees

depth(t) : integer compute maximum depth of tree t

ldag(s) : list construct a DAG from the string s

ltree(s) : list construct a tree from the string s

stree(t) : string construct a string from the tree t

tcopy(t) : list deep copy tree t.

teq(t1,t2) : list? compare trees t1 and t2

visit(t) : any* visit, in preorder, the nodes of the tree t by suspending them all

This module provides tree operations using a list representation of trees and directed

acyclic graphs (DAGs). The procedures do not protect themselves from cycles.

tuple (WHM)

tuple(tl:list) : list implements a "tuple" feature that produces the e�ect of multiple keys.

A tuple is created by an expression of the form tuple([exrp1, expr2,..., exprn]). The result can

be used in a case expression or as a table subscript. Lookup is successful provided the

B.1. PROCEDURE LIBRARY MODULES 469

values of expr1, expr2,..., exprn are the same (even if the lists containing them are not).

For example, consider selecting an operation based on the types of two operands. The

following expression uses tuple() to drive a case expression using value pairs.

case tuple([type(op1), type(op2)]) of {
tuple(["integer", "integer"]): op1 + op2
tuple(["string", "integer"]) : op1 || "+" || op2
tuple(["integer", "string"]) : op1 || "+" || op2
tuple(["string", "string"]) : op1 || "+" || op2
}

typecode

typecode(x) : string produces a one-letter string identifying the type of its argument. In

most cases, the code is the �rst (lowercase) letter of the type, as in "i" for the integer type.

Structure types are in uppercase, as in "L" for the list type. All records have the code "R".

The code "C" is used for the co-expression type to avoid con�ict for the "c" for the cset type.

The code "w" is produced for windows.

unsigned (RJA)

unsigned(s) : integer puts raw bits of characters of string s into an integer. The value is

taken as unsigned. This procedure is used for processing of binary data read from a �le.

usage

These procedures provide various common services:

Usage(s) stops execution with a message indicating how to use a program.

Error(args?) writes arguments to &errout on a single line, preceded by "*** ".

ErrorCheck(l,f) : null reports to &output an error that was converted to failure.

Feature(s) : ? succeeds if feature s is available in this implementation.

Requires(s) terminates execution is feature s is not available.

Signature() writes the version, host, and features support in the running

implementation of Icon.

varsub

varsub(s, varProc:getenv) obtains a variable value from the procedure, varProc. As with

the UNIX Bourne shell and C shell, variable names are preceded by $. Optionally, the

variable name can additionally be surrounded by curly braces {}, which is usually done

when necessary to isolate the variable name from surrounding text. As with the C-shell,

the special symbol ˜<username> is handled. Username can be omitted; in which case the

value of the variable HOME is substituted. If username is supplied, the /etc/passwd �le is

searched to supply the home directory of username (this action is obviously not portable

to non-UNIX environments). (RJA)

version

470 APPENDIX B. THE ICON PROGRAM LIBRARY

version() : string? produces the version number of Icon on which a program is running.

It only works if the &version is in the standard form.

vrml, vrml1lib, vrml2lib

These modules contain procedures for producing VRML �les.

point_field(L) create VRML point �eld from point list L

u_crd_idx(i) create VRML coordinate index for 0 through i - 1

render(x) render node x

vrml1(x) produces VRML 1.0 �le for node x

vrml2(x) produces VRML 2.0 �le for node x

vrml_color(s) converts Icon color speci�cation to vrml form

Not all node types have been tested. Where �eld values are complex, as in vectors,

these must be built separately as strings to go in the appropriate �elds. There is no error

checking. Fields must be given in the order they appear in the node record declarations

and �eld values must be of the correct type and form.

vrml1lib.icn contains declarations for VRML 1.0 nodes; vrml2lib.icn is for VRML 2.0 nodes.

Although VRML 1.0 and 2.0 allow node �elds to be given in any order, these modules

require that they be speci�ed in the order given in the record declarations. In VRML 1.0,

omitted (null-valued) �elds are ignored on output; group nodes require list arguments for

lists of nodes. In VRML 2.0, group nodes require list arguments for lists of nodes. Links:

records. Requires: graphics facilities, for color conversion.

wdiag

wdiag(s1, s2,...) : null writes the values of global variables s1, s2, ... with s1, s2, ... as

identifying labels. It writes a diagnostic message to standard error if an argument is not

the name of a global variable.

weighted (EE)

WeightedShuffle(sample, percentage) : list returns the list sample with a portion of the

elements switched. Examples:

WeightedShuffle(X, 100) - returns a fully shu�ed list

WeightedShuffle(X, 50) - every other element is eligible to be switched

WeightedShuffle(X, 25) - every fourth element is shu�ed

WeightedShuffle(X, 0) - nothing is changed

The procedure will fail if the given percentage is not between 0 and 100, inclusive, or if

it is not a numeric value.

wildcard (RJA)

These procedures deal with UNIX-like �lename wild-card patterns containing *, ?, and

[...], as found in the UNIX shells csh and sh; they are described brie�y in the wild_pat()

procedure. Recursive suspension is used to simulate conjunction of an arbitrary number

of computed expressions. Default values of s, i1, and i2 are the same as for Icon's built-in

string scanning procedures such as match(). The public procedures are:

B.1. PROCEDURE LIBRARY MODULES 471

wild_match(pattern,s,i1,i2) : integer* produces the sequence of positions in s past a substring

starting at i1 that matches pattern, but fails if there is no such position. Similar to match(),

but is capable of generating multiple positions.

wild_find(pattern,s,i1,i2) : integer* produces the sequence of positions in s where substrings

begin that match pattern, but fails if there is no such position. Similar to find(). pattern can

be either a string or a pattern list, see wild_pat(), below.

wild_pat(s) : L creates a pattern element list from pattern string s. A pattern element is

needed by wild_match() and wild_find(). wild_match() and wild_find() will automatically convert

a pattern string to a pattern list, but it is faster to do the conversion explicitly if multiple

operations are done using the same pattern.

word (RJA)

String scanning function word(s, i1, i2) : integer? produces the position past a UNIX-style

command line word, including quoted and escaped characters.

word_dequote(s) : string produces the UNIX-style command line word s with any quoting

characters removed. Links: scanset.

wrap (RJA)

wrap(s:"",i:0) : string? accumulates small strings into longer ones, writing when the ac-

cumulated string would exceed a speci�ed length. s is the string to accumulate, i is the

width of desired output string. wrap() fails if the string s did not necessitate output of

the bu�ered output string; otherwise the output string is returned (which never includes

s). Calling wrap() with no arguments produces the bu�er (if it is not empty) and clears it.

wrap() does no output to �les. Here's how wrap() is normally used:

wrap() # Initialize; not needed unless there was a previous use.
every i := 1 to 100 do # Loop to process strings to output --

write(wrap(x[i],80)) # only writes when 80-char line filled.
write(wrap()) # Output what’s in buffer, if something to write.

wraps(s,i) : string? is similar to wrap(), but intended for use with writes(). If the string s

did not necessitate a line-wrap, s is returned. If a line-wrap is needed, s, preceded by a

new-line character ("\n"), is returned.

xcodes (RJA, REG)

The xcodes module provides procedures to save and restore structures to disk. Records

are encoded using canonical names: record0, record1, ... This allows programs to decode

�les by providing declarations for these names when the original declarations are not avail-

able. xcodes also provides for procedures and �les present in the encoded �le that are not

in the decoding program.

xencode(x,f) stores x in �le f such that it can be converted back to x by xdecode(f).

The procedures handle most kinds of values, including structures of arbitrary complexity

including cycles. The following sequence will output x and recreate it as y:

472 APPENDIX B. THE ICON PROGRAM LIBRARY

f := open("xstore","w") f := open("xstore")

xencode(x,f) y := xdecode(f)

close(f) close(f)
For scalar types (null, integer, real, cset, and string), this sequence results in the relationship

x === y. For structured types (list, set, table, record and object), y has the same shape as x

and its elements bear the same relation to the original as if they were encoded and decoded

individually. Files, co-expressions, and windows are not handled; they decode as empty

lists, with the exception of the special �les &input, &output, and &errout. Functions and

procedures only preserve type and identi�cation. xdecode() fails if given a �le that is not in

xcode format or if the encoded �le contains a record for which there is no declaration in the

program in which the decoding is done. If a record is declared di�erently in the encoding

and decoding programs, the decoding may be bogus.

xencoden() and xdecoden() perform the same operations, except they take the name of a

�le to open, not an already-open �le.

xencodet() and xdecodet() are like xencode() and xdecode() except that the trailing argu-

ment is a type name. If the encoded decoded value is not of that type, they fail. xencodet()

does not take an opt argument.

xencode(x, f:&output, p:write) : f encodes x writing to �le f using procedure p. p uses the

same interface as write() (the �rst parameter is always the value passed as f).

xdecode(f:&input, p:read) : x returns the restored object where f is the �le to read, and p

is a procedure that reads a line from f using the same interface as read().

If p is provided to xencode(), then f can be any arbitrary data object -- it need not be a

�le. For example, to �write� x to a string:

record StringFile(s)
procedure main() ...

encodeString := xencode(x,StringFile(""),WriteString).s
...

end
procedure WriteString(f,s[])

(every f.s ||:= !s); f.s ||:= "\n"
return

end

Links: escape. See also: object.icn, codeobj.icn.

xforms

These procedures produce matrices for a�ne transformation in two dimensions and

transform point lists. A point list is a list of Point() records.

transform(p:list, M) : list transforms a point list by matrix

transform_points(pl:list,M) transforms point list

set_scale(x, y) : matrix produces a matrix for scaling

B.2. APPLICATION PROGRAMS, EXAMPLES, AND TOOLS 473

set_trans(x, y) : matrix produces a matrix for translation

set_xshear(x) : matrix produces a matrix for x shear

set_yshear(y) : matrix produces a matrix for y shear

set_rotate(x) : matrix produces a matrix for rotation

Links: gobject. See also: matrix. (SBW, REG)

ximage (RJA)

ximage(x) : s produces a string image of x. ximage() di�ers from image() in that it outputs

all elements of structured data types. The output resembles Icon code and is thus familiar

to Icon programmers. Additionally, it indents successive structural levels in such a way

that it is easy to visualize the data's structure. Note that the additional arguments in the

ximage() procedure declaration are used for passing data among recursive levels.

xdump(x1,x2,...,xn) : xn uses ximage() to write x1, x2, ..., xn to &errout.

xrotate

xrotate(X, i) rotates the values in X right by one position. It works for lists and records.

This procedure is mainly interesting as a recursive version of

x1 :=: x2 :=: x3 :=: ... xn

since a better method for lists is push(L, pull(L)).

B.2 Application Programs, Examples, and Tools

The Icon Program Library progs directory contains 200+ programs that are useful for

demonstration, entertainment, and/or practical utility. Highlights of usage information is

presented with [optional] and repeated* command-line arguments.

adlcheck, adlcount, adlfilter, adlfirst, adllist, adlsort

This suite of address-list tools works on �address list �les� and includes a correctness

checker, a counter, a �lterer, a lister, and a sorter. Read the source code for a description

of these programs' many command line options. See also: address.doc, labels.icn.

animal (RJA)

animal is the familiar "animal game". The program asks the user a series of questions in

an attempt to guess what animal he or she is thinking of. This expert system gets smarter

as it plays. Typing "list" at any yes/no prompt will show an inventory of animals known,

and there are some other commands too.

banner (CT)

banner is a utility that outputs enlarged letters (5x6 matrix) in portrait mode.

474 APPENDIX B. THE ICON PROGRAM LIBRARY

bj (CT, RLG)

bj is a simple but fun blackjack game. The original version was for an ANSI screen.

This version has been modi�ed to work with the UNIX termcap database �le.

blnk2tab

blnk2tab is a UNIX-style �lter that converts strings of two or more blanks to tabs.

c2icn (RJA)

The c2icn �lter does easy work involved in porting a C program to Icon. It reformats

comments, moves embedded comments to end of line, removes ";" from ends of lines,

reformats line-continued strings, changes = to :=, and changes -> to .

calc

calc is a simple Polish "desk calculator". It accepts as values integers, reals, csets, and

strings, as well as an empty line for the null value. Other lines of input are operations,

either binary operators, functions, or one of: clear (remove all values from the calculator's

stack), dump (write out the contents of the stack), or quit (exits from the calculator). Failure

and most errors are detected; arguments are consumed and not left on the stack.

chkhtml (RJA)

This program checks an HTML �le and detects the following errors: Reference to un-

de�ned anchor name; duplicated anchor name; warning for unreferenced anchor name;

unknown tag; badly formed tag; improper tag nesting; unescaped <, >, ", or &; bad

escape string; improper embedding of attributes; and bad (non-ASCII) characters. The

program also advises on the use of <HTML>, <HEAD>, and <BODY> tags.

colm [-w linewidth] [-s space] [-m min_width] [-t tab_width] [-x] [-d] �le* (RJA)

colm arranges a number of data items, one per line, into multiple columns. Items are

arranged in column-wise order, that is, the sequence runs down the �rst column, then down

the second, etc. If a null line appears in the input stream, it signi�es a break in the list, and

the following line is taken as a title for the following data items. No title precedes the initial

sequence of items. See the program source code for command line options interpretation.

comfiles

comfiles lists common �le names in two directories given as command-line arguments.

Requires: UNIX

concord

concord produces a simple concordance from standard input to standard output. Words

less than three characters long are ignored. Option -l n sets maximum line length to n

(default 72), after which concord starts a new line. Option -w n sets the maximum width

for word to n (default 15), after which words are truncated.

B.2. APPLICATION PROGRAMS, EXAMPLES, AND TOOLS 475

conman (WED)

conman responds to queries like "? Volume of the earth in tbsp". The commands (which

are not reserved) are: load, save, print, ? (same as print), list, is, are (same as is).

countlst

countlst counts how many times each line of input occurs and writes a summary. By

default, the output is sorted �rst by decreasing count and within each count, alphabetically.

Option -a causes output to be sorted alphabetically; -t prints a total at the end.

cross (WPM)

cross takes a list of words and tries to arrange them in crossword format so that they

intersect. Uppercase letters are mapped into lowercase letters on input. The program

objects if the input contains a nonalphabetic character. It produces only one intersection.

crypt [key] <in�le >out�le (PB, PLT)

crypt is an example encryption program. Do not use this in the face of competent

cryptanalysis. Helen Gaines' book (Gaines, 1939) is a classical introduction to the �eld.

csgen

csgen takes a context-sensitive production grammar and generates random sentences

from the corresponding language. Uppercase letters are nonterminal symbols and -> in-

dicates the left-hand side can be rewritten by the right-hand side. Other characters are

considered to be terminal symbols. Lines beginning with # are ignored. A line with a non-

terminal symbol S followed by a colon and an integer i speci�es generation of i sentences

for the language with start symbol S. See the source code for details and explanation.

cstrings (RJA)

cstrings prints all strings (enclosed in double quotes) in C source �les.

daystil (NL)

daystil calculates the number of days between the current date and the date given on

the command line, which may be speci�ed in many ways. For example, August 12 can be

speci�ed as "August 12", "Aug 12", "12 August", or "12 aUGuS", among others.

deal

deal [-h n:1] shu�es, deals, and displays n hands in the game of bridge.

declchck

declchck examines ucode �les and reports declared identi�ers that may con�ict with

function names. Requires: UNIX.

delamc (TRH)

delamc delaminates standard input into several output �les according to the separator

characters speci�ed by the string following the -t option (default: tab). All output �les

contain the same number of lines as the input �le.

476 APPENDIX B. THE ICON PROGRAM LIBRARY

detex (CLJ)

detex reads in documents written in the LaTeX typesetting language, and removes some

of the common LaTeX commands to produce plain ASCII. Output must typically be further

edited by hand to produce an acceptable result.

diffn �le* (RJA)

diffn shows the di�erences between n �les.

diffsum [�le] (GMT)

diffsum reads output from the Unix diff(1) utility, either normal di�s or context di�s. For

each pair of �les compared, di�sum reports two numbers: The number of lines added or

changed, and the net change in �le size. The �rst of these indicates the magnitude of the

changes and the second the net e�ect on �le size.

diffu f1 f2 (RM)

diffu uses dif() to generate �le di�erences like the UNIX diff(1) command.

diffword

diffword lists the di�erent words in the input. The de�nition of "word" is naive.

duplfile

duplfile lists the �le names that occur in more than one subdirectory and the subdirec-

tories in which the names occur. This program runs slow on large directory structures.

envelope [options] < address(es) (RF)

envelope addresses envelopes on a PostScript or HP-LJ printer, including barcodes for

the zip code. A line beginning with # or an optional alternate separator can be used

to separate multiple addresses. The parser will strip the formatting commands from an

address in a tro� or LaTeX letter. Typically, envelope is used from inside an editor. In

Emacs, mark the region of the address and do M-| envelope. In vi, put the cursor on the

�rst line of the address and do :,+N w !envelope where N = number-of-lines-in-address.

farb, farb2

Dave Farber, co-author of the original SNOBOL programming language, is noted for

his creative use of the English language. Hence the terms "farberisms" and "to farberate".

This program produces a randomly selected farberism.

filecnvt [-i s1] [-o s2] infile outfile (BW)

filecnvt copies a text �le, converting line terminators. Option -i s1 indicates the input �le

line termination system (default "u"). Option -o s2 directs output to use line terminators

for system s2 (default "u"). The designations are d (DOS/Windows "\n\r"), m (Macintosh

"\r"), and u (UNIX "\n").

B.2. APPLICATION PROGRAMS, EXAMPLES, AND TOOLS 477

fileprnt

fileprnt reads the �le speci�ed as a command-line argument and writes out a represen-

tation of each character in several forms: hex, octal, decimal, symbolic, and ASCII.

filesect

filesect start nlines writes the section of the input �le starting at a line number and

extending some number of lines. If the speci�cations are out of range, the �le is truncated.

filtskel (RJA)

filtskel is a skeleton/template for creation of �lter programs. Command line options, �le

names, and tabbing are handled; you need only provide the �ltering code.

findstr (RJA)

findstr is a utility �lter to list character strings embedded in data �les such as object

�les. The option -l length gives the minimum string size to be printed (default 3); option -c

chars speci�es a string of characters (besides the standard ASCII printable characters) to

be considered part of a string. String escape sequences can be used.

findtext (PLT)

findtext retrieves multiline text from a database indexed by idxtext. Each section of text

lines follows a line declaring the index terms. Each index line begins with "::".

fixpath �lename oldpath newpath (GMT)

fixpath changes �le paths or other strings in a binary �le by modifying the �le in place.

