
MESSAGING LANGUAGE EXTENSIONS
FOR UNICON

by

Steven Eric Lumos

Bachelor of Science
University of Nevada, Las Vegas

1997

A report submitted in partial fulfillment
of the requirements for the

Master of Science Degree
Department of Computer Science

Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas

August 2000

Copyright c©2000 by Steven Eric Lumos
All Rights Reserved

ABSTRACT

Messaging Language Extensions
for Unicon

by

Steven Eric Lumos

Dr. Clinton Jeffery, Examination Committee Chair
Assistant Professor of Computer Science

University of Nevada, Las Vegas

A messaging language provides highly-integrated connectivity (networking) along with context
sensitivity [29]. This work explores the implementation of messaging in a more traditional language
by adding messaging language features to the Unicon programming language. The resulting system
makes it easy to write Unicon programs that take advantage of Internet resources by leveraging
programmer intuition.

iii

TABLE OF CONTENTS

ABSTRACT . iii

LIST OF FIGURES . v

LIST OF LISTINGS . vi

LIST OF TABLES . vii

ACKNOWLEDGMENTS . viii

CHAPTER 1 INTRODUCTION . 1
REBOL . 1
Icon and Unicon . 4

CHAPTER 2 UNICON WITH MESSAGING EXTENSIONS 6
The quote Program . 6
Messaging Files . 7
Supported Protocols . 7
Finger . 7
HTTP . 9
POP . 10
SMTP . 11
Conclusions . 12

CHAPTER 3 THE LIBTP LIBRARY FOR TRANSFER PROTOCOLS 13
The Architecture . 13
The Discipline . 13
The Methods . 15
Using libtp . 16
Adding a New Method . 17
Adding a New Discipline . 17
Conclusions . 17

APPENDIX A PROGRAMS . 19
StockTracker . 19
tpget . 24
wtrace . 26

APPENDIX B UNICON MESSAGING REFERENCE . 30
Operators . 30
Functions . 31

APPENDIX C ACRONYMS . 33

REFERENCES . 34

iv

LIST OF FIGURES

1 An execution of the quote fetcher program . 4
2 A screenshot of the StockTracker program . 19

v

LIST OF LISTINGS

1 A simple REBOL program . 1
2 Stock quote fetcher in REBOL . 3
3 Stock quote fetcher in Unicon . 6
4 General URL retrieving program . 9
5 A Unicon program to read email from a POP server 10
6 A Unicon program to automatically email a web page 11
7 The general libtp discipline definition . 14
8 The Unix discipline . 14
9 The general libtp method definition . 15
10 The parsed URL structure . 16
11 The Tprequest t structure . 16
12 The Tpresponse t structure . 16
13 StockTracker.icn: A longer messaging example . 19
14 tpget.c, using the libtp library . 24
15 wtrace.c, extending a discipline . 26

vi

LIST OF TABLES

1 REBOL built-in types . 2
2 Unicon messaging file operations . 8
3 Short vs. Long form of HTTP access . 9
4 The methods included with libtp . 15
5 The libtp API . 18

vii

ACKNOWLEDGMENTS

Thanks to my advisor, Dr. Clinton Jeffery for giving me the opportunity to learn and hack on
Unicon. The idea to implicitly detect the end of a request was suggested by John Kilburg. Thanks
to Dr. Tom Nartker and the Information Science Research Institute, for providing one of the best
jobs a graduate student ever had.

Special thanks to Karen, for a great many things.

viii

CHAPTER 1

INTRODUCTION

Tightly integrated features for Internet programming are a useful and important addition to any
programming language. The Internet is becoming ubiquitous. In the future, even home appliances
such as refrigerators and coffee makers are expected to be connected to the Internet in one way or
another. Even if that doesn’t happen, the Internet is clearly becoming an increasingly important
part of society, from news services to home shopping and even stock trading, and programs that
communicate over the Internet will become more numerous than programs that do not. Programming
languages should adapt to this situation by making Internet programming easier.

The creators of Unix recognized the value of the file abstraction and they designed Unix so that
arbitrary devices such as tape drives and displays could be treated by programmers as if they were
files. This meant that programmers only needed to learn a single interface and made Unix more
portable [4]. Later, when networking support came to Unix, the file abstraction was not carried
over. Instead, a new set of system calls was added for creating and managing network connections.
Today’s programming languages should return to the file abstraction for Internet programming.
Major Internet protocols such as Hypertext Transfer Procotol (HTTP) should be encapsulated
so that the file abstraction can be applied to Internet resources instead of just low-level network
connections.