Each null-terminated occurrence of oldpath is replaced by newpath. If the new path is longer

than the old one, a warning is given and the old path is extended by null characters, which

must be matched in the �le for replacement to take place.

format (RJA)

format is a �lter program that word-wraps a range of text. Options include full justi�-

cation. All lines that have the same indentation as the �rst line (or same comment leading

character format if -c option) are wrapped. Other lines are left as is. This program is useful

in conjunction with editors that can invoke �lters on a range of selected text.

former

former takes a single line of input and outputs it in lines no greater than the number

given on the command line (default 80).

fract (REG, GMT)

fract produces successive rational approximations to a real number. The option -n r

speci�es the real number to be approximated, default .6180339887498948482. Option -l i

gives the limit on number of approximations, default 100.

fuzz (AC)

fuzz does "fuzzy" string pattern matching. The result of matching s and t is a number

between 0 and 1, based on counting matching pairs of characters in increasing substrings

478 APPENDIX B. THE ICON PROGRAM LIBRARY

of s and t. Characters may be weighted di�erently.

gcomp (WHM, REG)

gcomp produces a list of the �les in the current directory that do not appear among the

arguments. For example, gcomp *.c produces a list of �les in the current directory that do

not end in .c. Requires: UNIX.

genqueen (PAB)

genqueen n solves the non-attacking n-queens problem for (square) boards of arbitrary

size. The problem consists of placing chess queens on an n-by-n grid such that no queen

is in the same row, column, or diagonal as any other queen. The output is each of the

solution boards; rotations not considered equal.

gftrace (GMT)

gftrace writes a set of procedures to standard output. Those procedures can be linked

with an Icon program to enable the tracing of calls to built-in functions. See the com-

ments in the generated code for details. The set of generated functions re�ects the built-in

functions of the version of Icon under which this generator is run.

graphdem (MH)

graphdem is a simple bar graphics package with two demonstration applications. The

�rst displays the 4 most frequently used characters in a string; the second displays the

Fibonacci numbers. Requires: ANSI terminal support.

grpsort (TRH)

grpsort sorts input containing "records" de�ned to be groups of consecutive lines. One

or more repetitions of a demarcation line beginning with the separator string separate each

input record. The �rst line of each record is used as the key. The separator string defaults

to the empty string; empty lines are default demarcation lines.

headicon

headicon prepends a standard header to an Icon program. It does not check to see if

the program already has a header. The �rst command-line argument is taken as the base

name of the �le; default "foo". The second command-line argument is taken as the author;

the default is "Ralph E. Griswold" -- but you can personalize it for your own use. The new

�le is brought up in the vi editor. The �le skeleton.icn must be accessible via dopen().

hebcalen,hcal4unx (ADC, RLG)

The Jewish year harmonizes the solar and lunar cycle, using the 19-year cycle of Meton

(c. 432 BCE). Startup syntax is hebcalen [date], where date is a year speci�cation of the

form 5750 for a Jewish year, +1990 or 1990AD or 1990CE or -1990 or 1990BC or 1990BCE

for a civil year. Requires: keyboard functions, hebcalen.dat, hebcalen.hlp.

B.2. APPLICATION PROGRAMS, EXAMPLES, AND TOOLS 479

hr (CT)

hr implements a horse-race game.

ibar

ibar replaces comment bars by bars 76 characters long, the IPL standard.

ibrow (RJA)

ibrow browses Icon �les for declarations, defaulting to browse all *.icn �les in the current

directory. The user interface is self-explanatory -- use "?" for help if you're confused.

icalc (SBW)

icalc is an in�x calculator with control structures and compound statements. Features

include: integer and real value arithmetic; variables; function calls to built-in functions;

strings allowed as function arguments; unary operators + (absolute value) and - (negation);

assignment := ; binary operators: +, -, *, /, %, and �; relational operators: =, !=, <,

<=, >, >= (use 1 for true and 0 for false); compound statements in curly braces with

semicolon separators; if-then and if-then-else; while-do; and limited multiline input. The

input is processed one line at a time, in calculator fashion, but compound statements can

be continued across line boundaries.

icalls

icalls processes trace output and tabulates calls of procedures.

icn2c (RJA)

icn2c partially converts Icon to C. It reformats comments, line-continued strings and

procedure declarations, changes := to =, and changes end to "}".

icontent <options> <Icon source file>... (RJA)

icontent builds a list, in Icon comment format, of procedures and records in an Icon

source �le. Multiple �les can be speci�ed as arguments, and are processed in sequence.

Option -s speci�es to sort names alphabetically (default is in order of occurrence); option

-l lists in single column (default is to list in multiple columns).

icvt (CW, REG)

icvt converts Icon programs from ASCII syntax to EBCDIC syntax or vice versa. The

option -a converts to ASCII, while the option -e converts to EBCDIC. The program given

in standard input is written in converted form to standard output.

idepth

idepth processes trace output and reports the maximum depth of recursion.

idxtext [-a] file1 [file2 [...]] (RLG, PLT)

idxtext turns a �le associated with the gettext() routine into an indexed text-base. Though

gettext() will work �ne with �les that haven't been indexed via idxtext(), access is faster if

the indexing is done if the �le is, say, over 5k or 10k. file1, file2, etc. are the names of

gettext-format �les that are to be (re-)indexed. The -a �ag tells idxtext to abort if an index

480 APPENDIX B. THE ICON PROGRAM LIBRARY

�le already exists. Indexed �les have the format:

keyname delimiter offset [delimiter offset [etc.]]\n.

ifilter op

ifilter applies the operation given on the command-line to each line of standard input,

writing the results. For example, ifilter reverse <foo writes the lines of foo reversed end-for-

end, while ifilter right 10 0 <foo calls right(line, "10", "0") for each line of foo.

igrep (RJA)

igrep emulates UNIX egrep using the enhanced regular expressions supported by

regexp.icn. Options are nearly identical to those supported by egrep (no -b: print disk

block number). The option -E allows Icon-type (hence C-type) string escape sequences in

the pattern string. Beware: when -E is used, backslashes that are meant to be processed

in the regular expression context must be doubled.

iheader

iheader lists the headers of Icon �les whose names are given on the command line.

ihelp [-f help�le] [item] [keyword ...] (RJA)

ihelp displays help information. The optional item name speci�es the section of the help

�le that is to be displayed. If no item name is speci�ed a default section will be displayed,

which usually lists the help items that are available.

iidecode [in�le] [-x], iiencode [in�le] [-x] remote�le [-o out�le] (RLG, FJL)

These are Icon ports of the UNIX/C uudecode/uuencode utilities, based on freely dis-

tributable BSD code. File modes are always encoded with 0644 permissions. An option

speci�es xxencoded �les (like uuencoding, but passes unscathed through EBCDIC sites).

ilnkxref [-options] <icon source �le>... (RJA)

ilnkxref is a utility to create cross-reference of library �les used in Icon programs (i.e.,

those �les named in link declarations). Requires: UNIX. Option -p speci�es to sort by

"popularity"; option -v tells the program to report progress information

ilump

ilump copies Icon source �les, incorporating recursively the source code for �les named

by link directives. This produces a whole source program in one �le, useful with certain

pro�ling and visualization tools. If a linked �le is not found in the current directory,

directories speci�ed by the LPATH environment variable are tried.

imagetyp

imagetyp accepts �le names from standard input and writes their image type to standard

output. It relies on a procedure imagetyp(s) that attempts to determine the type of image

�le named s. Corrupted or fake �les easily fool it. Examples of some image �le types were

not available for testing.

B.2. APPLICATION PROGRAMS, EXAMPLES, AND TOOLS 481

ineeds (RJA)

ineeds determines Icon modules required by an Icon module. It expects environment

variable LPATH to be set properly as for the Icon Compiler.

inter

inter lists lines common to two �les.

interpe, interpp (REG, JN)

interpe is a crude but e�ective interpreter for Icon expressions. If the expression is a

generator, all its results are produced. If option -e is given, the expression is echoed.

interpp takes expressions pre�xed with line numbers. You can resequence, list, and

execute lines in order. Retype a line to change it. Use "?" to list the other commands.

ipatch �le path (GMT)

ipatch changes the path to iconx, the Icon interpreter, which is embedded in an Icon

executable �le under Unix. Because the headers of such �les are not designed to expand, a

di�erent form of header is written to accommodate a possibly longer path.

ipldoc

ipldoc collects selected information from documentation headers for Icon procedure �les

named on the command line. Option -s skips �le headers; option -f sorts the procedure list

by �le, instead of the default sort by procedure name.

iplindex [-k i:16] [-p i:12] (REG, SBW)

iplindex produces an indexed listing of the Icon Program Library. Option -k i gives the

width keyword �eld; option -p i speci�es the width of �eld for program name. If a �le

except.wrd is readable in the current directory, the words in it are used instead.

iplkwic (SBW, REG)

iplkwic is a specialized version of kwic.icn used for producing kwic listings for the Icon

program library. This is a simple keyword-in-context (KWIC) program. The "key" words

are aligned at a speci�ed column, with the text shifted as necessary. Text shifted left is

truncated at the left. Tabs and other special characters may not be handled properly.

iplweb [-ipl source] [dest] (JK)

iplweb generates web pages from IPL header comments. Environment variable IPL locates

the Icon Program Library if -ipl is not speci�ed; dest defaults to the current directory. iplweb

generates an HTML subdirectory in dest and makes an index to gprogs, gprocs, procs, and

progs directories under HTML. These directories contain an .html �le for each .icn �le in the

referenced directory. An index to all �les is also generated. The .html �les contain the IPL

standard comment header info inside.

iprint (RJA)

iprint formats Icon programs, trying to keep whole procedures on the same page. It

identi�es the end of a print group (e.g. procedure) by looking for the string (defaulting to

482 APPENDIX B. THE ICON PROGRAM LIBRARY

"end") at the beginning of a line. Comments and declarations prior to the procedure are

grouped with the procedure. Page creases are skipped over, and form-feeds (�L) embedded

in the �le are handled properly. Page headings (�le name, date, time, page number) are

printed unless suppressed by the -h option. See the program source code for details.

ipsort

ipsort reads an Icon program and writes an equivalent program with the procedures

reordered. Global, link, and record declarations come �rst and aren't reordered. The

main() procedure comes next followed by the remaining procedures in alphabetical order.

ipsplit

ipsplit reads an Icon program and writes each procedure to a separate �le. The output

�le names consist of the procedure name with .icn appended. If -g is speci�ed, any global,

link, and record declarations are written to that �le. Otherwise they are written in the �le

for the procedure that immediately follows them.

ipxref [file] (AJA)

ipxref cross-references Icon programs. It lists the occurrences of each variable by line

number. Variables are listed by procedure or separately as globals. Variables that are

followed by a left parenthesis are listed with an asterisk following the name. If a �le is not

speci�ed, then standard input is used. The following options change the defaults:

-c n The column width (default:4) per line number.

-l n The left margin or starting column (default: 40) of the line numbers.

-w n The column width (default: 80) of the whole output line.

Normally only alphanumerics are cross-referenced. Two options broaden it:

-q Include quoted strings.

-x Include all non-alphanumerics.

This program assumes the subject �le is a valid Icon program.

isrcline

isrcline counts the number of lines in an Icon program that actually contain code, as

opposed to being comments or blank lines.

istrip

istrip removes comments, empty lines, and leading spaces from an Icon program.

itab [options] [source-program...] (RJA)

itab entabs an Icon program, leaving quoted strings alone. The options are:

-i Input tab spacing (default 8)

-o Output tab spacing (default 8).

itab observes Icon conventions for escapes and continuations in string constants. If no

source-program names are given, standard input is "itabbed" to standard output.

itags [-aBFtvwx] [-f tags�le] �le... (RJA)

itags creates a tags �le for an Icon program. The options are:

B.2. APPLICATION PROGRAMS, EXAMPLES, AND TOOLS 483

-a append output to an existing tags �le.

-B use backward searching patterns (?...?).

-F use forward searching patterns (/.../) (default).

-x produce object names, the line number and �le name on which each is

de�ned, as well as the text of that line and prints this on the standard output.

-t create tags for records.

-v produce on the standard output an index of the form expected by vgrind(1).

This listing contains the function name, �le name, and page number (assuming

64 line pages). Since the output will be sorted into lexicographic order,

it may be desired to run the output through sort -f.

-w suppress warning diagnostics.

itrbksum

itrbksum summarizes traceback information produced on error termination by �ltering

out the bulk of the procedure traceback information.

itrcfltr [procs]

itrcfilter �lters trace output. Command-line arguments are procedure names, and only

lines with those names are written. The names of procedures to pass through can be given

in a "response" �le as accepted by options(), as in

itrcfltr @names <trace_file

where names is a �le containing the names to be passed through. The option -a lists all

trace messages; it overrides any procedure names given.

itrcsum

itrcsum provides a summary of Icon trace output.

iundecl [files] (RJA, REG)

iundecl invokes icont to �nd undeclared variables in an Icon program. The output is in

the form of a local declaration, preceded by a comment line that identi�es the procedure

and �le name from whence it arose. Undeclared variables aren't necessarily local; any

intended to be global must be removed from the generated list. The program works only

if the reserved words procedure and end are the �rst words on their respective lines.

iwriter

iwriter reads &input and writes code that when compiled and executed, writes out the

original input. This is handy for incorporating message text in programs.

knapsack (AVH)

knapsack is a �lter that solves a knapsack problem - how to �ll a container to capacity

by inserting items of various volumes. Its input consists of a string of newline-separated

volumes. Its output is a single solution. knapsack demonstrates an underlying algorithm

that might be useful in a variety of real-world applications. Knapsack may be tested

conveniently by supplying its standard input with any sequence of random numbers.

484 APPENDIX B. THE ICON PROGRAM LIBRARY

krieg (DJS)

Kriegspiel ("war game") implements a variation of chess which has the same rules and

goal as ordinary chess except that neither player sees the other's moves or pieces.

kross

kross accepts pairs of strings on successive lines. It diagrams all the intersections of the

two strings in a common character.

kwic, kwicprep (SBW, REG)

kwic is a simple keyword-in-context program. The "key" words are aligned in column

40, with the text shifted as necessary. Text shifted left is truncated. Tabs and other

characters whose "print width" is less than one may not be handled properly. If an integer

is given on the command line, it overrides the default 40. Some noise words are omitted

(see "exceptions" in the program text). If a �le named except.wrd is open and readable in

the current directory, the words in it are used instead. kwicprep prepares information to

create keyword-in-context listings of the Icon program library.

labels

labels produces mailing labels using coded information taken from the input �le. In the

input �le, a line beginning with # is a label header. Subsequent lines up to the next header

or end-of-�le are accumulated and written out centered horizontally and vertically on label

forms. Lines beginning with * are treated as comments and are ignored. See the source

code for options. See also: address.doc, adl*.icn, zipsort.icn.

lam �les (TRH)

lam laminates �les named on the command line, producing a concatenation of corre-

sponding lines from each �le named. If �les are di�erent lengths, empty lines are substituted

for missing lines in the shorter �les. Argument -s causes string s to be inserted between the

concatenated �le lines. Each command line argument is placed in the output line at the

point that it appears in the argument list. For example, lines from �le1 and �le2 can be

laminated with a colon between each line from �le1 and the corresponding line from �le2

by lam file1 -: file2. If a �le is named more than once, its lines are duplicated on the output,

but if standard input is named more than once, its lines will be read alternately.

latexidx (DSC)

latexidx processes LaTeX idx �les. Input: A latex .idx �le containing the \indexentry

lines. Output: \item lines sorted in order by entry value, pagerefs in sorted order.

lc

lc simply counts the number of lines in standard input and writes the result to standard

output. Assumes UNIX-style line terminators, and uses lots of memory.

lindcode

lindcode reads a �le of L-system speci�cations and build Icon code that creates a table

of records containing the speci�cations. If the option -e is given, symbols for which there is

B.2. APPLICATION PROGRAMS, EXAMPLES, AND TOOLS 485

no de�nition are included in the table with themselves as replacement. See also: lindrec.icn.

lineseq

lineseq reads values on separate lines and strings them together on a single line. The

separating strings is speci�ed by the -s option (default: " ").

lisp (SBW, PLT)

lisp is a simple interpreter for pure Lisp. It takes the name of the Lisp program as a

command-line argument. The syntax and semantics are based on EV-LISP, as described in

L. Siklossy's "Let's Talk LISP" (Prentice-Hall, 1976). Functions that have been prede�ned

match those described in Chapters 1-4 of the book. The language is case-insensitive.

literat (MH)

literat manages information concerning literature. The program uses �les literat.fil,

literat2.fil and adress.fil to store its data. It has a prede�ned structure of the items and

�eld labels. Requires: ANSI terminal support.

loadmap (SBW)

loadmap produces a listing of selected symbol classes from a compiled object �le. The

listing is by class, and gives the name, starting address, and length of the region for each

symbol. The size of the last region in a symbol class is suspect

longest

longest writes the (last) longest line in the input �le. If the command-line option -# is

given, the number of the longest line is written �rst.

lower

lower maps the names of all �les in the current directory to lowercase.

makepuzz [-f in�l] [-o out�l] [-h ht] [-w wd] [-t sec] [-r reject] [-s] [-d] (RLG)

makepuzz takes a list of words, and constructs out of them one of those square �nd-

the-word puzzles that some people like to bend their minds over. in�le is a �le containing

words, one to a line, and out�le is the �le to write the puzzle. ht (height) and wd (width)

are the basic dimensions you want to try to �t your word game into (default 20x20). If the

-s argument is present, makepuzz will scramble its output.

missile (CT)

missile is a text-based Missile Command game. It runs on systems that support the

delay() function, and uses ANSI escape sequences for screen output. To play use 7, 8, and

9 to launch a missile. 7 is leftward, 8 is straight, and 9 is right. q quits the game.

miu (CAC, REG)

miu generates strings from the MIU string system. The number of generations is deter-

mined by the command-line argument; default is 7. Reference: Godel, Escher, and Bach:

an Eternal Golden Braid, D. R. Hofstadter, Basic Books, 1979. pp. 33-36.

mkpasswd (JK)

486 APPENDIX B. THE ICON PROGRAM LIBRARY

mkpasswd creates a list of randomly generated passwords consisting of eight random

characters in the range [A-Z0-9]. Number of passwords to generate is the �rst argument.

monkeys (SBW, REG, AB)

The old monkeys at the typewriters anecdote... monkeys uses ngram analysis to ran-

domly generate text in the same 'style' as the input text.

morse (REG, RJA)

If morse is invoked without arguments, a Morse code table is printed. If arguments are

given, the Morse code conversion is printed in dots and dashes. If the �rst argument's �rst

character is a dot or dash, the arguments are Morse code and converted to a string.

mr [recipient] [-u user] [-f spool] (RF)

With no arguments, mr reads the default UNIX mail spool. Another user, a spool �le, or

the recipient for outgoing mail can be given as a command line argument. Help is available

with the H command.

newicon

newicon creates a new �le with a standard Icon program header and a skeleton mail

procedure. The �rst command-line argument is taken as the base name of the �le; default

"foo". The second command-line argument is taken as the author. The default is "Ralph

E. Griswold"; personalize it for your own use. The same comment applies to the skeleton

�le mentioned below. The new �le is brought up in the vi editor. The options are:

-f overwrite an existing �le

-p produce a procedure �le instead of a program

-o provide program skeleton with options()

The �les skeleton.icn, skelproc.icn, and skelopt.icn must be accessible via dopen().

newsrc (ADC)

newsrc takes the .newsrc �le, moves active groups to the beginning, and then appends

inactive groups with the numbers omitted, and writes out a new �le called newnewsrc.

nim show|save (JN)

The game of nim is played with a pile of 15 sticks. Each player can select 1, 2, or 3 sticks

from the pile on their turn. The player to pick up the last stick(s) wins. There are two

versions of nim here. The default version uses an algorithm that will never lose if it gets

the �rst turn. The second version learns from each game. To invoke the learning version,

pass an argument to the program. show displays the program's game memory after each

game. save writes a �le called ".nimdump" in the current directory with a dump of the

program's game memory when you quit. When the game is played in learn mode it will

initialize its game memory from the dump. You can run this program with both show and

save at the same time.