REBOL

Messaging languages represent a powerful new paradigm in programming. Internet program-
ming in REBOL (Relative Expression-based Object Language) is very tightly integrated. For ex-
ample, a REBOL program to fetch a web page and email it to somebody is simply:

Listing 1: A simple REBOL program
send user@example.org read http://www.rebol.com/

Surely the most noticeable thing about Listing 1 is its conciseness. This is possible due to
tightly integrated networking, because ‘Uniform Resource Locator (URL)’ and ‘email address’ are
actually types in REBOL (along with a rich set of other domain-specific types, see Table 1), and
because the behavior of send and read is dependent on the type of the object to which they are
applied. Of course the program in Listing 1 does no error handling, any server or network errors
become runtime errors and stop execution of the program.

REBOL also supports the concept of dialecting, which allows the language to be extended in
order to adapt to the domain to which it is applied, in the same way that humans expand their
language with jargon appropriate to the field they work in. A video studio might develop a REBOL
dialect with commands like:

queue tape to 0:36:35
roll tape
wait until 0:37:07
wipe tape to image with effect 3
key title−text

Dialecting seems to be a useful language feature, but it is seperate from messaging and beyond the
scope of this report.

1

2

Table 1: REBOL built-in types (from [27])

Type Literal Representations

Numbers 1234 -432 3.1415 1.23E12 0,01 1,2E12

Times 12:34 20:05:32 0:25:34

Dates 20-Apr-1998 20/Apr/1998 20-4-1998 1998-4-20

1980-4-20/12:32 1998-3-20/8:32-8:00

Money $12.34 USD$12.34 CAD$123.45 DEM$1234,56

Tuples 3.1.5 (version number)
255.255.0 (RGB color)
131.216.22.6 (IP address)

Strings "Here is a string"

{Here is another way to write

a string that spans many lines

and contains "quoted" strings.}

Tags <title> </body>

Email info@rebol.com pres-bill@oval.whitehouse.gov

URLs http://www.rebol.com

ftp://ftp.rebol.com/sendmail.r

mailto:info@rebol.com

Files %data.r %images/photo.jpg %../scripts/*.r

Issues #707-467-8000 (phone number)
#000-1234-5678-9999 (credit card)
#MFG-932-741-A (model number)

Binary #{0A6B4728C4DBEF5} (hex-encoded)
64#{45kLKJOIU8439LKJklj} (base64-encoded)

Listing 2 contains a longer REBOL program. The program retrieves a stock quote from the
Yahoo! Finance web site [39] and displays it in an easy-to-read format (an example execution of the
program appears in Figure 1).

3

Listing 2: Stock quote fetcher in REBOL
1 REBOL [
2 Title : "Fetch stock quotes from finance.yahoo.com"

3 Date: 3−May−2000
4 File : %quote.r
5 Author: ["Steve Lumos" slumos@cs.unlv.edu]
6 Version : 0.0
7]
8

9 ;; Format is:
10 ;; Symbol,Last Trade,Last Update,Change,Open,Hi,Lo,Volume, e.g.
11 ;;
12 ;; ”LNUX”,38.015625,”4/20/2000”,”3:59PM”,+0.015625,40.6875,41,36,253500
13

14 fatal : func [e [error!]]
15 [
16 de: disarm e
17 if de/type = ’user [
18 print de/arg1
19 quit
20]
21 arg1: de/arg1
22 arg2: de/arg2
23 arg3: de/arg3
24 print get in get in system/error de/type de/id
25 quit
26]
27

28 if not string? system/script/args [
29 print reform ["usage:" system/options/script "<ticker symbol>"]
30 quit
31]
32

33 stock : first parse system/script/args " "

34

35 url : join http :// ["finance.yahoo.com/d/quotes.csv?s="
36 stock "&f=sl1d1t1c1ohgv&e=.csv"]
37

38 if error? e : try [quote: read url] [fatal e]
39

40 foreach [symbol last date time change open high low vol] parse quote "," [
41 print rejoin ["Quote for " symbol " at " time " on " date]
42 print ""

43 print rejoin [" Open: " open]
44 print rejoin [" Last Trade: " last]
45 print rejoin [" Change: " change]
46 print rejoin [" Today’s Range: " low " - " high]
47 print rejoin [" Volume: " vol]
48 print ""

49]
50 quit

4

Figure 1: An execution of the quote fetcher program

% ./quote.r sunw

Quote for SUNW at 4:01PM on 5/3/2000

Open: 87.5

Last Trade: 87.375

Change: -0.875

Today’s Range: 83.8125 - 89.0625

Volume: 18465400

Listing 2 demonstrates several features of the REBOL language. Lines 1–7 are the standard
REBOL header, which is required to start any REBOL program (although the minimal ‘REBOL []’
is allowed). Lines 14–26 and 33–36 show how words are defined. Words can refer to any type,
including functions and objects. In this case, the word fatal is being defined as a function which
takes a value of type error!, while stock and url are being defined as a string and URL. In the
case of url, it is necessary to keep the http:// part outside the following list, or else url will be
defined as a string, and the read operation will fail since it is not defined on strings. Most of the real
work in the program is done in the ‘read url’ part of line 38. A typical C program that solves this
problem and does proper error handling might require a hundred lines for what can be expressed in
two words of REBOL. On the other hand, it should be apparent that the conciseness of REBOL is
quickly lost once any kind of robust error checking is needed.

The syntax of REBOL is designed to be easy for non-programmers. Although it is syntactically
similar to Forth, it is often compared to REXX, another language intended for non-programmers.
Whether or not REBOL is easier for non-programmers is beyond the scope of this report, but more
pertinent is how programmers respond to it. Many programmers are unwilling to learn a language
that is syntactically much different from languages they already know unless there is a large benefit
in doing so. A discussion on the Internet community site Slashdot [33] prompted many responses
such as:

• “...why should people use a ‘new language’ just to do simple little tasks like downloading a
webpage or sending mail?”,

• “I agree that the syntax in REBOL (given the tiny example that I looked at) is odd enough
that I probably wouldn’t want to spend the time learning it.”, and

• “The very fact that it’s different also means that it will never be very widely adopted.”

If programmers accept the value of messaging languages but don’t want to learn a new syntax
then it becomes desirable to combine messaging language features with a traditional programming
language. That is the subject of my work.

Icon and Unicon

Icon [11] is a very high level, general purpose programming language with a focus on text
processing. Although the syntax of Icon is similar to Algol-like languages such as C or Pascal,
Icon has a very original semantic feature known as goal-directed evaluation. In most programming
languages, certain expressions return boolean values which may be mapped onto integers and may
or may not be available to the programmer as a type. In Icon, all expressions either succeed and
produce a value, or they fail. Icon implements goal-directed evaluation by combining this idea with
the concept of generators, expressions which can return a value but then be resumed to return
additional values. When part of an expression fails in Icon, control can backtrack to a previous part
of the expression to see if it can generate a new value. This continues until the entire expression
succeeds or there are no more values. For example, in ‘ if L[i := (1 to 10)] = 5 then write(i)’,
the expression ‘(1 to 10)’ is a generator which takes on values between the left and right operands

5

(returning the next value in the sequence each time it is resumed). In this way, values between 1
and 10 will be assigned to the value i and used as an index into list L (since assignment evaluates
to the value of the right operand) until an i is found which satisfies the goal, L[i] = 5.

Another nice feature of Icon is that communicating control flow in terms of success and failure
instead of boolean values allows expressions to evaluate to useful values other than true or false. For
example, the Icon relational operator < returns the value of its right operand, so constructions such
as ‘ if 2 < x < 10 then ...’ actually make sense.

Unicon (the unified, extended dialect of Icon or University of Nevada Icon) is a descendent of
Icon [15,16]. Unicon exists because the creators recognized the value of having Icon’s expressiveness
and goal-directed evaluation for a larger class of problems than those to which Icon is typically
applied. In order to make Icon generally applicable to today’s common programming problems,
Unicon adds several new features to Icon, including:

OOP Object-oriented programming through classes with data and procedure members.

POSIX Much of the Portable Operating System Interface (POSIX) [38] is available as built-in
functions in Unicon, including functions for (low level) TCP and UDP network communication.

ODBC New functions for accessing database systems though Microsoft’s Open Database Connec-
tivity (ODBC) [37] interface standard has been added.

The feature set of Unicon makes it an attractive target for messaging language extensions. The
language is high level and easy to program while retaining a familiar syntax, and the text-processing
features inherited from Icon are highly applicable to the processing of information gathered from
Internet resources such as web pages.