B.2. APPLICATION PROGRAMS, EXAMPLES, AND TOOLS 487

oldicon

oldicon updates the date line in a standard Icon program header. The old �le is saved

with the su�x .bak. The �le then is brought up in the vi editor unless the -f option is

speci�ed. Requires: system(), vi(1), UNIX.

pack

pack packages a list of �les named on the command line into a single �le, which is written

to standard output. Files are separated by a header, ##########, followed by the

�le name. This simple scheme does not work if a �le contains such a header itself, and it's

problematical for �les of binary data. See also: unpack.icn.

paginate (PA)

paginate processes a document text �le, inserting form feeds at appropriate places.

papply

papply applies the procedure given as a command-line argument to each line of standard

input, writing out the results. For example, papply reverse <foo writes out the lines of foo

reversed end-for-end. There is no way to provide other arguments. Except for use with

(built-in) functions, this program must be linked with procedures that are used with it.

parens

parens produces parenthesis-balanced strings in which the parentheses are randomly

distributed. See the source code for options. This program was motivated by the need for

test data for error repair schemes for block-structured programming languages. A useful

extension to this program would be a way to generate other text among the parentheses.

pargen

pargen reads a context-free grammar and produces an Icon program that parses the

corresponding language. Nonterminal symbols are enclosed in angle brackets. ::= separates

the LHS and RHS of the production. Vertical bars separate alternatives. Other characters

are considered to be terminal symbols. The nonterminal on the �rst line is the goal.

Parentheses group symbols, as in <term>::=<element>(|*<term>) Empty alternatives are

allowable. The terminals <, >, (,), and | are accessible through the built-in symbols <lb>,

<rb>, <lp>, <rp>, and <vb>, respectively. Two other built-in symbols, <empty> and <nl> match

the empty string and a newline, respectively. Lines beginning with = are passed through

unchanged, allowing Icon declarations to be placed in the parser. Lines beginning with a

are ignored. If the name of a ucode �le is given on the command line, a link declaration

for it is provided in the output. Limitations: Left recursion in the grammar may cause the

parser to loop. See also: recog.icn, matchlib.icn, and parscond.icn.

parse, parsex (KW, CW)

parse parses simple statements. parsex is another expression parser, adapted from C code

written by Allen I. Holub (Dr. Dobb's Journal, Feb 1987). This program can evaluate any

expression consisting of numbers and the following operators (listed according to precedence

488 APPENDIX B. THE ICON PROGRAM LIBRARY

level):

() - ! ’str’str’ * / & + - < <= > >= == != && ||

All operators associate left to right unless () are present. The top - is a unary minus.

patchu (RM)

patchu reads a source �le and a di� �le, producing an updated �le. The di� �le may be

generated by the UNIX diff(1) utility, or by diffu.icn, which uses dif.icn. The original patch(1)

utility, written by Larry Wall, is widely used in the UNIX community. See diff(1) in a UNIX

manual for more details. Requires: co-expressions.

pdecomp

pdecomp lists the prime factors of integers given in standard input.

polydemo (EE)

polydemo demonstrates the polystuf module. The user can create, output, delete, or

operate up to 26 polynomials, indexed by letter.

post [-n groups] [-s subj] [-d dist] [-f followup] [-p pre�x] [�le] (RF)

post posts a news article to Usenet. Given the name of a �le containing a news article,

post creates a follow-up article, with an attribution and quoted text. On systems posting

via inews, post validates newsgroups and distributions in the active and distributions �les in

the news library directory. Newsgroup validation assumes the active �le is sorted.

press (RJA)

press is a �le archiving utility that contains extensive tracing facilities that illustrate

the LZW compression process in detail. The LZW compression procedures in this program

are general purpose and suitable for reuse in other programs.

procprep

procprep is used to produce the data needed to index the "#:" comments on procedure

declarations that is needed to produces a permuted index to procedures.

procwrap

procwrap takes procedure names from standard input and writes minimal procedure

declarations for them. For example, the input line wrapper produces:

procedure wrapper()

end

This program is useful when you have a lot of procedures to write.

psrsplit �le (GMT)

psrsplit separates psrecord.icn output pages. If a �le produced by the procedures in

psrecord.icn contains multiple pages, it cannot be easily incorporated into another document.

psrsplit reads such a �le and breaks it into individual pages. For an input �le named xxxx

or xxxx.yyy, the output �les are named xxxx.p01, xxxx.p01, etc. for as many pages as are

available. It is assumed that the input �le was written by psrecord.icn; the likelihood of

correctly processing anything else is small.

B.2. APPLICATION PROGRAMS, EXAMPLES, AND TOOLS 489

puzz (CT)

puzz creates word search puzzles.

qei (WHM, REG)

qei evaluates expressions interactively. A semicolon is required to complete an expres-

sion; without one the subsequent line is added to what already has been entered. qei

accumulates expressions and evaluates all previously entered expressions before it evalu-

ates a new one. A line beginning with a colon is a command. The commands are: :clear

clears the accumulated expressions; :every generates all the results from the expression, oth-

erwise, at most one is produced; :exit or quit terminates the session; :list lists the accumulated

expressions; and :type toggles the switch that displays the type of the result.

qt [-a] (RJA)

qt writes out the time in English. If -a is present, only the time is printed: just after a

quarter to three. Otherwise, time is printed as a sentence: It’s just after a quarter to three.

queens (SBW)

queens displays the solutions to the non-attacking n-queens problem: the ways in which

n queens can be placed on an n-by-n chessboard so that no queen can attack another. An

integer command line argument speci�es the number of queens (default: 6). For example,

queens -n8 displays the solutions for 8 queens on an 8-by-8 chessboard.

ranstars (SBW)

ranstars displays a random �eld of "stars" on an ANSI terminal at randomly chosen

positions on the screen until a speci�ed maximum number is reached. It then extinguishes

existing stars and creates new ones for a speci�ed steady-state time.

reply [prefix] < news-article or mail-item (RF)

reply creates the appropriate headers and attribution, quotes a news or mail message,

and uses system() to put the user in an editor and then mails the reply. The default quote

pre�x is “> “. The editor can be speci�ed with the EDITOR environment variable.

repro (KW)

repro is the shortest known self-reproducing Icon program.

revsort

revsort sorts strings with characters in reverse order.

roffcmds

roffcmds processes standard input and writes a tabulation of nro�/tro� commands and

de�ned strings to standard output. Limitations: the program only recognizes commands

that appear at the beginning of lines and does not attempt to unravel conditional construc-

tions. Similarly, de�ned strings buried in disguised form in de�nitions are not recognized.

rsg

rsg generates random strings from a grammar. Grammars are context-free extended

490 APPENDIX B. THE ICON PROGRAM LIBRARY

BNF similar to that of pargen. This interactive program allows the user to build, test,

modify, and save grammars. Input consists of various speci�cations, which can be in-

termixed: Productions de�ne nonterminal symbols in syntax similar to BNF Generation

speci�cations cause the generation of a speci�ed number of sentences from the language de-

�ned by a given nonterminal symbol. Grammar output speci�cations cause the de�nition of

a speci�ed nonterminal or the entire current grammar to be written to a given �le. Source

speci�cations cause subsequent input to be read from a speci�ed �le. Any line beginning

with = causes the rest of that line to be used as a prompt to the user whenever rsg is ready

for input (there normally is no prompt). A line with a single = stops prompting.

Specifying a new production for a nonterminal symbol changes its de�nition. There are

a number of special devices to facilitate the de�nition of grammars, including: <lb> for <,

<rb> for >, <vb> for |, <nl> for newline, <> for the empty string, <&lcase> denoting

any single lowercase letter, <&ucase> for any single uppercase letter, and <&digit> rep-

resenting any single digit (Note: &digit, not &digits). In addition, if the string between a

< and a > begins and ends with a single quotation mark, it stands for any single character

between the quotation marks. For example, <'xyz'> is equivalent to x|y|z

ruler [length:80] [#lines] (RJA)

ruler writes a character ruler to standard output. Arguments give the length of the ruler

in characters and the number of lines to write, with a line number on each line.

scramble (CT)

scramble takes a document and re-outputs it in a cleverly scrambled fashion. It uses the

next two most likely words to follow.

setmerge file [[op] file]... (GMT)

setmerge combines sets of items according to the speci�ed operators. Sets are read from

�les, one entry per line. Operation is from left to right without any precedence rules. After

all operations are complete the resulting set is sorted and written to standard output.

shar text_file... (RJA)

shar creates a Bourne shell archive of text �les.

shortest

shortest writes the (last) shortest line in the input �le. If the command-line option -#

is given, the number of the shortest line is written �rst.

shuffile

shuffile writes a version of the input �le with the lines shu�ed.

sing (FJL)

sing is an adaptation of a SNOBOL program by Mike Shapiro in (Griswold71). It writes

the lyrics to the song, "The Twelve Days of Christmas" to a parameter that can be any

�le open for output. The algorithm used can be adapted to other popular songs.

snake [character:o] (RLG)

B.2. APPLICATION PROGRAMS, EXAMPLES, AND TOOLS 491

While away the idle moments watching the snake eat blank squares on your screen. To

run snake, your terminal must have cursor movement and able to do reverse video.

solit (JN, PLT, REG)

solit was inspired by a solitaire game that was written by Allyn Wade in 1985. This

program supports several common terminals and PC's. Note: The command-line argument,

which defaults to support for the VT100, determines the screen driver.

sortname

sortname sorts a list of person's names by the last names.

splitlit

splitlit creates a string literal with continuations in case it's too long. Option -w i speci�es

the width of piece on line, default 50. Option -i i speci�es the indent, default 3.

streamer

streamer outputs one long line obtained by concatenating the lines of the input �le.

Option -l i stops when line reaches or exceeds i; default no limit. Option -s s inserts

separator s after each line; default no separator. Separators are counted in the length limit.

strpsgml [-f translation-�le] [left-delimiter [right-delimiter]] (RLG)

strpsgml strips or translates SGML <>-style tags. The default left-delimiter is <, the

default right delimiter is >. If no translation �le is speci�ed, the program strips material

between the delimiters. The format of the translation �le is:

code initialization completion

A tab or colon separates the �elds. If you want to use a tab or colon as part of the text

(and not as a separator), place a backslash before it. The completion �eld is optional.

tablc

tablc tabulates characters and lists each character and the number of times it occurs.

tablw

tablw tabulates words and lists number of times each word occurs. A word is a string of

consecutive letters with at most one interior occurrence of a dash or apostrophe.

textcnt

textcnt tabulates the number of characters, "words", and lines in standard input and

gives the maximum and minimum line length.

textcvt (RJA)

textcvt converts text �le(s) among various platforms' formats. The supported text �le

types are UNIX, MS-DOS, and Macintosh. The �les are either converted in-place by

converting to a temporary �le and copying the result back to the original, or are copied to

a separate new �le, depending on the command line options.

toktab

toktab reads the token �les given on the command line and summarizes them in a single

492 APPENDIX B. THE ICON PROGRAM LIBRARY

�le. Option -n sorts tokens by category in decreasing numerical order; default is alphabet-

ical. Option -l i limits output in any category to i items; default no limit

trim [n]

trim copies lines from standard input to standard output, truncating the lines at n

characters and removing trailing blanks. The default for n is 80.

ttt (CT)

ttt plays the game of tic-tac-toe.

turing (GMT)

turing simulates the operation of an n-state Turing machine. The machine starts in state

1 with an empty tape. A description of the Turing machine is read from the �le given as a

command-line argument, or from standard input if none is speci�ed.

unique (AVH, RJA)

unique �lters out (deletes) identical adjacent lines in a �le.

unpack

unpack unpackages �les produced by pack.icn. See that program for limitations.

upper

upper maps the names of all �les in the current directory to uppercase.

verse [vocabularyfile:verse.dat (CT)

This verse maker was initially published in a 1980s Byte magazine in TRS80 Basic.

versum

versum writes the versum sequence for an integer to a �le of a speci�ed name. If such a

�le exists, it picks up where it left o�, appending new values to the �le.

webimage

webimage takes image �lename arguments and writes a Web page that embeds each

image. Option -a s speci�es alignment, default "bottom". Option -t s supplies a title for

the page; default "untitled". Option -n directs to include �le names.

what (PLT)

what writes all strings beginning with "@" followed by "(#)" and ending with null,

newline, quotes, greater-than or backslash. Follows UNIX what(1) conventions.

when (CT)

when is a date based ls command. UNIX find is a bit arcane, so when provides a simpler

alternative. This program only works in the current directory. Requires: UNIX.

B.3. SELECTED IPL AUTHORS AND CONTRIBUTORS 493

xtable (RJA, AB)

xtable prints tables for ASCII, EBCDIC and their decimal and octal values.

yahtz (CT, RLG, PLT)

A classic "dice poker" game.

zipsort

zipsort sorts labels produced by labels in ascending order of their postal zip codes. Option

-d n sets the number of lines per label to n (default 9). See also: labels.icn.

B.3 Selected IPL Authors and Contributors

This Appendix presents the work of the following authors and contributors of Icon Program

Library modules and programs. Ralph Griswold initiated and maintained the collection.

The various authors' code is described in their own words, from the public domain doc-

umentation they have written about it. We acknowledge their contribution to the Icon

community and to this book. Errors in this Appendix are solely our responsibility.
Paul Abrahams Robert J. Alexander Allan J. Anderson

Norman Azadian Alan Beale Phil Bewig

Peter A. Bigot David S. Cargo Alex Cecil

Alan D. Corre Cary A. Coutant William E. Drissel

Erik Eid Ronald Florence David A. Gamey

Michael Glass Richard L. Goerwitz Ralph E. Griswold

Matthias Heesch Charles Hethcoat Anthony V. Hewitt

Thomas R. Hicks Clinton L. Je�ery Jere K?pyaho

Justin Kolb Tim Korb Frank J. Lhota

Nevin J. Liber William P. Malloy C. Scott McArthur

Will Menagarini Joe van Meter William H. Mitchell

Rich Morin Jerry Nowlin Mark Otto

Robert Parlett Jan P. de Ruiter Randal L. Schwartz

Charles Shartsis David J. Slate John D. Stone

Chris Tenaglia Phillip L. Thomas Gregg M. Townsend

Kenneth Walker Stephen B. Wampler Beth Weiss

Robert C. Wieland Cheyenne Wills David Yost

494 APPENDIX B. THE ICON PROGRAM LIBRARY

Appendix C

The Unicon Component Library

C.1 GUI Classes

This section presents the various methods and class �elds making up the classes imple-

mented in the Unicon GUI library. The library is a package (gui) de�ned by a set of �les

in their own directory (uni/gui). In this section if a class has superclasses, their names are

given, separated by colons. Superclasses should be consulted for additional methods and

class �elds used by subclasses. The default is to have no superclass. If a required �eld is

omitted, an error message may be produced, such as:

gui.icn : error processing object TextList : x position unspecified

This means that the x position of a TextList object was not speci�ed, probably because

the set_pos() method had not been invoked.

You will generally need to consult "Graphics Programming in Icon", by Griswold,

Je�ery, and Townsend in order to make the best use of these classes.

Notification

An instance of this class is generated by components and passed to the connected event

handler method. It holds three elements, which are accessed as follows:

get_source() returns the component associated with the event. This may be a subclass of

either Component or a MenuComponent. If this is &null, then an Icon event has occurred

which has not produced an Event from any component.

get_type() returns a �eld to distinguish between di�erent types of event generated by the

same component (ACTION_EVENT, MOUSE_PRESS_EVENT, etc.).

get_param() returns the parameter associated with the event, if any.

Dialog : Container

This is the parent class of a dialog window.

resize_win(w, h) resizes the window to the given dimensions.

get_win() returns the Icon window associated with the dialog.

495

496 APPENDIX C. THE UNICON COMPONENT LIBRARY

set_min_size(w, h) sets the minimum dimensions for a window. The user will not be able to

resize the window below this size.

set_focus(c) sets the keyboard focus to component c. clear_focus() clears the focus.

dialog_event(e:Event) must be de�ned in the subclass. It is invoked on each event.

dispose(x) is normally invoked in response to an event. It sets a �ag to indicate that the

dialog should be closed. If x is non-null, the window is closed already.

set_unique(c) is called by a component c to indicate the beginning of unique event processing,

whereby one component alone receives all events.

clear_unique(x) unsets unique event processing mode. If x is &null then the �nal event

in unique processing mode will be passed to all objects; otherwise it will not.

show_modal(d) opens and displays the dialog window, and accepts events into it. As

events occur they are handled, until a call to dispose() is made, then the window is closed

and the method returns. Parameter d is the parent dialog, if any.

Open() opens the dialog window. Close() closes the dialog window.

process_event(e) processes Icon event e, calling event handlers.

win : window is the dialog's window.

is_open : flag indicates whether the window is open.

focus : Component speci�es the component with the current focus.

unique_flag : flag controls unique processing, where one component receives all events.

re_process_flag : flag tells whether to distribute last Icon event during unique mode.

buffer_win is a bu�er window for double bu�ering.

min_width : integer is the minimum width of window, or &null if no minimum.

min_height : integer is the minimum height of window, or &null if no minimum.

Component

This is the parent class of all the GUI components. All of its methods and variables

therefore apply to its sub-classes.

get_x_reference(), get_y_reference(), get_w_reference(), and get_h_reference() produce this

object's x position, y position, width, and height values from which to compute absolute

positions. May be over-ridden; by default returns self.x, self.y, self.w, self.h.

get_cwin_reference(), get_cbwin_reference() produce the cloned window (the reference ob-

ject inherits the attributes by cloning this window) and cloned bu�er window.

fatal(s) prints an error message s together with the class name, and stops the program.

generate_components() : Component* generates the components for the object. By default

this just returns the component itself.

is_shaded() : flag? succeeds if the component is shaded. A shaded component, such as a

button, may be displayed di�erently, and will not generate events.

set_is_shaded() sets the shaded status of the component to shaded.

clear_is_shaded() sets the shaded status of the component to not shaded.

toggle_is_shaded() swaps the shaded status of the component.

set_draw_border() sets the component such that a border is drawn.

C.1. GUI CLASSES 497

clear_draw_border() sets the component such that a border is not drawn.

toggle_draw_border() toggles whether or not to draw a border around the component.

Di�erent objects respond di�erently to this �ag being set; some ignore it altogether.

display(buffer_flag) draws, or re-draws, the component in the dialog window. If buffer_flag

is not null, then the component is displayed into the bu�er window, not the dialog window

(this is used for double-bu�ering purposes).

set_accepts_tab_focus() sets the accepts_tab_focus_flag, meaning that the object will gain

the keyboard focus by way of the user pressing the tab key repeatedly.

clear_accepts_tab_focus() clears the accepts_tab_focus_�ag.

attrib(x[]) sets the graphic attributes of the component to the given parameter list. For

example: w.attrib("font=helvetica", "bg=pale blue"). Arguments may be either strings or

lists of strings. A description of the attributes is in Chapter 7 and detailed in [GJT98].

get_parent_win() : window returns the window in which the component resides.

set_pos(x, y) sets the x and y position of the component. Each coordinate can be either

an absolute pixel position, or a percentage plus or minus an o�set.

c.set_pos(100, "25%")

c.set_pos("50%-20", "25%+100")

set_align(x_align:"l", y_align:"t") sets the alignment of the component. Options for x_align

are "l", "c" and "r", for left, center, and right alignment. Options for y_align are "t", "c"

and "b", for top center and bottom alignment. Examples:

Place c centered in the center of the window,
its top left corner at (10,10).
c.set_pos("50%", "50%")
c.set_align("c", "c")
c.set_pos(10, 10)
c.set_align("l", "t")

set_size(w, h) sets the size of the component; parameters are as for set_pos() above. Some

components have sensible default sizes, but on others the size must be set explicitly.

handle_event(e) : Event? is over-ridden by all this class's subclasses. It is the method that

handles an Icon event e. It would not normally be called by a user program. Its result is

passed to the dialog_event() method of the dialog.