CHAPTER 2

UNICON WITH MESSAGING EXTENSIONS

The goal of the Unicon Messaging Extensions is to provide tightly integrated network services
in a messaging language-like way while at the same time adding as little as possible to the size of the
language (in particular, no new built-in functions) and leveraging programmer intuition wherever
possible.

The quote Program

As a quick introduction, Listing 3 shows a Unicon version of the stock quote program. The
output of this program is identical to the output from the REBOL version in Listing 2. Listing 3
illustrates several features of the Unicon Messaging Extensions. Lines 13–15 show how a messaging
file is opened, open() is called with the URL and a mode of “m”, optionally followed by some header
field definitions whose behavior is dependent on the URL. Notice how header fields are specified in
a very natural way. The condition in line 17 shows how to access fields in the server response (the
Icon syntax for table access has been extended for use on messaging files). Status codes are defined
by the protocol being used and reasonable values are filled in if the protocol does not provide them.
Finally, lines 18 and 19 show the standard file access functions reads() and close() being called on
the messaging file.

Listing 3: Stock quote fetcher in Unicon
1 procedure usage()
2 return "usage: " || &progname || " <ticker symbol>"

3 end
4

5 procedure main(args)
6 if ∗args ˜= 1 then stop(usage())
7

8 symbol := args[1]
9

10 yahoourl := "http://finance.yahoo.com/d/quotes.csv?s=" || symbol ||
11 "&f=sl1d1t1c1ohgv&e=.csv"

12

13 yahoo := open(yahoourl, "m",
14 "User-Agent: Unicon Quote Fetcher/0.0",
15 "X-Unicon: http://icon.cs.unlv.edu/")
16

17 if yahoo["Status-Code"] < 300 then {
18 csv := reads(yahoo, −1)
19 close(yahoo)
20

21 quote := list (0, "")
22 csv ? {
23 while put(quote, tab(upto(’,’))) do move(1)
24 put(quote, tab(0))
25 }
26 }
27 else {

6

7

28 stop(yahoo["Status-Code"], " ", yahoo["Reason-Phrase"])
29 close(yahoo)
30 }
31

32 write("Quote for ", quote[1][2:−1], " at ", quote[4][2:−1],
33 " on ", quote[3][2:−1])
34 write()
35 write(" Open: " , quote[6])
36 write(" Last Trade: " , quote[2])
37 write(" Change: " , quote[5])
38 write(" Today’s Range: ", quote[8], " - ", quote[7])
39 write(" Volume: " , quote[9])
40 end

Messaging Files

Unicon messaging uses the existing file type and extends built-in functions and operators to
recognize and handle messaging files. Table 2 lists the basic operations in their most common form.
A more complete reference appears in Appendix B.

Which operations are legal depends on the service being used. Some services are read-only
or write-only such as POP and Simple Mail Transfer Protocol (SMTP), while others like HTTP
are read-write. In the case of a read-write service, a special protocol is required for a complete
transaction. Imagine the case where a program wants to send a large (i.e. larger than main memory)
file. The standard way to handle this situation is to read part of the file into a memory buffer, write
the contents of the buffer, read the next part of the file, write the next part of the file, etc. Since
multiple writes are required, we must provide some way to signify that all of the file has been written,
so the system can notify the remote server. One way to handle this would be to add a new built-in
procedure (perhaps called “endwrite”) that could be called after all of the file had been written.
However, this would increase the size of the language by adding a new built-in function, and it is also
counter to programmer-intuition since writing ordinary files does not require calling the endwrite
procedure. Instead, the Unicon Messaging Extensions specify the end of write implicitly. As soon as
any operation is done which would require a result from the server (for example F["Status-Code"]),
the request is considered to be ended, the server is notified, and the response is read.

Supported Protocols

The current implementation supports four protocols, (Finger, HTTP, POP, and SMTP), al-
though attention has been paid toward making the addition of new protocols easy (see Chapter 3).
Where possible, the system has been designed so that different Internet services can be accessed in
a protocol-independent fashion, but for maximum flexibility and robust error handling, there are
also protocol specific features which are made available to Unicon programs. These are discussed
for each protocol in the following sections.

Finger

The Finger protocol [40] is a simple protocol for obtaining information about users of an Internet
host. This is the simplest protocol supported by the Unicon Messaging Extensions. The grab.icn
example program in Listing 4 works just as well for Finger requests without modifications. The
format used for a finger URL is: finger://host [:port][/[/w]username], where /w is an optional
component which specifies the “long” version of the response (what “long” means is implementation
dependent and varies among servers). Examples:

open("finger://nevada.edu/slumos", "m")
open("finger://nevada.edu//w slumos", "m")
open("finger://nevada.edu:79")

8

Table 2: Unicon messaging file operations

Syntax Purpose

M := open(U, "m"[, header1,...]) “Open a messaging file”. Opens a connection to the
server and starts the request.

close(M) Closes the connection and frees operating system re-
sources. All programs should explicitly call close on
messaging files.

delete(M, N1[, N2 , ...]) Deletes messages from a Post Office Protocol (POP)
mailbox.

pop(M) Returns the top message from a POP mailbox and
deletes it.

S := read(M) Reads and returns one line of the response body.

S := reads(M, N) Reads and returns N characters of the response body.

write(M, S1[, S2 ,...]) Sends the body part of a request (e.g. HTTP POST
or email).

writes(M, S1[, S2 ,...]) Sends the body part of a request, but without auto-
matically appending a newline character.

delete(M, N1[, N2 ,...]) For POP connections, deletes messages numbered N1,
N2,

M[S] Returns the value of the field named S from the re-
sponse header.

M[N] For messaging file opened on a POP URL, returns the
Nth message.

!M Generates lines from a response or messages for POP
connections.

Values have the following meanings: U – a URL, M – a messaging file, S – a string, N – an integer.

9

HTTP

The Hypertext Transfer Procotol (HTTP) [1,6] is the protocol of the World Wide Web (WWW),
and is expected to be the most used protocol supported by the Unicon Messaging Extensions. HTTP
access may be read-only or a write followed by a read of the response. Additionally, a read may be
considered to be “long” form (the default), or “short” form (selected by the "ms" flag instead of just
"m"), which translates to an HTTP HEAD request which returns only the header from the response
instead of the header and body (see Table 3).

Table 3: Short vs. Long form of HTTP access
Command Headers read(F)

F := open("http://localhost/abc", "m") F["Field-Name"] Returns one line of body
F := open("http://localhost/abc", "ms") F["Field-Name"] FAILS

A notable feature of HTTP is that it allows for the server to notify a client when a resource has
been moved to a new location. When this is done, the server will send a response code of 301, 302,
303, or 307, and put the URL of the new location in a header field named “Location”. The example
program in Listing 4 handles this case but is also general enough to be used for other protocols,
such as Finger.

Listing 4: General URL retrieving program
1 procedure main(args)
2 if ∗args < 1 then stop("usage: ", &progname, " url")
3

4 # Connect to the host specified in the URL, sending some custom
5 # header fields .
6 f := open(args[1], "m",
7 "User-Agent: Unicon Grab 0.0",
8 "X-Unicon: http://icon.cs.unlv.edu/") |
9 stop(args [1], ": can’t open")

10

11 repeat {
12 if f ["Status-Code"] < 300 then {
13 # If the server returns a successful status code, read in the
14 # result 64k at a time and write it out.
15 while writes(reads(f, 65535))
16 exit(0)
17 }
18 else if f ["Status-Code"] < 400 & \f["Location"] then {
19 # If the server returns a 3xx error , check for a Location:
20 # header and follow if found.
21 newloc := f["Location"]
22 close(f)
23 f := open(newloc, "m",
24 "User-Agent: Unicon Grab 0.0",
25 "X-Unicon: http://icon.cs.unlv.edu/") |
26 stop(newloc, ": can’t open")
27 }
28 else {
29 # Some other error, so tell the user what the server told us.
30 stop(f["Status-Code"], " ", \f["Reason-Phrase"] | "")
31 }

10

32 }
33 end

Both the POST and PUT methods are supported for HTTP writes, depending on how the
program sets the Content-Type header field. If the Content-Type contains the string “form”,
(e.g. “multipart/form-data”) then the POST method is used, otherwise the PUT method is used.
Whether to use POST or PUT is dictated by the server. The POST request is usually used for the
processing of fill-in forms expressed in Hypertext Markup Language (HTML), although sometimes
used for file upload as well, while the PUT method is meant specifically for file uploading. In either
case, the programmer is responsible for doing any necessary encoding before calling write(), due to
the large number of possibilities.