The �rst two �elds of the Event structure are the Icon event e and the object itself.

The third �eld is the code, which can be any integer. For example:

method handle_event(e)
...
return Event(e, self, 0)

end

498 APPENDIX C. THE UNICON COMPONENT LIBRARY

do_shading(w) is called from a component's display() method. This method �lters the

component to give a shaded appearance if the is_shaded_flag is set. w is the window to use

(normally cwin).

in_region(x:&x,y:&y) succeeds for unshaded components if (x,y) lies within the component.

got_focus() is called when the component gets the keyboard focus. It may be extended

in subclasses. For example:

method got_focus()
self$Component.got_focus()
#
Display the box cursor
#
display()

end

lost_focus() is called when the component loses the keyboard focus; it may be extended.

unique_start() initiates unique event processing for this object by calling the parent dia-

log's set_unique() method.

unique_end(x) ends unique event processing for this object by calling the parent dialog's

clear_unique(x) method.

init() sets up the cloned windows for the component. This method should be called for

any components created and used inside any custom components.

set_parent_dialog(x) sets the owning Dialog of the component to x.

get_parent_dialog() : Dialog returns the parent dialog of the component.

firstly() is invoked after the position of the object has been computed, but before the

object has been displayed in the window. This method may be extended in subclasses.

finally() is invoked before the window is closed; it may be extended in subclasses:

method finally()
self$Component.finally()
Do something here
...
return

end

resize() computes the absolute positions and sizes from the speci�cations given by

set_pos() and set_size(). This method needs to be extended for a component that contains

other components. See the section on custom components for an example.

x_spec, y_spec are the x and y positions as speci�ed by set_pos(), e.g. "50%"

w_spec, h_spec are the width and height speci�ers as used in set_size(), e.g. "100%"

x_align, y_align are the x and y alignment as speci�ed in set_align(), e.g. "l", "b".

The following four attributes are absolute dimensions in pixels, compiled from x_spec,

y_spec, w_spec, and h_spec, and the dimensions of the enclosing object or window.

C.1. GUI CLASSES 499

x and y are the x and y positions computed from x_spec and y_spec.

w and h are the width and height computed from w_spec and h_spec.

cwin is a cloned window created by combining the Dialog's canvas with the Component's

attributes, so drawing into this window will draw straight to the Dialog window with the

correct attributes. cbwin is a cloned window created by combining a bu�er window with

the Component's attributes. This is used solely for double-bu�ering purposes.

parent_dialog is the Dialog class instance of which this Component is a part.

attribs is a list of strings specifying graphics attributes, e.g. ["bg=blue", "resize=on"].

has_focus : flag indicates whether the Component currently has the keyboard focus.

accepts_tab_focus_flag : flag indicates whether the Component accepts keyboard focus by

way of the tab key being pressed.

draw_border_flag : flag indicates whether the Component should have a border drawn

around it. Many components (such as TextButtons) ignore this �ag.

is_shaded_flag : flag indicates whether the Component currently is shaded.

reference links to the object used to calculate absolute sizes from percentage sizes. For

objects placed directly in the Dialog, rather than in some other object, this will point to the

Dialog itself, which over-rides the several methods get_x_reference() etc., appropriately.

Container : Component

This class contains other components. The container itself is invisible. Many of

Component's methods are over-ridden by Container. A Dialog is a sub-class of this class.

add(c:Component) adds the component c to the Container.

Instance variable components are the components inside the Container.

VisibleContainer : Component

This is similar to a Container, except that the object itself is a capable of display.

add(c:Component) adds the component c to the VisibleContainer.

components are the components inside the VisibleContainer.

Button : Component

This is the parent class of button classes including TextButton and IconButton. A

button produces an Event of code 0 when the button is depressed, and code 1 when it is

released. By default, when a button holds the keyboard focus a dashed line appears just

within the button. When return is pressed an event of code 2 is generated. The method

Dialog.set_initial_focus() can be used to give the button the keyboard focus when the dialog

is �rst displayed.

set_no_keyboard() disables the keyboard control over the button described above. No

dashed line will ever appear in the button display and return will have no e�ect on the

button even if it has the focus.

TextButton : Button

A button with a text label. The size of the button can either be set using set_size() or

be left to default to a size based on the given label.

set_internal_alignment(x) sets the alignment of the label within the button. The parameter

500 APPENDIX C. THE UNICON COMPONENT LIBRARY

should be either "l", "c" or "r" to set the alignment to left, center or right respectively. If

this method is not invoked, then the alignment is centered.

set_label(x) sets the label in the button to the given string. Examples:

b := TextButton()
b.set_label("Cancel")
b.set_pos("50%", "80%")
b.set_align("c", "c")
add(b)

IconButton : Button
This is a button with an Icon image within it. There is a useful program in the Icon

program library called xpmtoims, which will take an xpm �le and output the equivalent

Icon image string, which can then be inserted into a program. See also the X Window

programs sxpm and pixmap for viewing and editing xpm �les respectively.

A border may be requested with set_draw_border(). Unless explicitly speci�ed, the size

will default to the image's size, plus a standard surrounding area if a border is requested.

set_img(s:string) sets the image to s, which should be in Icon image format. Examples:

Create a button with a diamond image and a border
b := IconButton()
b.set_draw_border()
b.set_img("11,c1,_

˜˜˜˜˜0˜˜˜˜˜_
˜˜˜˜000˜˜˜˜_
˜˜0000000˜˜_
˜000000000˜_
˜˜0000000˜˜_
˜˜˜˜000˜˜˜˜_
˜˜˜˜˜0˜˜˜˜˜_
")

ButtonGroup
This class groups several Buttons together. Then, when the mouse is clicked down on

one of the Buttons and then dragged onto another before being released, the other Button

will go "down". This is the common behavior for buttons in a bar along the top of an

application.

Note: a Button must be added to both the ButtonGroup and the Dialog too. Examples:

bg := ButtonGroup()
b := TextButton()
b.set_label("Okay")
add(b)
bg.add(b)

C.1. GUI CLASSES 501

add(c:Button) adds the given Button to the ButtonGroup.

Label : Component
This simply creates a text label in the dialog window. Calling set_draw_border() adds a

border around the label. The size will default if not set.

set_label(s:string) sets the label to the given string.

set_internal_alignment(x) sets the horizontal alignment of the label within the area of the

component; should be "l", "c" or "r". Default is "l". If the horizontal size is left to default,

then setting this �eld should make no di�erence, because the size of the component will be

set so that the string just �ts into it.

Icon : Component
This displays an icon, supplied in Icon image format. A border may be requested with

set_draw_border(). The size defaults to the image's size, plus a standard surrounding area if

a border is requested. set_img(s:string) sets the image to be displayed.

Image : Component
This class loads an image from a �le and displays it. The image should be in GIF

format. A border may be included with set_draw_border(). The size of the area into which

the image is drawn must be set with set_size().

set_filename(s:string) sets the name of the �le from which to load the image; redisplay

the image from the new �le if appropriate.

set_scale_up() scales the image up to �t in the space speci�ed by set_size(). The image

is not distorted, but will be expanded to �ll one of the dimensions depending on its shape.

If the image is bigger than the speci�ed size then it will be scaled down.

set_internal_alignment(x:"c", y:"c") sets the horizontal and vertical alignment of the image

within the component; x should be "l", "c" or "r", y should be "t", "c" or "b".

Border : VisibleContainer
This class provides decorative borders. The add(c) method may optionally be used to

set one other component to be the title of the Border. This would normally be a Label

object, but it could also be a CheckBox, Icon, or whatever is desired.

set_internal_alignment(x) sets the alignment of the title to "l", "c" or "r".

b := Border()
#
Add a Label as the title
#
l := Label()
l.set_label("Title String")
b.add(l)
add(b)

ScrollBar : Component
This class provides horizontal and vertical scroll bars. The �rst way to use a scroll

bar is to set a total_size (represented by the whole bar), a page_size (represented by the

502 APPENDIX C. THE UNICON COMPONENT LIBRARY

draggable button) and an increment_size (being the amount added/subtracted when the

top/bottom button is pressed). The value then ranges from zero to (total_size - page_size)

inclusive. An initial value must be set with the set_value() method. For example:

vb := ScrollBar()
vb.set_pos("85%", "25%")
vb.set_size(20, "40%")
vb.set_total_size(130)
vb.set_page_size(30)
vb.set_increment_size(1)
vb.set_value(0)
add(vb)

Alternatively, a scroll bar can be used as a slider over a given range of values. In this

case, the range is set with set_range(). It is still necessary to set the increment_size and

the initial_value, but page_size and total_size should not be set. Real numbers as opposed to

integers can be used for the range settings if desired. For example:

vb := ScrollBar()
vb.set_pos("85%", "25%")
vb.set_size(20, "40%")
vb.set_range(2, 25)
vb.set_value(10)
vb.set_increment_size(1)
add(vb)

An Event is returned whenever the buttons are pressed or the bar dragged; the value

can be retrieved by get_value(). The event code (obtainable by get_code()) is 1 if the bar

has been dragged, and 0 if either button has been pressed or the bar released after being

dragged. This fact can be used to reduce the number of events which are processed by the

user's program - just ignore events with code 1.

set_is_horizontal() makes the scroll bar horizontal (default is vertical).

set_range(x, y) sets the scroll bar range (integer or real) from x to y inclusive.

set_total_size(x) sets the total size which the scroll bar area represents.

get_total_size() returns the total size.

set_page_size(x) sets the size that the bar in the scroll bar area represents.

get_page_size() gets the page size.

set_value(x) sets the value representing the top of the bar in the scroll bar. The value is

forced into range if it is not in range already.

get_value() gets the value.

set_increment_size(x) sets the amount by which to increase when a button is pressed.

TextField : Component

C.1. GUI CLASSES 503

TextField is a class for a single input line of text. The text can scroll within the area

speci�ed. By default, a border surrounds the text area; this can be turned of by using

clear_draw_border(). The horizontal size must be set by the set_size() method: there is

no default (the vertical size will default, however). An event is generated when return is

pressed (with code 0), and whenever the contents are changed (with code 1).

get_contents() returns the present contents of the text �eld. set_contents(x) sets the con-

tents of the �eld. If not invoked then the initial content is the empty string. Examples:

t := TextField()
t.set_pos(50, 250)
Vertical size will default
t.set_size(100)
t.set_contents("Initial string")
add(t)

set_displaychar() controls whether the characters that are typed into the text �eld are

displayed or not. set_displaychar("*") will display a �*� character for each character typed

(useful for hiding passwords). The default is set_displaychar(&null) which displays the typed

characters normally.

CheckBox : Component
This class creates a small button with a label which is either in an on or o� state. The

button is an Icon image, which may be speci�ed by the user if desired. The images and

size default to appropriate values if not speci�ed.

set_imgs(x, y) sets the up/down images for the button. The images should be in Icon

image format. The two images must have the same dimensions.

is_checked() succeeds if the button is down (checked); fail otherwise.

toggle_is_checked() toggles the initial status of the button.

set_is_checked() sets the status of the button to checked.

clear_is_checked() sets the status of the button to not checked.

set_label(x) sets the label of the component to the given string.

get_status() returns 1 if the CheckBox is checked, &null otherwise. Examples:

c := CheckBox()
c.set_pos(200, 100)
c.set_label("Checkbox")
add(c)

CheckBoxGroup
This class contains CheckBox objects that act together as "radio buttons". The image

style of CheckBoxes in a CheckBoxGroup draws diamonds rather than boxes. The status

of a CheckBoxGroup should be set with the set_which_one() method, not by turning the

individual CheckBoxes on/o� with their own methods - that would confuse the program.

Note: a CheckBox must be added to both the CheckBoxGroup and the dialog box.

504 APPENDIX C. THE UNICON COMPONENT LIBRARY

set_by_flag(i) sets the CheckBox which is down according to the integer i. If i = 1 then

the �rst CheckBox is down, if i = 2 the second is down, etc for i = 4, 8, 16.

get_by_flag() returns an integer in the range 1, 2, 4, 8 ... depending upon whether the

�rst, second, third etc CheckBox is down.

add(c:CheckBox) adds c to the CheckBoxGroup.

get_which_one() returns the CheckBox which is currently down.

set_which_one(x:CheckBox) sets which CheckBox is down to x. Examples:

#
Create a CheckBoxGroup of 3 CheckBoxes
#
c := CheckBoxGroup()
c1 := CheckBox()
c1.set_pos(200, 50)
c1.set_label("Checkbox 1")
add(c1)
c.add(c1)

c2 := CheckBox()
c2.set_pos(200, 90)
c2.toggle_is_shaded()
c2.set_label("Checkbox 2")
add(c2)
c.add(c2)

c3 := CheckBox()
c3.set_pos(200, 130)
c3.set_label("Checkbox 3")
add(c3)
c.add(c3)
#
Initially, set the first one "on"
#
c.set_which_one(c1)

TextList : Component

This class displays a list of strings. See the class EditableTextList if you require a

multiline text input region. Horizontal and vertical scroll bars are displayed if necessary.

Optionally the user can be allowed to select either one line only, or several lines. In

either case, an event is generated when a line is selected.

get_contents() : list returns the current contents as a list of strings.

set_contents(x:list, line, left_pos, preserve_selections) sets the contents to x and sets the

position to line and left_pos. If these parameters are omitted then the default is to start

C.1. GUI CLASSES 505

at line 1, with left o�set zero if the window is not already open, or to retain the existing

position if it is. If the last parameter is non-null then the current selections are retained;

otherwise they are reset. This method has no e�ect if the component is in editable mode

and the window is already open.

tl := TextList()
tl.set_contents(data)
...
Amend data and go to end of data
put(data, "New line")
tl.set_contents(data, *data, 0)

The method set_select_one() speci�es that only one line of the list may be highlighted,

while method set_select_many() speci�es that several lines of the list may be highlighted. Of

no e�ect if in editable mode.

get_selections() : list returns a list of the numbers of the lines that are highlighted.

set_selections(L) sets the highlighted selections to a given list of line numbers.

tl := TextList()
tl.set_pos("50%", "50%")
tl.set_size("70%", "50%")
tl.set_align("c", "c")
tl.set_contents(data) # data is a list of strings
add(tl)

DropDown
This class is a superclass of List and EditList below.

set_selection_list(x) sets the list of selections to the list x.

get_selection():integer returns the index of the item in the list presently selected.

List : Component : DropDown
This component is for selecting one string from a list. When a button is pressed a list

appears (possibly with a scroll bar) from which one item can be selected. An Event is

generated whenever an item is selected. A width must be speci�ed for this component.

set_selection(x) sets the selected item to element x.

set_constant_label(x) supplies a string that will always appear in the text part of the

component, rather than the currently selected item.

The methods for handling the list of selections are mostly inherited from DropDown.

L := List()
L.set_selection_list(["Red","Green","Yellow","Blue","Orange"])
L.set_size(120)
L.set_pos(100, 100)
L.set_selection(2) # Green will be the first selection
add(L)

506 APPENDIX C. THE UNICON COMPONENT LIBRARY

EditList : Component : DropDown

An EditList works like a List, but the user may edit the item that is selected. An extra

method is therefore supplied to get the content, as it may not correspond to an element of

the list. An Event is generated with code 0 if an element of the list is selected, with code

1 if return is pressed, and with code 2 if the user edits the selected item.

get_contents() returns the contents of the selected item (which may have been edited).

set_contents(x) sets the initial contents of the text to the given string.

MenuBar : Component

This class is the base from which menu systems are created. Menu items are added to

this class; they are not separate components added to the dialog itself. The default position

is (0, 0); the default size is 100% of the width of the screen and a reasonable height based

on the font speci�ed. add(c:Menu) adds c to the MenuBar. This will be one drop down

menu. Items are then added to the Menu.

MenuButton : Component

This is similar to MenuBar, but holds just a single drop-down menu, rather than several.

set_menu(x:Menu) sets the menu to be displayed when the component is clicked.

MenuComponent

This is the superclass of all the objects that make up the menu system (other than

MenuBar of course). For components that appear in a menu with a label, an optional

left/right string/image can be set.

set_label_left(x) sets the optional left label to the given string.

set_label_right(x) sets the optional right label to the given string.

set_img_left(x) sets the optional left image to the given Icon image.

set_img_right(x) sets the optional right image to the given Icon image.

toggle_is_shaded() toggles whether or not the item is shaded. If it is, it is

displayed in a �ltered way and will not accept input.

set_is_shaded() sets the shaded status of the component to shaded.

clear_is_shaded() sets the shaded status of the component to not shaded.

set_label(x) sets the center label to the given string.

SubMenu : MenuComponent

This class encapsulates a Menu object that when selected will display something outside

the menu itself (for example a sub-menu of other menu items). It is intended to be extended

by custom menu components, and should not be instantiated. Methods are empty.

hide_non_menu() and set_which_open(x) are called by Menu for any SubMenu object, but

would not normally need to be over-ridden by a custom class.

resize() may be overridden to initialize the width and height of the object.

display() must be over-ridden; it displays the object.

handle_event(e) handles the Icon event e and must be over-ridden.

hide() hides (closes) the object's display and must be over-ridden.

Menu : SubMenu

C.1. GUI CLASSES 507

This class encapsulates a drop down menu, or a sub-menu. The left, center and right

labels/images of the elements within it are formatted within the menu automatically.

add(c:Component) adds the given component to the Menu.

TextMenuItem : MenuComponent

This class encapsulates a single text item in a Menu. It has no additional methods that

the user need call other than are contained in its parent class, MenuComponent.

CheckBoxMenuItem : MenuComponent

This class encapsulates a check box in a menu. Several CheckBoxMenuItems may be

added to a CheckBoxGroup structure to give "radio buttons" within menus.

set_imgs(x, y) sets the up and down images to x and y respectively. The default is boxes,

unless the component is in a CheckBoxGroup in which case the default is diamonds.

is_checked() succeeds if the component is checked; fail otherwise.

set_is_checked() sets the status of the button to checked.

clear_is_checked() sets the status of the button to not checked.

MenuSeparator : MenuComponent

This is a horizontal bar in a Menu, for decorative purposes. It has no user methods.

TableColumn : TextButton

This class provides one column within a Table class, which displays a table of data. A

column has a label with a button that produces an event when clicked. The column may be

expanded or contracted by dragging the right edge of the button. Calling the set_label(x)

method of the superclass, TextButton, sets the label.

set_column_width(x) sets the initial width of the column in pixels; this is required.

c1 := TableColumn()
c1.set_internal_alignment("r") # Label is right aligned
c1.set_column_width(80)
c1.set_label("Number")

Table : Component

This class displays a table, the columns of which are set up using TableColumns.

set_button_bar_height(x) sets the height of the buttons at the top in pixels.

set_contents(x) sets the contents of the table. The parameter should be a two

dimensional list. Each element of the list should correspond to one row of the table.

set_contents(x, line:1, left_pos, preserve_selections) sets the contents to x and sets the posi-

tion to line and left_pos. The default left_pos o�set is the existing position if the window is

already open, or zero otherwise. The last parameter is a �ag that directs whether to retain

the current selections.

add(c:TableColumn) adds the given TableColumn to the Table.

set_select_one() speci�es that only one row of the table may be highlighted.

set_select_many() allows several rows of the table to be highlighted.

get_selections() returns a list of the numbers of the rows which are highlighted.