POP

The purpose of the Post Office Protocol (POP) is to allow the reading of email from leaf-node
class hosts (i.e. office PCs), although POP servers are also used by organizations with a large number
of Internet hosts for consolidating email by user instead of user and host. The format of a POP
URL is: pop://user:pass@host [:port]. Note that only the service port is optional.

Instead of being viewed as a file, a POP connection is viewed as a list where each complete
message is a list member. The standard list operations generation (!), subscripting ([]), and pop()
work as expected. However, read() does not work because there is no definition that both makes
sense and is consistent with the rest of Unicon.

It is especially important to properly close a POP connection when deleting messages. This is
because the definition of POP [19] specifies that no deletions are actually done unless and until the
client correctly ends the session.

Listing 5 is an example of using POP. The program prints each message stored in the given
POP mailbox and deletes them.

Listing 5: A Unicon program to read email from a POP server

1 # DANGER: This program deletes messages from your server! The copy of
2 # the message that is displayed on your screen is the only copy you
3 # will EVER SEE. Do not run this program unless you understand the
4 # implications.
5 procedure main(args)
6 if ∗args ˜= 1 then {
7 stop("usage: ", &progname, " <pop url>\n",
8 " <pop url> is of the form pop://user:password@popserver:port")
9 }

10

11 url := args [1]
12

13 if url[1:5] ˜== "pop:"then
14 stop(url, " not a POP url")
15

16 mailbox := open(url, "m") | stop("can’t open ", url)
17 write(repl("=", 75))
18 while write(pop(mailbox)) do {
19 write(repl("=", 75))
20 CheckStatus(mailbox)
21 }
22 write(repl("=", 75))
23 close(mailbox)
24 end
25

26 procedure CheckStatus(m)
27 if m["Status-Code"] >= 300 then {

11

28 close(m)
29 stop("POP error: ", m["Status-Code"],
30 " ", \m["Reason-Phrase"] | "")
31 }
32 else {
33 writes("POP success: ", m["Status-Code"],
34 " ", \m["Reason-Phrase"] | "")
35 }
36 end

SMTP

Almost all Internet email is transported using the Simple Mail Transfer Protocol (SMTP).
SMTP support allows Unicon programs to send email to any Internet address. The destination
email address is given in the form mailto:user@domain. Extensions to the mailto: URL to specify
header fields and message body are not supported, as this is better done using the mechanism already
in place.

Sending email requires two pieces of information that would be inconvenient to specify in the
program, so they are instead specified by setting environment variables. UNICON_SMTPSERVER should
be set to the hostname of the mail relay for the user running the program and UNICON_USERADDRESS
should be set to the email address of the user, which is also used as a default for the ‘From’ header
field. On Unix, if either of these values is not specified, then defaults are constructed from the
username of the user running the program and the name of the host where the program is running.
If either of these values cannot be determined, a runtime error results.

Listing 6 shows a Unicon program that takes a web page URL and a mailto URL and sends the
web page as email.

Listing 6: A Unicon program to automatically email a web page
1 procedure main(args)
2 if ∗args ˜= 2 then stop("usage: ", &progname, " url address")
3

4 web := open(args[1], "m",
5 "User-Agent: Unicon Grab 0.0",
6 "X-Unicon: http://icon.cs.unlv.edu/") |
7 stop(args [1] || ": can’t open")
8

9 if web["Status-Code"] < 300 then {
10 mail := open(args[2], "m",
11 "Subject: " || args [1],
12 "X-Note: automatically sent by Unicon") |
13 stop(args [2], ": can’t open")
14

15 every write(mail, !web)
16 close(web)
17 close(mail)
18 }
19 else {
20 write("ERROR: ", web["Status-Code"], " ", \web["Reason-Phrase"] | "")
21 }
22 end

The apparent complexity of Listing 6 relative to Listing 1 is due to error checking. When error
checking and optional arguments are removed, Listing 6 can be written as

12

procedure main(args)
every write(m:=open(args[2], "m"), !(open(args[1], "m")))
close(m)

end

The main difference between this program and the REBOL version is that certain things must
be explicit: declaring the main procedure and arguments, opening the Internet connections, and
closing one of the connections. The latter is due to the need to signal that all of the data has
been written as explained in the Messaging Files section. The other two are minor for any user of
traditional programming languages. Note also that this program accepts an arbitrary website and
email address where Listing 1 does not. Since Unicon (like most programming languages) implicitly
parses command line arguments into a list, the parameterized version of the program in Unicon is
actually shorter than if it was not. In REBOL the program arguments are given as a single string
and must be parsed into words explicitly as shown in Listing 2.