508 APPENDIX C. THE UNICON COMPONENT LIBRARY

set_selections(L) sets the line numbers that are selected to the list of line numbers L.

TabItem : Container
This class represents a single pane in a TabSet. Components are added to the TabItem

using Container's add() method. They are then displayed and accept input when that

TabItem is selected. Components added to the TabItem are positioned relative to the

position and size of the parent TabSet. Therefore for example set_pos("50%", "50%")

refers to the center of the TabSet rather than the center of the screen. The components

also inherit any window attributes of the TabSet, such as font, color and so on.

set_label(x) sets the TabItem's label.

TabSet : VisibleContainer
This class holds the several TabItems.

set_which_one(x) sets the displayed TabItem; default is the �rst one.

add(c:TabItem) adds the given TabItem to the TabSet.

Panel : VisibleContainer
This class simply contains other components. The components inside have their sizes

and positions computed relative to the Panel and also inherit the Panel's windowing at-

tributes. Components are added using the add() method of VisibleContainer.

OverlayItem : Container
This class is one "pane" in an OverlaySet, which is rather like a TabSet except that

there are no tabs, and control over which pane is displayed is entirely the a�air of the

program. The components inside have their sizes and positions computed relative to the

parent OverlaySet and also inherit the OverlaySet's windowing attributes. Components

are added using the add() method of Container.

OverlaySet : VisibleContainer
An OverlaySet is a set of OverlayItems.

set_which_one(x) sets the currently displayed OverlayItem; default is the �rst.

add(c:OverlayItem) adds the given OverlayItem to the OverlaySet.

Appendix D

Di�erences between Icon and Unicon

This appendix summarizes the known di�erences between Arizona Icon and Unicon. Since

the language has myriad additions covered by the whole book, the emphasis of this page is

on incompatibilities that might require changes to existing Icon programs.

D.1 Extensions to Functions and Operators

Unicon broadens the meaning of certain pre-existing functions where it is consistent and

unambiguous to do so. These extensions revolve primarily around the list type. For ex-

ample, insert() allows insertion into the middle of a list, reverse() reverses a list, and so

forth.

D.2 Objects

Unicon supports the concepts of classes and packages with declaration syntax. This a�ects

scope and visibility of variable names at compile time. At runtime, objects behave similar

to records in most respects. These additions include reserved words that are no longer valid

variable names, such as class, package, and import.

D.3 System Interface

Unicon's system interface presumes the availability of hierarchical directory structure, com-

munication between programs using standard Internet protocols, and other widely available

facilities not present in Arizona Icon.

Unicon's graphics include extensive 3D facilities. The 2D facilities are extended with

additional image �le formats.

509

510 APPENDIX D. DIFFERENCES BETWEEN ICON AND UNICON

D.4 Database Facilities

Unicon supports GDBM and SQL databases with built-in functions and operators or the

experimental SQLite plugin. The programmer manipulates data in terms of persistent table

and record abstractions. SQL database support may not be present on platforms that do

not provide ODBC open database connectivity drivers or the SQLite plugin.

D.5 Multiple Programs and Execution Monitoring Sup-

port

Unicon virtual machine interpreters by default support the loading of multiple programs so

that various debugging and pro�ling tools can be applied to them without recompilation.

The execution monitoring facilities are described in "Program Monitoring and Visualiza-

tion: An Exploratory Approach", by Clinton Je�ery. Unicon optimizing compilers may

omit or substitute for these facilities.

Appendix E

Portability Considerations

Unicon's POSIX-based system interface facilities presented in Chapter 5 are portable. You

can expect the portable system interface to be available on any implementation of Unicon.

This appendix presents additional, non-portable elements of the Unicon POSIX interface,

as well as some notes on functionality speci�c to Microsoft Windows.

E.1 POSIX extensions

The extensions presented in this section may or may not be part of the POSIX standard,

but they are a part of the Unicon language as implemented on major POSIX-compliant

UNIX platforms such as Solaris and Linux. Ports of Unicon to non-POSIX or quasi-POSIX

platforms may or may not implement any of these facilities.

Information from system �les

There are four functions that read information from the system: getpw() to read the pass-

word �le, getgr() for the group �le, gethost() for hostnames, and getserv() for network services.

Called with an argument (usually a string), they perform a lookup in the system �le; called

with no arguments, these functions step through the �les one entry at a time.

The functions setpwent(), setgrent(), sethostent(), and setservent() do the same things as

their POSIX C language counterparts; they reset the �le position used by the get* routines

to the beginning of the �le. These functions return records whose members are similar to

the C structures returned by the system functions getpwuid(2), gethostbyname(2), etc.

fork and exec

POSIX-compliant systems support a process-launch interface using the functions fork() and

exec(). fork() makes a copy of the current process. After the fork there are two identical

processes that share resources such as open �les, and di�er only in one respect: the return

511

512 APPENDIX E. PORTABILITY CONSIDERATIONS

value they received from the call to fork(). One process gets a zero and is called the child;

the other gets the process id of the child and is called the parent.

Usually fork() is used to run another program. In that case, the child process uses the

system call exec() which replaces the code of the process with the code of a new program.

This fork()/exec() pair is comparable to calling system() and using the option to not wait for

the command to complete.

The �rst argument to exec() is the �lename of the program to execute, and the remaining

arguments are the values of argv that the program will get, starting with argv[0].

exec("/bin/echo", "echo", "Hello,", "world!")

POSIX functions

These functions are present in all Unicon binaries, but you can expect them to fail on

most non-UNIX platforms. Check the readme.txt �le that comes with your installation to

ascertain whether it supports any of these functions.

chown(chown(f, u:-1, g:-1) : ? change owner

chown(f, u, g) sets the owner of a �le (or string �lename) f to owner u and group g. The user

and group arguments can be numeric ID's or names.

chroot(string) : ? change �lesystem root

chroot(f) changes the root directory of the �lesystem to f.

crypt(string, string) : string encrypt password

crypt(s1, s2) encrypts the password s1 with the salt s2. The �rst two characters of the

returned string will be the salt.

exec(string, string, ...) : null execute program

exec(s, arg0, arg1, arg2, ...) replaces the currently executing Icon program with a new program

named in s. The other arguments are passed to the program. Consult the POSIX exec(2)

manual pages for more details. s must be a path to a binary executable program, not to

a shell script (or, on UNIX) an Icon program. If you want to run such a script, the �rst

argument to exec() should be the binary that can execute them, such as /bin/sh.

fcntl(�le, string, options) �le control

fcntl(file, cmd, arg) performs miscellaneous operations on the open �le. See the fcntl(2) manual

page for more details. Directories and DBM �les cannot be arguments to fcntl(). The

following characters are the possible values for cmd:

f Get �ags (F_SETFL)

F Set �ags (F_GETFL)

x Get close-on-exec �ags (F_GETFD)

X Set close-on-exec �ag (F_SETFD)

E.1. POSIX EXTENSIONS 513

l Get �le lock (F_GETLK)

L Set �le lock (F_SETLK)

W Set �le lock and wait (F_SETLKW)

o Get �le owner or process group (F_GETOWN)

O Set �le owner or process group (F_SETOWN)

In the case of L, the arg value should be a string that describes the lock, otherwise arg

is an integer. A record posix_lock(value, pid) will be returned by F_GETLK.

The lock string consists of three parts separated by commas: the type of lock (r, w or

u), the starting position, and the length. The starting position can be an o�set from the

beginning of the �le (e.g. 23), end of the �le (e.g. -50), or from the current position in

the �le (e.g. +200). A length of 0 means lock till EOF. These characters represent the �le

�ags set by F_SETFL and accessed by F_GETFL:

d FNDELAY

s FASYNC

a FAPPEND

fdup(�le, �le) : ? duplicate �le descriptor

fdup(src, dest) is based on the POSIX dup2(2) system call. It is used to modify a speci�c

UNIX �le descriptor, such as just before calling exec(). The dest �le is closed; src is made

to have its Unix �le descriptor; and the second �le is replaced by the �rst.

�lepair() : list create connected �les

filepair() creates a bi-directional pair of �les analogous to the POSIX socketpair(2) function.

It returns a list of two indistinguishable �les; writes on one will be available on the other.

The connection is bi-directional, unlike that of function pipe(). Caution: typically, the pair

is created just before a fork(); after it, one process should close L[1] and the other should

close L[2] or you will not get proper end-of-�le noti�cation.

fork() : integer fork process

fork() creates a new process that is identical to the current process except in the return

value. The parent gets a return value that is the PID of the child, and the child gets 0.

getegid() : string get e�ective group identity

getegid() produces the e�ective group identity (gid) of the current process. The name is

returned if it is available, otherwise the numeric code is returned.

geteuid() : string get e�ective user identity

geteuid() produces the e�ective user identity (uid) of the current process. The name is

returned if it is available, otherwise the numeric code is returned.

getgid() : string get group identity

getgid() produces the real group identity (gid) of the current process. The name is returned

if it is available, otherwise the numeric code is returned.

514 APPENDIX E. PORTABILITY CONSIDERATIONS

getgr(g) : record get group information

getgr(g) returns a record that contains group �le information for group g, a string group

name or an integer group code. If g is null, each successive call to getgr() returns the next

entry. setgrent() resets the sequence to the beginning. Return type:

record posix_group(name, passwd, gid, members)

gethost(x) : record|string get host information

gethost(n) for network connection n returns a string containing the IP number and port this

machine is using for a network connection. gethost(s) returns a record that contains host

information for the machine named s. If s is null, each successive call to gethost() returns the

next entry. sethostent() resets the sequence to the beginning. The aliases and addresses are

comma separated lists of aliases and addresses (in a.b.c.d format) respectively. Its return

type is record posix_hostent(name, aliases, addresses)

getpgrp() : integer get process group

getpgrp() returns the process group of the current process.

getpid() : integer get process identi�cation

getpid() produces the process identi�cation (pid) of the current process.

getppid() : integer? get parent process identi�cation

getppid() produces the pid of the parent process.

getpw(u) : posix_password get password information

getpw(u) returns a record that contains password �le information. u can be a numeric uid or

a user name. If u is null, each successive call to getpw() returns the next entry and setpwent()

resets the sequence to the beginning. Return type:

record posix_password(name, passwd, uid, gid, age, comment, gecos, dir, shell)

getserv(string, string) : posix_servent get service information

getserv(s, proto) returns a record that contains service information for the service s using

protocol proto. If s is null, each successive call to getserv() returns the next entry. setservent()

resets the sequence to the beginning. If proto is defaulted, it will return the �rst matching

entry. Its return type is record posix_servent(name, aliases, port, proto)

getuid() : string get user identity

getuid() produces the real user identity (uid) of the current process.

kill(integer, x) : ? kill process

kill(pid, signal) sends a signal to the process speci�ed by pid. The second parameter can be

the string name or the integer code of the signal to be sent.

hardlink(string, string) : ? link �les

E.1. POSIX EXTENSIONS 515

hardlink(src,dest) creates a link named dest that points to src.

readlink(string) : string? read symbolic link

readlink(s) produces the �lename referred to in a symbolic link at path s.

setgid(integer) : ? set group identi�cation

setgid(g) sets the group id of the current process to g. See the UNIX setgid(2) man page.

setgrent() : null reset group information cursor

setgrent() resets and rewinds the pointer to the group �le used by getgr() when getgr() is

called with no arguments.

sethostent(integer:1) : null reset host information cursor

sethostent(stayopen) resets and rewinds the pointer to the host �le used by gethost(). The

argument de�nes whether the �le should be kept open between calls to gethost(); a nonzero

value (the default) keeps it open.

setpgrp() : ? set process group

setpgrp() sets the process group. This is equivalent to setpgrp(0, 0) on BSD systems.

setpwent() : null reset password information cursor

setpwent() resets and rewinds the pointer to the password �le used by getpw() when getpw()

is called with no arguments.

setservent(integer:1) : null reset service information cursor

setservent(stayopen) resets and rewinds the pointer to the services �le used by getserv(). The

argument de�nes whether the �le should be kept open between calls to getserv(); a nonzero

value (the default) keeps it open.

setuid(integer) : ? set user identity

setuid(u) sets the user id of the current process to u. See the setuid(2) man page.

symlink(string, string) : ? symbolic �le link

symlink(src, dest) makes a symbolic link dest that points to src.

sys_errstr(i) : string system error string

sys_errstr(i) produces the error string corresponding to i, a value obtained from &errno.

umask(integer) : integer �le permission mask

umask(u) sets the umask of the process to u, an nine-bit encoding of the read, write, and

execute permissions of user, group, and world access. See also chmod(). Each bit in the

umask turns o� that access, by default, for newly created �les. The old value of the umask

is returned.

wait(integer:-1, integer:0) : string wait for process

516 APPENDIX E. PORTABILITY CONSIDERATIONS

wait(pid, options) waits for a process given by pid to terminate or stop. The default pid value

causes the program to wait for all the current process' children. The options parameter is

an OR of the values 1 (return if no child has exited) and 2 (return for children that are

stopped, not just for those that exit). The returned string represents the pid and the exit

status as de�ned in this table:

UNIX equivalent example of returned string

WIFSTOPPED(status) "1234 stopped:SIGTSTP"

WIFSIGNALLED(status) "1234 terminated:SIGHUP"

WIFEXITED(status) "1234 exit:1"

WIFCORE(status) "1234 terminated:SIGSEGV:core"

Currently the rusage facility is unimplemented.

E.2 Microsoft Windows

Windows versions of Unicon support certain non-portable extensions to the system inter-

faces. Consult Unicon Technical Report 7 for details.

Partial support for POSIX

Windows supports getpid(), but omits other process-related functions such as getppid(). On

Windows exec() and system() may only launch Windows 32-bit .EXE binaries.

Windows Unicon supports the following signals in functions such as kill(): SIGABRT,

SIGBREAK, SIGFPE, SIGILL, SIGINT, SIGSEGV, and SIGTERM.

Windows Unicon supports the umask() function, but ignores execute permission and

treats user/group/world identically, using the most permissive access speci�ed.

Native user interface components

Windows Unicon supports limited access to platform-native user interface components and

multimedia controls.

WinButton(w,s,x,y,wd,ht) installs a pushbutton with label s on window w.

WinColorDialog(w, s) allows the user to choose a color for a window's context.

WinEditRegion(w, s, s2, x, y, wd, ht) installs an edit box with label s.

WinFontDialog(w, s) allows the user to choose a font for a window's context.

WinMenuBar(w, L1, L2,...) installs a set of top-level menus.

WinOpenDialog(w, s1, s2, i, s3, j, s4) allows the user to choose a �le to open.

WinPlayMedia(w, x[]) plays a multimedia resource.

WinSaveDialog(w, s1, s2, i, s3, j, s4) allows the user to choose a �le to save.

WinScrollBar(w, s, i1, i2, i3, x, y, wd, ht) installs a scrollbar.

E.2. MICROSOFT WINDOWS 517

WinSelectDialog(w, s1, buttons) allows the user to select from a set of choices.

518 APPENDIX E. PORTABILITY CONSIDERATIONS

Appendix F

Installation

The Downloads page of the Unicon web site (http://unicon.org) has links to the binary

distributions of Unicon and to the source code. Unicon may be installed from a binary

distribution for Intel based Windows and MacOS platforms. Users on other platforms will

usually have to download the source code and build it themselves. This will generally

require a supported C99 compiler and environment, such as a make program compatible

with GNU make.

Unicon's source code can be downloaded as a compressed archive �le with the extension

.zip, or from a revision control system. The revision control system sources are much more

up to date. There is a copy of the source code at (https://sourceforge.net/projects/unicon)

but Unicon development takes place on GitHub (https://github.com/uniconproject/unicon):

commits to the main branch are re�ected to SourceForge after a small delay.

Unicon is customized using the con�gure script in the top level directory � the options for

customization are displayed by the configure –help command � followed by a make command

to build the software. The top level README �le has more detailed instructions for the

most popular platforms.

519

520 APPENDIX F. INSTALLATION

Appendix G

Experimental Features

The designers of Unicon have taken a very conservative approach when adding to the

language and when changing existing features. With the small number of exceptions that

have been previously noted on page 509, an Icon program that runs on the �nal version

of Icon (version 9.5, �rst released in 1996) will run on the current Unicon system and

give the same results a quarter of a century later. The conservative approach is continued

when dealing with additions to Unicon; breaking existing Unicon programs by making an

incompatible change to the language is, in most circumstances, considered to be a very bad

thing to do.

Most of the development of Unicon starting from its progenitor has already been dis-

cussed but there are some more experimental features that are waiting in the wings. Some

of them may never see the light of day in their present form � or, perhaps, in any form � so

the most cautious approach is not to rely on any of them until they make their way from

this appendix into the de�nition of the language in Appendix A.

The experimental features are not usually enabled by default in a release build of Unicon

� they can only be accessed by making the appropriate pre-processor de�nitions (or, in

some cases, by specifying additional arguments to configure) and rebuilding the system

from the source code. Some features that are now part of the language � for example,

the array extension to lists that makes them faster in many cases � are still guarded by

pre-processor de�nitions, showing their pedigree as experimental additions, but are now

enabled by default. The plugin mechanism and the installed plugins are an exception to

the general rule: they are enabled by default but should still be considered experimental

and subject to change.

A Unicon Technical Report (UTR) is the preferred vehicle for introducing a change to

Unicon. The UTR, and associated code, may undergo several rounds of revision before

being considered ready for adoption. When it is (ready), the UTR material will usually be

incorporated somewhere into the book. UTRs may be found at http://unicon.org/reports.html.

Note that all of the reports are there, including those that have served their purpose and

are no longer under active development.

521

http://unicon.org/reports.html

522 APPENDIX G. EXPERIMENTAL FEATURES

G.1 User de�ned operators

This feature extends the syntax of classes to allow the built-in operator symbols to be

rede�ned when their operands are objects. It may be enabled by using the --enable-ovld

option to configure before rebuilding the Unicon system.

G.2 Extensions to &random

This feature allows the programmer to choose from a portfolio of di�erent random number

generators (in addition to the one provided by Icon). It is also possible to implement other

generators and use them without rebuilding Unicon. More than one generator may be in

use at the same time. It may be enabled by de�ning the C preprocessor symbol RngLibrary

before rebuilding the Unicon system.

G.3 Plugins

A Unicon plugin is a dynamically loaded library of routines that are encapsulated by a

class, which provides access to the external routines (often written in another language)

plus a simple facility to enumerate the routines that are available. The external routines

may be part of the source code of the plugin or in a separately compiled library that is

acquired and installed from elsewhere. At the minimum, a plugin provides a translation

layer that converts the arguments to the routines from their Unicon representation into

something compatible with the calling conventions of the external implementation language;

but usually the plugin also �adds value� by providing a more Unicon-like way of accessing

the underlying routines.

G.3.1 Bitman

The Bitman plugin provides low level bit manipulation routines that are the equivalent of

the built-in functions (iand, ior, ishift etc.). The salient di�erences � and the reason for

their existence � between the Bitman methods and the built-in functions is that the Bitman

methods never produce a large integer, are con�ned to the natural word length of the

machine (so the results are not portable between 32-bit and 64-bit implementations) and,

except for bit shifting, do not make a special case of the sign bit. Bitman also provides some

bit level enquiry and extraction methods that use a similar addressing convention to string

indexing (indexing bits instead of characters).

The methods provided by the plugin are

G.3. PLUGINS 523

band bitwise AND (iand)
bcom bitwise one's complement (icom)
bit (single) bit extraction

bits enquiry and multi-bit extraction

bor bitwise inclusive OR (ior)
brot bit rotation

bshift bitwise shift (ishift)
bxor bitwise exclusive OR (ixor)
ushift unsigned bitwise shift

test con�dence testing

The actual bit manipulation code (written in C) is part of the source code for the plugin:

no external libraries are required. The Bitman class has no attributes, so the constructor

function has no parameters.

band(i, i) : integer bitwise and

band(i1, i2) produces the bitwise AND of i1 and i2.

bcom(i) : integer bitwise complement

bcom(i) produces the bitwise complement (one's complement) of i.

bit(i, i) : integer ? single bit extraction

bit(i,n) returns the value of the nth bit of i. The indexing works the same way as strings:

bit(i,1) is the least signi�cant bit of i.

bit(i,0) is the most signi�cant bit of i.

If n is negative, indexing is from the most signi�cant end, otherwise it is from the least

signi�cant end.

bits(i, i, i) : integer ? multi-bit extraction

bits(i,n,m) returns the value of the nth to the mth bit of i. The value is shifted down to the

least signi�cant end of the machine word. The bits are not reversed if m < n.

bits() returns the number of bits in a word � usually 32 or 64.

brot(i, i) : integer bitwise rotation

brot(i, j) produces the value obtained by rotating i by j bit positions. If j is positive, the

rotation is to the left; if j is negative, the rotation is to the right.

bor(i, i) : integer bitwise or

bor(i1, i2) produces the bitwise OR of i1 and i2.

bshift(i, i) : integer signed bitwise shift

bshift(i, j) produces the value obtained by shifting i by j bit positions. If j is positive, the

shift is to the left, and vacated bit positions are �lled with zeros. If j is negative, the shift

is to the right with sign extension.

524 APPENDIX G. EXPERIMENTAL FEATURES

ushift(i, i) : integer unsigned bitwise shift

ushift(i, j) produces the value obtained by shifting i by j bit positions. The shift is to the left,

if j is positive, or to the right if j is negative. Vacated bit positions are �lled with zeros.

G.3.2 SecureHash

The SecureHash plugin provides access to an implementation of the RFC6324 secure hash

routines. This is an extract from the description:

This �le implements the Secure Hash Algorithms as de�ned in the U.S. National In-

stitute of Standards and Technology Federal Information Processing Standards Pub-

lication (FIPS PUB) 180-3 published in October 2008 and formerly de�ned in its

predecessors, FIPS PUB 180-1 and FIP PUB 180-2.

A combined document showing all algorithms is available at

http://csrc.nist.gov/publications/�ps/�ps180-3/�ps180-3_�nal.pdf

The �ve hashes are de�ned in these sizes:
SHA-1 20 byte / 160 bit

SHA-224 28 byte / 224 bit

SHA-256 32 byte / 256 bit

SHA-384 48 byte / 384 bit

SHA-512 64 byte / 512 bit

Modi�ed versions of the RFC6324 routines � to make them thread-safe � are included in

the source code of the plugin: no external libraries are required.

Access to the hashing routines is provided at two levels

• The higher (and most convenient) level is provided by the SecureHash class using the

Sha method.

• At the lower level, the individual RFC6324 routines may be accessed directly, without

using the SecureHash class, via the interface procedures provided by the plugin.

Parameters to Sha may be strings, csets, open �les, numbers, records or lists.

String parameters are �fed to the underlying hash routines� (fttuhr);

if the parameter is a cset, each character in the set is fttuhr ;

if the parameter is an open �le, each line of the �le is read and fttuhr ;

if the parameter is a number, it is converted to a string and fttuhr .

Sha applies itself recursively to list or record parameters (depth �rst traversal). So records

and lists may contain strings, csets, open �les, numbers, records or lists. Sha is tolerant of

null parameters and empty strings, csets, �les or lists; they have no e�ect on the �nal hash

value.

Sets and Tables are not allowed as parameters to Sha because their order of enumeration

is not de�ned. Any other type (thread, co-expression, window ...) is also disallowed by

G.3. PLUGINS 525

�at, with one exception: A procedure value1, using special �command procedures�, may be

used to signal that Sha should take some special action as follows:

• The procedure More is allowed as the �nal parameter. Normally the Sha method
returns the secure hash of all its parameters, but if the �nal parameter is the procedure
More, subsequent calls to Sha will continue the hashing operation. Note the style is

Sha(... , More)

rather than

Sha(... , More())

although the latter has been made to work as a �concession to ease of use�.

• The procedures Final1 ... Final7 may be used to signal that the �nal parameter to Sha

is not a whole octet, only the speci�ed number of bits are to be included in the hash.

These procedures are only allowed just before the �nal parameter. Where the �nal

number of bits is calculated, the Final(expr) procedure may be used. 0 <= expr <= 8.

(There is a Final0 procedure, but using it explicitly would be slightly odd, since it

will cause the �nal parameter to be ignored. There is also a Final8 procedure which

causes all of the �nal parameter to be included. These procedures are intended for

use by the Final procedure).

• The Raw procedure switches the default output from a string of hexadecimal charac-

ters to a string of half the length containing the actual bits returned by the RFC6234

result procedure. It may be placed anywhere in the list of parameters.

Note that Sha(number) will return a secure hash of the string representation of the

number, not a hash of the underlying bits. If a hash of the bits is required, the only way

to do it is to convert the number to a string of the correct length (and endianness) without

altering the value of the bits � Unicon strings may contain characters with all values from

0 to 255 � this also applies to the lower level sha_Input procedure

Once Sha has produced a hash value (or failed) it will automatically reset the underlying

hash routines the next time it is called.

The SecureHash class is not thread-safe. Using a shared SecureHash object in di�er-

ent threads without mutual exclusion is unlikely to produce predictable results. Using a

SecureHash object that is private to each thread is safe because the underlying hash routines

are thread-safe.

1 A procedure value is a convenient way to steer the operation of the Sha routine because it cannot be

confused with any data to be added to the hash value.

526 APPENDIX G. EXPERIMENTAL FEATURES

The class is initialized with an optional string parameter that determines the hash

algorithm. Valid strings are "SHA1", "SHA224", "SHA256", "SHA384" or "SHA512". The default

is "SHA512".

The methods of the SecureHash class are:

Reset(s : "SHA512") : ? Reset Secure Hash

Reset(s) re-initializes the secure hash instance. The optional parameter speci�es the algo-

rithm to use and must be one of "SHA1", "SHA224", "SHA256", "SHA384" or "SHA512".

Sha(any?, ...) : string ? Secure Hash

Sha(...) returns the secure hash value of its arguments, which are of the types discussed

above.

The interface procedures of the SecureHash plugin are:

shaFunction(s?) : string ? Set/Get default Hash function

shaFunction(h) sets the default hash algorithm. Valid strings are "SHA1", "SHA224", "SHA256",

"SHA384" or "SHA512". shaFunction() returns the name of the current default algorithm. The

procedure is not thread-safe.

sha_Reset(s) : ctx ? Initialize Secure Hash

sha_Reset(h) initializes and returns an opaque context value that should be fed into the

other interface procedures. h determines the hash algorithm. Valid strings are "SHA1",

"SHA224", "SHA256", "SHA384" or "SHA512".

sha_Input(ctx, s) : ? Hash String

sha_Input(x, s) Adds the secure hash of s to the hash value stored in x.

sha_FinalBits(ctx, c, i) : ? Hash the �nal partial octet

sha_FinalBits(x, c, n) Adds the secure hash of the most signi�cant n bits of c to the hash

value stored in x. 1 <= n <= 7

sha_RawResult(ctx) : string ? Return the raw hash value

sha_RawResult(x) returns the �nal hash value in the exact form returned by the RFC6324

hash routines. The returned string will be a binary string and may contain any character

value from char(0) to char(255).

sha_Result(ctx) : string ? Return the hash value

sha_Result(x) returns the �nal hash value converted to a string of hexadecimal characters.

G.3. PLUGINS 527

G.3.3 SQLite

The SQLite plugin provides access to version 3 of the SQLite database engine. The SQLite

software must be downloaded from https://sqlite.org/download.html (or from a mirror or a dis-

tribution speci�c site) and installed: the plugin does not provide it.

SQLite is a transactional database: all reads and writes take place within a transaction �

either explicitly started by the application, or implicitly by SQLite itself � and a transaction

is atomic; either all of the modi�cations in the transaction succeed or none of them do.

SQLite supports many readers but only one writer at a time. To resolve con�icts between

incompatible access requirements, requests are queued. Sometimes the error SQLITE_BUSY

is returned to signal that the database is in use and to try again later. See https://sqlite.org/

transactional.html and https://sqlite.org/lang_transaction.html for more details.

The plugin gives access at three levels:

1. The highest level is a simple class, built on the routines in level 2, that encapsulates an

SQLite database connection (and, to a large extent, handles SQLITE_BUSY). SQLite is

transactional but SQLite transactions may not be nested. The class provides limited

support for what appears to be nested transactions allowing calls to start and �nish

a transaction to be nested2� which allows routines that use a transaction to be called

from other routines that themselves use a transaction. In reality, there is only ever

one (the outermost) transaction.

There is also a derived class (RO_SQLite)that provides a �read-only� interface, which

allows reading from the database but prohibits its alteration.

2. The next level consists of utility procedures that use the lowest level routines to

return the rows of an SQL query as a Unicon data structure (list, set, table). This

level makes no attempt to deal with SQLITE_BUSY, passing that error back to the

caller to be dealt with there.

3. The lowest level provides access to the SQLite API. There are almost 300 routines in

the API and, at present, this level only provides access to the routines that are used

by the higher levels of the plugin. However, given the examples provided here, it is

comparatively easy to extend this level to provide a routine that is missing.

The thread safety of the SQLite plugin is a complicated question. In summary, the

external SQLite library itself is thread-safe but the plugin is not; however, it can be used

in a thread-safe manner with a little extra e�ort. See below (page 529) for more detail.

The SQLite class

The class is initialized with a string parameter that is the �le name of the database together

with an optional timeout parameter � discussed below on page 530 � the default is 5 seconds.

2 Methods like SQL_As_List use transactions internally to guarantee the consistency of the answer.

https://sqlite.org/download.html
https://sqlite.org/transactional.html
https://sqlite.org/transactional.html
https://sqlite.org/lang_transaction.html

528 APPENDIX G. EXPERIMENTAL FEATURES

A simple example of the use of the SQLite class may be found in the testSQLite.icn �le that

accompanies the source code of the plugin. Using the class methods, the program creates

a simple database of squares, cubes and fourth powers of the numbers from one to ten. It

then checks the values returned by other methods of the class.

The methods of the SQLite class are:

BEGIN() : ? Start a database transaction

BEGIN() declares the start of an SQLite transaction: alterations to the database between

BEGIN() and END() will either all succeed or, none of them will succeed. Calls to BEGIN may

be nested for convenience but note that SQLite does not support nested transactions: from

the point of view of the database software there is only ever one transaction � the nested

transactions are a �ction provided by the SQLite class so that functions which, in isolation,

call for a transaction may be conveniently amalgamated into a single overall transaction.

After a successful call of BEGIN the SQLITE_BUSY status will not be returned by any SQLite

routine up to (but not including) the corresponding call of END.

END() : ? Complete a database transaction

END() declares the end of an SQLite transaction. If the call succeeds, all modi�cations to

the database after the call of the corresponding call to BEGIN will have succeeded.

ROLLBACK() : ? Abandon a database transaction

ROLLBACK() declares the end of an SQLite transaction. If the call succeeds, all modi�cations

to the database after the call of the outermost call to BEGIN will have been undone and

the state of the database will be as it was just before the call to BEGIN.

Close() : Close a database

Close() closes a database connection and recovers resources. If Close is called during a

transaction, the transaction is automatically rolled back. It is important to call Close

before exiting the program: do not rely on the Unicon system to close the connection for

you.

Exec(s, ...) : row|val? Execute SQL

Exec(sql) prepares the SQL query in sql and then uses the SQLite library to execute it. The

query should return, at most, one row of data. If the query asks for more than one value

the values will be returned in a record whose �eld names are the names used in the query.

A query that asks for a single value results in that value being returned directly (rather

than a record with a single �eld). A query that results in no data being returned will either

succeed or fail. Exec(sql, p1, p2 ...) will bind the parameters to the query before execution.

ErrMsg() : string Return the most recent error message

ErrMsg() returns a string (in English) that describes the most recent error detected by the

SQLite database routines.

G.3. PLUGINS 529

isTable(s) : ? Test if a SQL table exists

isTable(t) succeeds if the SQL table t exists in the database.

Rows(s) : integer ? Count rows in a SQL table

Rows(t) returns the number of rows in the SQL table t.

SQL_Row(s, ...) : row * Get data from a query

SQL_Row(sql, ...) prepares the query in sql and then returns the data one row at a time.

The data is in the same form as Exec � a record with named �elds or a single value. Note

that calling SQL_Row fewer times than there are available rows will leak memory until the

database connection is closed.

SQL_As_List(s, ...) : list ? Return query data as a list

SQL_As_List(sql, ...) prepares the query in sql and returns the results in a list. The list

elements will either be records with named �elds or single values (same format as Exec).

SQL_As_Set(s, ...) : set ? Return query data as a set

SQL_As_Set(sql, ...) prepares the query in sql and returns the results in a set. The set

elements will either be records with named �elds or single values (same format as Exec).

Note that queries that return a single value will have duplicates removed but queries that

return a record won't because all records are unique, even if the �elds have identical values.

SQL_As_Table(s, i : 1, ...) : table ? Return query data as a table

SQL_As_Table(sql, n, ...) prepares the query in sql and returns the results in a Unicon table

whose keys are taken from column n of the query data. The table element values will always

be records, even if the data rows have only one value (and will include the indexing column

value). If the indexing column has duplicate values then later rows will overwrite earlier

rows with the same key.

Thread safety of the SQLite class

The main reason that the SQLite class is not thread-safe is down to how it handles transac-

tions. SQLite itself supports multiple simultaneous read transactions coming from separate

database connections, possibly in separate threads or processes, but only one simultaneous

write transaction. Each instance of the SQLite class counts how many BEGIN methods are

active on its connection and only isues a BEGIN IMMEDIATE TRANSACTION statement for the

outermost (�rst) call and only issues a COMMIT statement when the outermost END method

is called. If the instance is shared between threads then it is easy for this count to become

confused, leading to a COMMIT statement being executed at an inappropriate point.

To avoid this, use a separate instance of the class in each thread. Doing so avoids most

(but not all) problems. If concurrent access is made to the database from separate threads

then it is possible that the SQLITE_BUSY error is returned. The BEGIN and END methods

handle this by delaying for a short time and retrying but they will fail if the total time taken

530 APPENDIX G. EXPERIMENTAL FEATURES

is more than the wait time speci�ed in the initialization of the class. Hence a program that

uses concurrent access and has transactions that might take a long time must be prepared

to deal with the failure.

An alternative design which avoids these problems is to use a single database access

thread to serialize all SQL queries and to use Unicon's message passing facilities to send

queries and receive answers. If there is a mixture of read and write requests the reduction

in parallelism (compared with one class instance per thread) is not as drastic as it appears

because the reduction in parallel queries has already occurred due to the way the SQLite

class uses transactions � each method uses BEGIN and END internally to make sure that

methods like SQL_As_List return a consistent set of data and don't fail in the middle of

constructing the list. However, if most of the queries are read only, this design will reduce

the number of concurrent queries dramatically (to one).

There is, in essence, an unfortunate trade-o� between performance and convenience: for

maximum throughput the only way is to eschew the SQLite class, use the utility procedures

or the low level interface routines explicitly, do as much as possible in parallel and deal

with SQLITE_BUSY wherever it occcurs. In practice, the SQLite class performs tolerably

well and it is only those applications that demand the best performance and the highest

possible level of parallel access to the database that may feel the need to replace it. In those

circumstances, it might also be fruitful to reconsider the use of an interpreted language.

The SQLite utility procedures

There is a deliberate similarity in names between the methods of the SQLite class and the

utility procedures used by them. The functionality is largely the same with the signi�cant

exception that the utility procedures make no attempt to handle SQLITE_BUSY � that error

is passed back to the caller to be dealt with there. In many cases, the class method just

wraps the utility procedure it uses in BEGIN . . .END calls.

The utility procedures of the SQLite plugin are:

SQLi_isTable(s) : ? Test if a SQL table exists

SQLi_isTable(t) succeeds if the SQL table t exists in the database.

SQLi_Rows(s) : integer ? Count rows in a SQL table

SQLi_Rows(t) returns the number of rows in the SQL table t.

SQLi_Exec(s, ...) : row|val? Execute SQL

SQLi_Exec(sql) prepares the SQL query in sql and then uses the SQLite library to execute

it. The query should return, at most, one row of data. If the query asks for more than

one value the values will be returned in a record whose �eld names are the names used in

the query. A query that asks for a single value results in that value being returned directly

(rather than a record with a single �eld). A query that results in no data being returned

G.3. PLUGINS 531

will either succeed or fail. SQLi_Exec(sql, p1, p2 ...) will bind the parameters to the query

before execution.

SQLi_Row(s, ...) : row * Get data from a query

SQLi_Row(sql, ...) prepares the query in sql and then returns the data one row at a time.

The data is in the same form as SQLi_Exec � a record with named �elds or a single value.

Note that calling SQLi_Row fewer times than there are available rows will leak memory until

the database connection is closed.

SQLi_As_List(s, ...) : list ? Return query data as a list

SQLi_As_List(sql, ...) prepares the query in sql and returns the results in a list. The list ele-

ments will either be records with named �elds or single values (same format as SQLi_Exec).

SQLi_As_Set(s, ...) : set ? Return query data as a set

SQLi_As_Set(sql, ...) prepares the query in sql and returns the results in a set. The set ele-

ments will either be records with named �elds or single values (same format as SQLi_Exec).

Note that queries that return a single value will have duplicates removed but queries that

return a record won't because all records are unique, even if the �elds have identical values.

SQLi_As_Table(s, i : 1, ...) : table ? Return query data as a table

SQLi_As_Table(sql, n, ...) prepares the query in sql and returns the results in a Unicon table

whose keys are taken from column n of the query data. The table element values will always

be records, even if the data rows have only one value (and will include the indexing column

value). If the indexing column has duplicate values then later rows will overwrite earlier

rows with the same key.

The SQLite interface routines

The plugin uses a small subset of the three hundred or so routines in the SQLite API.

There is comprehensive documentation on each of the individual routines provided by the

SQLite library at https://www.sqlite.org/docs.html and no attempt is made to reproduce that

material here. Each of the interface procedures provided by the plugin checks that the

supplied parameters are of the correct type, converts them from their Unicon representation

into something that conforms to the C calling convention and passes them down to the

underlying SQLite library routine.