Conclusions

The Unicon Messaging Extensions bring Internet programming support to the Unicon language.
Internet programming is easy in Unicon thanks to the extensions’ use of already existing abstractions
to leverage programmer intuition.

The Unicon Messaging Extensions are available from <http://www.cs.unlv.edu/~slumos/
municon.html> as µnicon, a complete Unicon distribution with modifications for messaging. It is
expected that the messaging extensions will be kept up-to-date with or become part of the main
Unicon distribution in the future.

CHAPTER 3

THE LIBTP LIBRARY FOR TRANSFER PROTOCOLS

All of the networking operations in the Unicon Messaging Extensions are handled by the libtp
library. The purpose of the libtp library is to abstract many different transfer protocols (e.g. HTTP,
SMTP) into a clear and consistent API. Rather than try to support every aspect of a particular
protocol, the library supports only those features necessary to accomplish most tasks. A major
design goal is to make the library both easy to extend with new protocols and easy to port to new
operating system interfaces, which it accomplishes by using the discipline and method architecture
used by AT&T Labs and described in [35]. It is not a goal of the library to be usable without
knowledge of the actual protocols, and anyone wishing to use the library should also consult the
RFC documents relevant to the protocols being used.

The Architecture

The key feature of the discipline and method architecture is that it makes explicit two interfaces
in the library: disciplines which hold system resources and define routines to acquire and manipulate
them, and methods which define the higher-level algorithms used to access those resources. For
example, the Vmalloc memory allocation library by Kiem-Phong Vo [34] is divided into disciplines
which abstract system interfaces to acquire memory, and methods which encapsulate algorithms
for allocating that memory to the application. This separation not only makes the library more
portable, but allows the algorithms to be applied to different kinds of memory (e.g. shared memory)
without major rewriting.

The libtp library needs to be able to open a network connection and perform read and write
operations on it, so the discipline contains these functions while the method defines standard routines
for communicating with a server using a specific protocol. Each protocol interface is defined only
in terms of the discipline, so making the code work on different operating systems or with different
networking subsystems is just a matter of implementing the proper routines. Since applications can
also define methods, the library can be extended with new protocol interfaces easily. Both methods
and disciplines can be added and selected at runtime, and without requiring access to the library
source code.

The Discipline

The general libtp discipline appears in Listing 7. In the implementation, the discipline is
a C structure whose members are pointers to functions. These functions define a complete API
for acquiring and manipulating all of the system resources needed by all of the methods and (it
is hoped) any conceivable method. By convention, every discipline function takes a pointer to the
current discipline as its last argument and every method takes a pointer to a library handle which
contains a pointer to the current discipline as its first argument, so the discipline functions are always
available when needed.

It is also possible to extend an existing discipline. In general, defining a new discipline always
involves extending the default discipline to hold some system dependent data (usually a connection
handle such as a file descriptor on Unix or a SOCKET* on Windows) as well as defining all of the
discipline functions. Listing 8 shows how the Unix discipline extends the general discipline to include
a Unix file descriptor. New disciplines should always include a Tpdisc t member first and system
specific data last so that a pointer to any discipline can be typecast to Tpdisc t and passed through
the many discipline independent functions.

13

14

Listing 7: The general libtp discipline definition

typedef struct tpdisc s Tpdisc t; /∗ discipline ∗/

typedef int (∗Tpconnect f)(char∗ host, u short port, Tpdisc t∗ disc);
typedef int (∗Tpclose f)(Tpdisc t∗ disc);
typedef ssize t (∗Tpread f)(void∗ buf, size t n, Tpdisc t∗ disc);
typedef ssize t (∗Tpreadln f)(void∗ buf, size t n, Tpdisc t∗ disc);
typedef ssize t (∗Tpwrite f)(void∗ buf, size t n, Tpdisc t∗ disc);
typedef void∗ (∗Tpmem f)(size t n, Tpdisc t∗ disc);
typedef int (∗Tpfree f)(void∗ obj, Tpdisc t∗ disc);
typedef int (∗Tpexcept f)(int type, void∗ obj, Tpdisc t∗ disc);
typedef Tpdisc t∗ (∗Tpnewdisc f)(Tpdisc t∗ disc);