It is anticpated that most users will not call these routines directly; instead, preferring

to use the SQLite class interface or the higher level utility procedures of the plugin.

https://www.sqlite.org/docs.html

532 APPENDIX G. EXPERIMENTAL FEATURES

Interface procedure SQlite routine Notes

SQLi_Init(x?) : sqlite3_config This procedure should be called before any other

interface routine. If the parameter is null, column

numbers will start at one. If non-null they will

start at zero. The higher level routines and the

SQlite class assume that the column numbers start

at one.

SQLi_libversion() : s sqlite3_libversion Returns the version of the SQLite library as a

string.

SQli_libversion_number() : i sqlite3_libversion_number Returns the version of the SQLite library as an

integer.

SQLi_open(s, s?) : ctx? sqlite3_open_V2 Open (or create) the database named by the

�rst parameter. The second parameter is "b" for

read/write access and anything else for read-only

access.

SQLi_close(ctx) : sqlite3_close_V2 Close the database connection. It is important to

call SQLi_close before exiting the program: do not

rely on the Unicon system to close the connection

for you.

SQLi_prepare(ctx, s) :sqst? sqlite3_prepare_V2 Compile (prepare for execution) the SQL state-

ment s.

SQLi_bindArg(sqst, i, x) : ?

sqlite3_bind_null

sqlite3_bind_int64

sqlite3_bind_double

sqlite3_bind_text

Bind a single parameter x to the column speci�ed

by i. x may be null, integer, real or a string.

SQLi_bind(sqst, x, ...) : ?

sqlite3_bind_null

sqlite3_bind_int64

sqlite3_bind_double

sqlite3_bind_text

Bind parameters, starting at the �rst column.

Each parameter may be null, integer, real or a

string.

SQLi_step(sqst, i: 0) : ? sqlite3_step Evaluate (execute) the prepared statement. A

status return of SQLITE_BUSY will cause the pro-

gram to stop unless i is non zero.

continued . . .

G.3. PLUGINS 533

Interface procedure SQlite routine Notes

SQLi_errmsg(ctx) : s sqlite3_errmsg Return the most recent error message.

SQLi_Error(i) : s sqlite3_errstr SQLi_Error(n) returns the error message associated

with the return status n.
SQLi_column_count(sqst) : i sqlite3_column_count Return the number of columns in the result set

returned by the prepared statement.

SQLi_column_type(sqst, i) : i sqlite3_column_type Return the data type code of the speci�ed col-

umn in the result set returned by the prepared

statement.

SQLi_column_name(sqst, i) : s sqlite3_column_name Return the assigned name of the speci�ed col-

umn in the result set returned by the prepared

statement.

SQLi_column_string(sqst, i) : s sqlite3_column_text Return the value of the speci�ed column as a

string.

SQLi_column_integer(sqst, i) : i sqlite3_column_int64 Return the value of the speci�ed column as an

integer.

SQLi_column_real(sqst, i) : r sqlite3_column_double Return the value of the speci�ed column as a real

number.

SQLi_column(sqst, i) : x

sqlite3_column_type

sqlite3_column_int64

sqlite3_column_double

sqlite3_column_text

Return the value of the speci�ed column as spec-

i�ed by its data type code.

SQLi_finalize(sqst) sqlite3_finalize Recover resources from a prepared SQL state-

ment after execution.

Although the SQLite documentation is generally not repeated here, it is worth emphasizing this

extract:

The application must �nalize every prepared statement in order to avoid resource leaks.

It is a grievous error for the application to try to use a prepared statement after it has

been �nalized. Any use of a prepared statement after it has been �nalized can result

in unde�ned and undesirable behavior such as segfaults and heap corruption.

534 APPENDIX G. EXPERIMENTAL FEATURES

Bibliography

[Alg12] Jafar Al Gharaibeh. Programming Language Support for Virtual Environments.

Ph.D. Dissertation, University of Idaho, 2012.

[And83] Gregory Andrews and Fred Schneider. Concepts and Notations for Concurrent

Programming. ACM Computing Surveys. 15:1, March 1983, pp 3-43.

[Berk82] Berk, T., Brownstein, L., and Kaufman, A. A New Color-Naming System for

Graphics Languages. IEEE Computer Graphics & Applications, pp 37-44, May

1982.

[Boehm88] Barry W. Boehm. A Spiral Model of Software Development and Enhancement.

IEEE Computer, vol. 21 no. 5, pp 61-72. 1988.

[But97] David R. Butenhof. Programming with Posix Threads. Addison Wesley, 1997.

[Clark85] D. D. Clark. The Structuring of Systems Using Upcalls. In Proceedings of the

Tenth ACM Symposium on Operating System Principles, pages 171�180, Dec.

1985.

[Elm89] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems.

The Benjamin/Cummings Publishing Company, Redwood City, CA. 1989.

[Eri98] Hans-Erik Eriksson and Magnus Penker. UML Toolkit. Wiley, New York, NY.

1998.

[Fol95] James D. Foley, Andries Van Dam, Steven K. Feiner, and John F. Hughes. Funda-

mentals of Interactive Computer Graphics: Principles and Practice in C. Reading,

MA: Addison-Wesley Publishing Company, 1995.

[Gai39] Helen Fouche Gaines. Cryptanalysis: a Study of Ciphers and Their Solution. Dover

1939.

[Gris86] R. E. Griswold and M. T. Griswold. The Implementation of the Icon Programming

Language. Princeton University Press, Princeton, New Jersey, 1986.

535

536 BIBLIOGRAPHY

[Gris96] Ralph E. Griswold and Madge T. Griswold. The Icon Programming Language, 3rd

ed. Peer-to-Peer Communications, San Jose, CA. 1996.

[GJT98] Ralph E. Griswold, Clinton L. Je�ery, and Gregg M. Townsend. Graphics Pro-

gramming in Icon. Peer-to-Peer Communications, San Jose, CA. 1998.

[GPP71] Griswold, Poage, and Polonsky. The SNOBOL 4 Programming Language, 2nd ed.

Englewood Cli�s, N.J. Prentice-Hall, Inc. 1971.

[Je�99] Clinton L. Je�ery. Program Monitoring and Visualization: An Exploratory Ap-

proach. Springer-Verlag, New York, NY. 1999.

[Lev90] John R. Levine, Tony Mason, and Doug Brown. lex & yacc. O'Reilly and Asso-

ciates, Sebastopol, CA, 1990.

[Ogle90] D. M. Ogle, K. Schwan, and R. Snodgrass. The Dynamic Monitoring of Distributed

and Parallel Systems. Technical Report GIT-ICS-90/23, School of Information and

Computer Science, Georgia Institute of Technology, Dec. 1990.

[Woo99] Woo, Mason; Neider, Jackie; Davis, Tom; Shreiner, Dave. OpenGL Programming

Guide: the O�cial Guide to Learning OpenGL, Third Edition. Addison-Wesley,

1999.

[Shr00] Shreiner, Dave. OpenGL Programming Guide: the O�cial Reference Document

to OpenGL, Third Edition. Addison-Wesley, 2000.

[Pax95] Vern Paxson. Flex: A fast scanner generator, ed. 2.5, www.gnu.org/manual/flex/,

1995.

[Ram94] Norman Ramsey. Literate programming simpli�ed. IEEE Software, 11(5):97-105,

September 1994.

[Town89] R. E. Griswold and G. M. Townsend. The Visualization of Dynamic Memory

Management in the Icon Programming Language. Technical Report 89-30, De-

partment of Computer Science, University of Arizona, Dec. 1989.

[Wall91] Larry Wall and Randall Schwartz. Programming Perl. O'Reilly and Associates,

Sebastopol, CA, 1991.

www.gnu.org/manual/flex/

Index

8-Queens problem, 37

Abort, 411

abs, 385

absolute value, 385

abstract, 376

abstract class, 222

access, 177

functions, 88, 185

structure, 173

variable, 87

access time, set, 402

access, �le, 72

acos, 385

action, statechart, 240

activate co-expression, 383

Active, 403

activity, statechart, 240

actor, 237

addition, 14

address space, 177

aggregation, 215

Alert, 403

Alexander, Bob, 46

aliasing, 369

alternation operator (|), 19, 53, 57, 290, 383,

461

alternation, repeated, 381

analysis

post mortem, 176

runtime, 176

anchored pattern match (=p), 381

AND operator, 58

Any, 411

any, 385

any(), 386

any(c), 46

APL, 3

apply operator, 58

apply(), 432

Arb, 411

Arbno, 411

arc cosine, 385

arc sine, 386

arc tangent, 386

args, 386

args(p), 386

argument, 13

argument culling, 191

arithmetic, 14

arithmetic operator, 382

array, 31, 68

ASCII, 16, 61, 356, 414, 461, 474, 476, 477, 479

ASCII, &ascii, 16, 370

asin, 386

assignment, 15, 39, 369, 382

augmented, 381

reversible, 382

substring, 385

association, 195, 215, 237

associative memory, 30

atan, 386

atanh, 386

atomic types, 13

attribute

class, 193

GUI widget, 310

augmented assignment, 15

automatic instrumentation, 172

automatic storage management, 29

backtracking, 37, 41, 46

537

538 INDEX

backups, 270

Bal, 411

bal, 386

bal(), 46, 54

balance string, 386

band, 523

bang

binary, 383

basename, 433

bcom, 523

BEGIN, 528

Bg, 403

binary data, 434, 445

binary operator, 15, 381

binomial coe�cient, 451

bit, 523

bit extraction, 523

bit rotation, 523

Bitman plugin, 522

bits, 523

BitString, 434

bitwise and, 391, 523

bitwise or, 392, 523

Boehm, Barry, 1

bor, 523

Border, 501

bounded expressions, 19, 385

bowdlerize, 451

Break, 411

break expression, 22, 376

Breakx, 411

brot, 523

bshift, 523

built-in functions, 385

Button, 499

button, 308

ButtonGroup, 500

by, to-by step, 376

call depth, 372

call, procedure, 384

callback, 177

Cameron, Mary, 353

Cartesian coordinates, 214

case expression, 21, 376, 468

ceil(r), 453

center, 386

center(), 386

CGI, 245, 435

channel, 386

char, 386

character, 16, 42, 386

character set, 13, 15

event mask, 173

chart parser, 444

chdir, 386

chdir(), 71, 386

check boxes, 315

CheckBox, 503

CheckBoxGroup, 503

CheckBoxMenuItem, 507

chmod, 386

chmod(), 73, 386

chown(), 73

class

abstract, 222

declaration, 195, 376

diagrams, 193

classname, 387

client, 69, 78, 281

client/server, 281

Clip, 403

clock tick, 182

Clone, 403

Close, 528

close, 387

close �le, 387

close(), 70

closure, star(s), 443

co-expression, 59, 387

code reuse, 223

cofail, 387

collaboration diagram, 241

collate, 466

collect, 387

collect garbage, 387

INDEX 539

Color, 403

color, 304

ColorValue, 403

column

ODBC, 388

column number, 370

combinations, string, 466

command-line, 256

comment, 14, 232, 267, 462, 467, 474, 479, 481,

486

communication

tool, 184

comparison operator, 17

string, 42

compile, 7, 27, 230, 413

compile time, 217

compiler, 24, 201, 401, 413

complement, cset, 381

complete(), 437

complex numbers, 437

Component, 496

compound expression, 385

concatenation, 383

concordance, 47

condition, 17

condition variable, 387

conditional assignment, 384

conditional expression, 15

condvar, 387

conjunction &, 58, 383

constructor, 204, 299, 310, 368, 387, 458

class, 196, 215, 224, 378

dynamic record type, 101

record, 33, 201, 458

Container, 499

container, GUI class, 317

context switch

lightweight, 178

context-free grammar, 52

control �ow, 177

control structure, 13, 20, 41, 57, 60, 365, 370,

376

programmer de�ned, 385

conversion

type, see type, conversion

conversion, type, 380

convert

base, 437

degrees to radians, 389

radians to degrees, 398

to cset, 388

to integer, 392

to number, 394

to real, 397

to string, 400

copy, 388

copy(x), 35, 388

CopyArea, 403

cos, 388

cos(), 14

cosine, 388

Couple, 403

create, 59, 377

directory, 394

set, 399

critical section, 377

cross-reference, 480, 482

cset, 13, 15, 367, 388

event mask, 173

cset literal, 16, 43, 367

cset membership, 386

cset, universal &cset, 16, 371

ctime, 388

ctime(i), 388

current co-expression, 371

cursor position assignment, 384

DAG, 468

database, 90, 91, 291, 368, 387, 439, 477, 510

date, 371

date comparison, 438

days of the week, 443

dbcolumns, 388

dbdriver, 388

dbkeys, 388

dblimits, 388

540 INDEX

DBM, 93, 390, 395, 414

dbproduct, 389

dbtables, 389

deepcopy(), 35

default

case branch, 377

scanning parameters, 44

default parameters

string scanning functions, 385

default value

table, 30

default, parameter, 23

de�ne symbols, 413

delay, 389

delay(i), 389

delete, 389

delete element, 389

delete()

DBM database, 93

from POP mail, 83

list, 32

set, 34

table, 31

deque, 31

dereference, 93, 381

design patterns, 223

detab, 389

Dialog, 495

dialog, 307

di�, 439, 476

di�erence (c1 -- c2), 16

di�erence (S1--S2), 34

di�erence (T1--T2), 31

digits, &digits, 16

digits, cset &digits, 371

directories, 69

directory, 71, 256, 386

create, 394

disk usage, 264

display, 70, 389

display(i,f), 389

division, 14, 453

do clause, 17

do, iteration, 377

DrawArc, 404

DrawCircle, 404

DrawCube, 404

DrawCurve, 404

DrawCylinder, 404

DrawDisk, 404

DrawImage, 404

DrawLine, 404

DrawPoint, 405

DrawPolygon, 405

DrawRectangle, 405

DrawSegment, 405

DrawSphere, 405

DrawString, 405

DrawTorus, 405

driver manager

ODBC, 96

DropDown, 505

dtor, 389

dtor(r), 389

dynamic loading, 172, 178

e, 2.71... &e, 14

E_MXevent, 183, 185

E_Opcode, 181

E_Pcall, 173

EBCDIC, 16, 414, 479, 480

EditList, 506

editor, 8, 199, 206, 476, 478, 486, 487, 489

elaboration, 237

elapsed time, 374

else, 377

empty list, 32, 384

encapsulation, 190

encryption, 475

END, 528

end, 377

end-of-�le, 16

entab, 389

environment variable, 391

CGI standard, 247

DateBaseYear, 438

INDEX 541

EDITOR, 489

IPATH, 229, 431

IPL, 481

LPATH, 431, 480

PATH, 444

TERMCAP, 447

TRACE, 374

USER, 288

equal

numeric =, 382

reference ===, 382

string ==, 382

equivalence

set, 464

EraseArea, 405

errno, keyword, 74

error

convert to failure, 371

�oating point, 74

message, &errortext, 371

standard �le &errout, 372

standard, &errout, 70

system, 419

errorclear, 389

errorclear(), 389

errortext, keyword, 71, 73

escape codes, 43

escape sequence, 440

eval(), 440

evdefs.icn, 179

Event, 406

event, 172

arti�cial, 183

categories, 181

code, 172, 173

mask, 173

pseudo, 183

report, 173

source, 179

value, 172, 173

virtual, 183

event code

program execution, 372

event driven, 103

event driven programming, 184

event mask, 173

event stream

dual, 179

event value

program execution, 372

event(), 183

event, statechart, 240

eventmask, 389

eventmask(ce), 390

every, 20, 377

EvGet, 390

EvGet(), 180, 185

EvInit(), 179

evinit, 186

evinit library, 179

EvSend, 390

EvSend(x, y, C), 390

EvTerm(), 179

exclusive or, 392

Exec, 528

execution

control, 176

execution control, 183

execution model

multitasking, 176

execution monitor

Alamo, 174

exit, 390

exit(i), 390

exp, 390

exp(x), 14

exponential, exp(r), 390

exponentiation �, 14

expression, 13

expression failure, 7, 11, 17, 21, 26, 30, 39, 53,

57, 77, 365, 377

&fail, 372

factorial(n), 441

Fail, 411

fail, 28, 54, 377

542 INDEX

co-expression, 60, 387

expression, 18, 71

system call, 73, 415

fallible expression, 18

Farber, Dave, 476

Feature(s), 469

features, 372

Fence, 412

fetch, 390

fetch()

DBM database, 93

SQL, 98

fetch(d, k), 390

Fg, 406

�eld, record or class, 382

�eldnames, 390

�eldnames(r), 390

�le, 69, 368, 445

close, 387

information, 71, 400

lock, 73, 390

modi�ed time, 72

permissions, 386

position, 402

redirection, 75

remove, 398

rename, 398

�le ownership, 72

�le size, 72, 400

�lename completion, 46

FillArc, 406

FillCircle, 406

FillPolygon, 406

FillRectangle, 406

�ltering, 173

�nd, 390

�nd string, 390

�nd(), 19, 44

�ndre(), 442

�nite state machine, 239

�oating point, 14

�ock, 390

�ock(f,s), 390

�oor(r), 453

�ush, 391

�ush(f), 391

Font, 406

for loop, 20

fork(), 511

form feed, 487

fractions, 459

FreeColor, 406

function, 391

execution monitoring, 88

garbage collection, 30, 182, 370, 442

garbage collector, 387

Gaussian distribution, 442

generate elements, 380

generate operator !x, 19, 380

generate sentences, 463

generator, 18, 21, 25, 28, 45, 46, 57, 60, 68, 365,

379, 384, 455, 458, 478, 481

function, 88

generator, random number, 458

genetic algorithms, 293

get, 391

getch, 391

getche, 391

getenv, 391

getpid(), 76

getserv(), 78

gettimeofday, 391

getuid(), 76

global, 228, 369, 377, 391

global variables, 24

globalnames, 391

goal-directed evaluation, 16

golden ratio 1.618..., &phi, 14

golden ratio, &phi, 373

GotoRC, 407

GotoXY, 407

grammar, 52

graph, 36, 205, 444

graphical user interface, 307

grep, 442, 480

INDEX 543

gtime, 391

halt, 400

Hanoi, 26

hashing, 260

heap, 30

EM separate from TP, 177

hexadecimal, 443, 444

host machine name, &host, 372

HTML, 82, 232, 245, 435, 444, 474, 481

HTTP, 82, 246

HTTPS, 83

hyperbolic functions, 451

iand, 391

icom, 391

Icon, 501

Icon Program Library, 431

IconButton, 500

IdentityMatrix, 407

Idol, 190

if, 377

if statement, 17

if-then-else, 15

ifdef symbol, 413

Image, 501

image, 391

image(), 79

image(x), 391

immediate assignment, 384

immutable values, 13

import, 377

include, 413

independence

of EM and TP, 177

index, subscript, 380

in�nite loop, 379

in�nity, 16

inheritance, 191, 203, 223

multiple, 205

semantics, 205

initial, 377

initial clause, 24

initially, 196, 378

input, 69, 445

standard �le &input, 372

input stream

dual, 179

input, standard &input, 70

insert, 392

insert(), 29, 392, 509

DBM database, 93

list, 32

set, 34

table, 31

install, 7

instance, 38, 59, 203, 215, 299, 499

class, 215, 223, 241, 370, 378

record, 33

superclass, 206

instances

class object, 196

instrumentation, 172

integer, 13, 14, 366, 392

integer(x), 14

integrated development environment, 3

interface builder, 353

Internet, 69, 77, 281

intersection (c1**c2), 16

intersection (S1**S2), 34

intersection (T1**T2), 31

inverse hyperbolic tangent, 386

invocable, 378

invocation, 384

object method, 198

ior, 392

iplweb, 232, 481

IRC, 285

ishift, 392

isTable, 529

istate, 392

iterator, 21

Ivib, 353

ixor, 392

Java, 3, 189, 194, 232

JavaDoc, 232

544 INDEX

JavaScript, 254

julian, 438

kbhit, 392

kbhit(), 392

key, 392

duplicate, 445

ODBC, 388

key(), 266

table, 31

key(x), 392

keyboard, 10, 70, 76, 316, 358, 391, 392, 414,

448, 478, 499

keys, table, 30

keyword, 13, 392

keyword(), 392

KWIC, 481, 484

Label, 501

LaTeX, 476, 484

left, 392

left(), 392

Len, 412

length operator (*x), 16

letters, &letters, 16

letters, cset &letters, 372

lexical comparison, 18

library procedures

monitor, 179

limitation \, 384

limiting an expression, 57

line number, 373

link, 37, 228, 378, 431, 480, 487

association instance, 241

association instance, 215

�le system, 256, 419, 515

HTML, 436

recursion, 256

symbolic �le, 515

link, �le system, 72

Lisp, 3, 485

List, 505

list, 368, 392

invocation, 58

size (*L), 32

list concatenation

L1 ||| L2, 33

list creation, 384

list data type, 31

list functions, 449

list(), 31

list(i, x), 392

literal, 13

literate programming, 4

literature, 485

load, 393

C function, 393

Unicon program, 393

load(), 393

loadfunc, 393

local, 369, 378, 393

local time, 388

local variables, 24

localnames, 393

lock, 393, 401

lock, �le, 390

log, 393

log(x), 14

logarithm, 393

longest match, 451

loop, 12, 15

Lower, 407

lower case, 16, 48

lowercase, cset &lcase, 372

LU decomposition, 451

mail folder, read, 443

mail spool, 486

main task, 373

many, 393

many(), 393

many(c), 45

map, 393

map string, 393

map(), 63

match, 393

match string, 393

INDEX 545

match(s), 45

matching functions, 44

matrix manipulation, 452

MatrixMode, 407

max, 393

max(), 14, 393

mceil(r), 453

mean values, 453

member, 393

member(), 394

set, 34

table, 31

membernames, 394

memory addresses, 30

memory allocation, 30, 201

memory monitor, 182

memory regions

separate, 177

memory use, 370, 374

Menu, 506

menu, 319

menu bar, 315

MenuBar, 506

MenuButton, 506

MenuComponent, 506

MenuSeparator, 507

messaging, 82

method, 195, 378

combination, 207

invocation, 382

overriding, 206

methodnames, 394

methods, 394

m�oor(r), 453

MIME, 433

min, 394

min(), 14, 394

mkdir, 394

mkdir(), 71, 394

modulo %, 14, 381

monitor

anatomy, 184

template, 184

monitor coordinators, 178

months of the year, 443

Morse code, 452, 486

move, 394

move(i), 44, 394

multi-bit extraction, 523

multidimensional array, 432

multiplication, 14

multiplicity, 216

MultMatrix, 407

mutable value, 368

mutable values, 29

mutex, 394

mutex(), 394

mutual evaluation, 384

MySQL, 96

n queens, 37

n-grams, 452

n-queens, 478, 489

name, 394

name mangling, 230

name space, 228

name(v), 394

natural log, &e, 371

natural log, log(x), 14

networking, 77

NewColor, 407

news, 486, 488

next, iteration, 378

nonnull test \x, 18, 23, 380

not, 58, 378

not equals, 11

NotAny, 412

Noti�cation, 495

now, 373

Nowlin, Jerry, 46

Nspan, 412

null test /x, 18, 23, 380

null value, 373

null value, &null, 14

numeric, 394

numeric comparison, 18

546 INDEX

numeric operations, 14

object, 368

object-oriented programming, 4, 189, 190, 200

octal, 443

ODBC, 95, 100, 388, 395, 510

ODBC driver, 388

of, 378

open, 395

open �le, 395

open(), 70

operations, 193

operators, 380

opmask, 396

oprec, 396

options(), 37

options, command-line, 454

OR operator, 57

ord, 396

ordinal value, 396

outline

of an EM, 180

output, 69, 445

standard �le &output, 373

output, standard &output, 70

overlay, GUI class, 319

OverlayItem, 508

OverlaySet, 508

package, 223, 228, 378

PaletteChars, 407

PaletteColor, 407

PaletteKey, 407

palindrome, 466

Panel, 508

parallel evaluation, 61

parameter, 22, 30

parameter list, 11

parameter names, 396

parameters

wrong number, 22

paramnames, 396

parent, 396

parentheses, 384

parse, 52, 444, 487

password, 486

patch, 488

Pattern, 408

pattern, 367

pattern alternative operator (.|), 384

pattern match, 383

pattern matching, 16, 41, 52, 477

patterns, design, 223

patterns, SNOBOL4, 455

peername, 79

Pending, 408

Perl, 3, 536

permissions, �le, 386

permissions, �le access, 69

permutations, 63

phi 1.618..., &phi, 14

phi, golden ratio &phi, 373

pi, 3.14... &pi, 14, 373

pipe, 75, 396

pipe(), 396

Pixel, 408

Plugins, 522

plural form, 456

pointer, 30, 35, 444

polling, 183

polymorphism, 29, 192

polynomials, 456

POP, 83

pop, 396

pop(), 32

from POP mail, 83

pop(L), 396

PopMatrix, 408

Pos, 412

pos, 396

pos(i), 396

position, string, 44, 373

POSIX, 69

POSIX extensions, 511

PostgreSQL, 96

PostScript, 458, 476, 488

power, exponent �, 381

INDEX 547

PowerBuilder, 3

prede�ned symbols, 414

preprocessor, 413

prime number, 441

private, 194

proc, 396

proc(s,i), 397

procedure, 7, 13, 22, 378

procedure invocation, 434

process, 74

producer/consumer, 62

program, 7

program behavior, 174

program design, 192

program name, 373

program state, 85

programmer de�ned control structure, 385

protocol, 281

prototype, 1

proxy pattern, 224

pseudo events, 184

pseudo-tty, 268

public, 194

pull, 397

pull(L), 32, 397

push, 397

push(), 32, 397

PushMatrix, 408

PushRotate, 408

PushScale, 408

PushTranslate, 408

put, 397

put(), 32, 397

Python, 3

quali�er, 217

QueryPointer, 409

queue, 29, 31, 368, 391, 448

quota, 263

radial coordinates, 214

radian, 14, 214

radio buttons, 315

Raise, 409

random

number generator, 458

number seed, 64, 373

operator, ?x, 381

randomize(), 458

rapid application development, 3

rational numbers, 459

read, 397

read(), 11, 70

read(f), 397

ReadImage, 409

reads, 397

reads(f,i), 397

ready, 397

ready(f,i), 397

real, 397

real number, 13, 367

real(x), 14

receive, 397

receive datagram, 397

receive(), 80

record, 33, 368, 379

record constructor, 388

recursion, 26, 35, 479, 487

reduce(), 460

reference, 13, 22, 24, 30, 34, 194, 218, 224, 358

documentation, 232, 245

�le, 70

HTML, 444

page, 484

reference comparison, 18

Refresh, 409

refresh, co-expression, 381

region sizes, 373

regular expression, 442, 460

Rem, 412

remainder, 15

remove, 397

remove directory, 398

remove �le, 398

remove(s), 71

rename, 398

rename(), 71

548 INDEX

repeat loop, 21, 379

repl, 398

replacement, string, 467

replicate list, 449

replicate string, 398

reserved word, 13, 376

Reset, 526

Reset(), 526

result, 13

return, 379

reverse, 398

reverse(x), 16, 398

reversible assignment, 39, 382

reversible swap, 382

REXX, 3

right, 398

right(), 398

rmdir, 398

role, 217, 237

ROLLBACK, 528

Roman numerals, 453

Rotate, 409

Rows, 529

Rpos, 412

Rtab, 413

rtod, 398

Ruby, 3

run, 7

loaded program, 85

program under monitor, 176

run-time error, 14

runerr, 398

runtime error, 398, 415

runtime system

Unicon, 175

sampling, 185

Sapir-Whorf, 1

Scale, 409

scan string, 383

scanning

environment, 44

list, 449

scope, 229, 236, 369, 370

scope� 24

screen, 8, 307, 391, 489

scripting languages, 3, 245

ScrollBar, 501

sectioning operator, 18

SecureHash plugin, 524

seek, 398

seek(f,i), 398

segment(s,c), 463

select, 398

select(), 76, 269, 398

self, 195

semicolon insertion, 385

send, 398

send datagram, 398

send(), 80

sensor, 172

sentinel value, 16, 28

seq, 399

seq(), 59

sequence of results, 21

sequence, generate numeric, 399

sequences, 443

serial, 399

serial(x), 399

server, 69, 78, 282

set, 368, 399

set data type, 34

set(), 399

setenv, 399

setenv(), 399

SGML, 459, 491

Sha, 526

Sha(), 526

sha_FinalBits, 526

sha_FinalBits(), 526

sha_Input, 526

sha_Input(), 526

sha_RawResult, 526

sha_RawResult(), 526

sha_Reset, 526

sha_Reset(), 526

INDEX 549

sha_Result, 526

sha_Result(), 526

shaFunction, 526

shaFunction(), 526

shape equivalence, 440

shared address, 176

shell commands, 465

shift, 392

signal, 74, 399

signed shift, 523

Simula67, 190

sin, 399

sin(), 14

sine, 399

singleton, 223

size operator, 381

skeleton

of an EM, 180

slice, 384

list L[i:j], 33

string s[i:j], 42

Smalltalk, 3, 189

SMTP, 83

SNOBOL4, 2, 41, 455

sort, 399, 447, 465

sort by �eld, 399, 465

sort source �le procedures, 482

sort(x, i), 399

sortf, 399

sortt, 465

soundex, 465

source code, 8, 18, 90, 232, 298, 370, 431, 480

line, 373

source code $line, 413

source �le, 372

Span, 412

spawn, 399

spawn(), 399

special purpose monitors, 175

spiral model, 1

SQL, 94, 99, 291, 395, 510

fetch, 390

sql, 399

sql(), 98, 400

SQL_As_List, 529

SQL_As_Set, 529

SQL_As_Table, 529

SQL_Row, 529

SQLi_As_List, 531

SQLi_As_Set, 531

SQLi_As_Table, 531

SQLi_Exec, 530

SQLi_isTable, 530

SQLi_Row, 531

SQLi_Rows, 530

SQLite Plugin, 527

sqrt, 400

sqrt(x), 14

square root, 400

stack, 26, 29, 31, 52, 368, 396, 474

stat, 400

stat(f), 71, 400

state names, U.S., 466

statechart, 239

static, 36, 379, 400

static variables, 24

static, and class, 369

staticnames, 400

stop, 400

string, 13, 15, 367, 400, 466

balance, 386

center, 386

closure, 443

comparison, 382

concatenation s1 || s2, 16

indexes 1 based, 41

indexes 1-based, 16

length (*s), 16

literal, 16

multi-line, 367

position, 44

scanning, 44, 462

subject, 44

subscript (s[i]), 16

string(x), 400

structure types, 22, 368, 473

550 INDEX

subclass, 198, 203, 206, 227, 308, 328, 334, 495

subject string, 44

subject, string scanning, 374

SubMenu, 506

subscript, 384

subscript operator, 16, 18, 31, 34, 93

subsection, 384

substring, 42

subtraction, 14

Succeed, 412

success, 17, 20, 379

superclass, 203, 382

operations, 206

suspend, 379

swap, 382

synchronous execution, see coroutine

syntax, 52

sys_errstr(i), 515

system, 400

system command, 400

system error, 419

system interface, 69

system(), 75, 265, 269

Tab, 412

tab, 401

tab(i), 44, 401

tab,GUI class, 317

tab/match (=s), 381

TabItem, 508

Table, 507

table, 368, 401

initializer, 384

length *T, 31

table data type, 30

table lookup, 30

table(x), 401

TableColumn, 507

TabSet, 508

talk, 285

tan, 401

tangent, 401

target program

Alamo, 174

task, 84

task switch, 178

Tcl, 3

TCP, 77

template

of an EM, 180

Texcoord, 409

TextButton, 499

TextField, 502

TextList, 504

Texture, 409

TextWidth, 409

then, 379

thing, 528

thread, 59, 379

thread safety, 365

time

of day, 391

since start, 374

time of day &clock, 370

time stamp, 371

to, generator, 19, 379

to-by, generator, 19

today &date, 371

tool communication, 184

Townsend, Gregg, 353

trace, 445

tracing, 27, 374, 478, 488

Translate, 410

trap, 401

trap signal, 401

trap(), 74

traverse, 226, 272

tree, 29, 35, 205, 228, 241, 256, 468

trigonometric function, 14

trim, 401

trim(s,c), 16

trim(s,c,i), 401

truncate, 401

truncate �le, 401

trylock, 401

Turing machine, 492

INDEX 551

two-way table, 468

type, 13, 401

conversion, 182

type conversion, 23, 380

type conversion, 14

type safe, 14

type(x), 401

UDP, 80

Ui, 8

umask, 73

UML, 192, 216

Uncouple, 410

undeclared variables, 24

undef, 414

union (c1 ++ c2), 16

union (S1++S2), 34

union (T1++T2), 31

unlock, 401

unsigned shift, 524

until, 21, 379

upper case, 16, 374

upto, 401

upto(c), 45, 402

Usage(s), 469

use case, 236

user

Alamo, 174

input, 183, 184

interaction, 176

user interface, 307

ushift, 524

utime, 402

uuencode, uudecode, 480

value, 13

value masks, 180

Variable, 24

variable, 13, 30, 195, 204, 353, 369, 378, 385,

393, 402

implicit, 195

no. of arguments, 58

variable(), 87

variable(s,c,i), 402

verse, 492

version, 374, 469

very high-level language, 2, 190

virtual machine

instruction, 181, 182

virtual monitor, 178

visibility

within class, 194

VisibleContainer, 499

visitor pattern, 226

Visual Basic, 3

VRML, 470

wait, 402

wait(), 76, 402

Wampler, Steve, 37

WAttrib, 410

WDefault, 410

WFlush, 410

where(f), 402

while, 12, 379

wild-card patterns, 470

WindowContents, 410

wrap, 462, 471, 477

write, 402

write(), 10, 70, 402

WriteImage, 410

writes, 402

writes(), 402

WSection, 411

WSync, 411

xcodes, 92, 471

XML, 254

	Preface to the Second Edition
	I Core Unicon
	Programs and Expressions
	Your First Unicon Program
	Command Line Options
	Expressions and Types
	Numeric Computation
	Strings and Csets
	Goal-directed Evaluation
	Fallible Expressions
	Generators
	Iteration and Control Structures
	Procedures

	Structures
	Tables
	Lists
	Records
	Sets
	Using Structures
	Summary

	String Processing
	The String and Cset Types
	String Indexes
	Character Sets
	Character Escapes

	String Scanning
	Pattern Matching
	Regular Expressions
	Pattern Composition
	Pattern Match Operators
	Scopes of Unevaluated Variables

	String Scanning and Pattern Matching Miscellany
	Grep
	Grammars

	Advanced Language Features
	Limiting or Negating an Expression
	List Structures and Parameter Lists
	Co-expressions
	User-Defined Control Structures
	Parallel Evaluation
	Coroutines
	Permutations
	Simulation
	Arrays

	The System Interface
	The Role of the System Interface
	Files and Directories
	Programs and Process Control
	Networking
	Messaging Facilities
	Tasks
	Summary

	Databases
	Language Support for Databases
	Memory-based Databases
	DBM Databases
	SQL Databases
	Tips and Tricks for SQL Database Applications
	Summary

	Graphics
	2D Graphics Basics
	Graphics Contexts
	Events
	Colors and Fonts
	Images, Palettes, and Patterns
	3D Graphics
	Textures
	Summary

	Threads
	Threads and Co-Expressions
	First Look at Unicon Threads
	Thread Safety
	Thread Synchronization
	Thread Communication
	Practical examples using threads and messages
	Disk space usage
	More suggestions for parallel processing

	Summary

	Execution Monitoring
	Monitor Architecture
	Obtaining Events Using evinit
	Instrumentation in the Icon Interpreter
	Artificial Events
	Monitoring Techniques
	Some Useful Library Procedures
	Conclusions

	II Object-oriented Software Development
	Objects and Classes
	Objects in Programming Languages
	Objects in Program Design
	Classes and Class Diagrams
	Declaring Classes
	Object Instances and Initially Sections
	Object Invocation
	Comparing Records and Classes
	Summary

	Inheritance and Associations
	Inheritance
	Associations
	Aggregation
	User-defined associations
	Summary

	Writing Large Programs
	Abstract Classes
	Design Patterns
	Packages
	HTML documentation
	Summary

	Use Cases and Supplemental UML Diagrams
	Use Cases
	Statechart Diagrams
	Collaboration Diagrams
	Summary

	III Example Applications
	CGI Scripts
	Introduction to CGI
	The CGI Execution Environment
	An Example HTML Form
	An Example CGI Script: Echoing the User's Input
	Debugging CGI Programs
	Appform: An Online Scholarship Application

	System and Administration Tools
	Searching for Files
	Finding Duplicate Files
	User File Quotas
	Capturing a Shell Command Session
	Filesystem Backups
	Filtering Email
	Summary

	Internet Programs
	The Client-Server Model
	An Internet Scorecard Server
	A Simple ``Talk'' Program
	Summary

	Genetic Algorithms
	What are Genetic Algorithms?
	Operations: Fitness, Crossover, and Mutation
	The GA Process
	ga_eng: a Genetic Algorithm Engine
	Color Breeder: a GA Application
	Picking Colors for Text Displays

	Object-oriented User Interfaces
	A Simple Dialog Example
	A More Complex Dialog Example
	Containers
	Menu Structures
	Other Components
	Trees
	Borders
	Images and icons
	Scroll bars
	Custom Components
	Tickers

	Advanced List Handling
	Selection
	Popups
	Drag and drop

	Programming Techniques
	ivib
	Summary

	IV Appendices
	Language Reference
	Immutable Types: Numbers, Strings, Csets, Patterns
	Mutable Types: Containers and Files
	Variables
	Keywords
	Control Structures and Reserved Words
	Operators and Built-in Functions
	Preprocessor
	Execution Errors
	Syntax

	The Icon Program Library
	Procedure Library Modules
	Application Programs, Examples, and Tools
	Selected IPL Authors and Contributors

	The Unicon Component Library
	GUI Classes

	Differences between Icon and Unicon
	Extensions to Functions and Operators
	Objects
	System Interface
	Database Facilities
	Multiple Programs and Execution Monitoring Support

	Portability Considerations
	POSIX extensions
	Microsoft Windows

	Installation
	Experimental Features
	User defined operators
	Extensions to &random
	Plugins
	Bitman
	SecureHash
	SQLite

	Bibliography