struct tpdisc s
{

Tpconnect f connectf; /∗ establish a connection ∗/
Tpclose f closef ; /∗ close the connection ∗/
Tpread f readf ; /∗ read from the connection ∗/
Tpreadln f readlnf ; /∗ read a line from the connection ∗/
Tpwrite f writef ; /∗ write to the connection ∗/
Tpmem f memf; /∗ allocate some memory ∗/
Tpfree f freef ; /∗ free memory ∗/
Tpexcept f exceptf ; /∗ handle exception ∗/
Tpnewdisc f newdiscf; /∗ deep copy a discipline ∗/
int type; /∗ TP FILE, TP SOCKET (not used currently) ∗/
};

Listing 8: The Unix discipline

struct tpunixdisc s
{

Tpdisc t tpdisc ;
int fd ; /∗ File descriptor for file or socket ∗/
};

In addition to functions for managing network connections, the discipline also includes functions
for memory allocation and exception handling. The discipline and method architecture defines a very
useful convention for exception handling. Exceptions are passed as integers to the exceptf function
along with some exception specific data. The function can do arbitrary processing and then return
-1, 0, or 1, which instructs the library to try the operation again (1), return an error to the caller
(-1), or execute some default action (0). As an example of what can be done, the Vmalloc library
handles an out-of-memory exception by performing a garbage collection and returning 1 to make
the caller retry the request. In the Unix discipline, the convention is useful for handling certain
low-level errors such as EINTR (interrupted system call). Instead of explicitly checking for EINTR
in every place it may occur, every error causes an exception (e.g. TP_EREAD), and the exception
handler returns 1 if the system error is one of those that is considered to be transient.

Besides creating a new discipline, it is sometimes useful to redefine only some of the functions
of a provided discipline. The wtrace program in Listing 15 of Appendix A does this by defining
replacement functions which are actually wrappers around the original functions, then saving the
original functions and installing the new ones with the lines:

disc = tp newdisc(TpdUnix);
tpexcept = disc−>exceptf;
disc−>exceptf = exception;
tpread = disc−>readf;
disc−>readf = readf;
tpreadln = disc−>readlnf;

15

disc−>readlnf = readlnf;
tpwrite = disc−>writef;
disc−>writef = writef;

The Methods

Each Internet protocol is encapsulated in a method, which is defined in terms of the general
discipline. This allows the algorithms for communicating with servers to be applied on different
operating systems and even different types of transmission channels simply by defining a discipline
for them. Listing 9 contains the general method definition and Table 4 lists the included methods.

Listing 9: The general libtp method definition
typedef struct tpmethod s Tpmethod t; /∗ method ∗/

typedef int (∗Tpmbegin f)(Tp t∗ tp, Tprequest t∗ req);
typedef Tpresponse t∗ (∗Tpmend f)(Tp t∗ tp);
typedef int (∗Tpmclose f)(Tp t∗ tp);
typedef int (∗Tpmfreeresp f)(Tp t∗ tp, Tpresponse t∗ resp);

struct tpmethod s
{

Tpmbegin f beginf ; /∗ begin a request ∗/
Tpmend f endf ; /∗ end a request ∗/
Tpmclose f closef ; /∗ cleanup and close connection ∗/
Tpmfreeresp f freerespf ; /∗ free the response record ∗/
Tpstate t state ;
};

typedef int Tpstate t;
enum tpstate e {

CLOSED = 0,
CONNECTING = 1,
CONNECTED = 2,
WRITING = 4,
READING = 8,
CATCH = 16, /∗ not used currently ∗/
BAD = 32
};

Table 4: The methods included with libtp

Method Protocol

TpmDaytime Daytime [25]
TpmFinger Finger [40]
TpmHTTP Hypertext Transfer Procotol (HTTP) [1, 6]
TpmPOP Post Office Protocol (POP) [19,21]
TpmSMTP Simple Mail Transfer Protocol (SMTP) [24]

16

Using libtp

To use libtp a program first needs a URL which is expressed in the form of the structure shown
in Listing 10. The program can either fill in this structure manually or use the uri parse () function
which takes a character string containing a URL and parses it into the structure. Next, the program
calls tp new() with the parsed URL, the method (usually specified by the URL), and the discipline
to use, getting a handle of type Tp t in return. This handle is passed to all of the API functions
and eventually released with tp free (), which also closes the connection.

Listing 10: The parsed URL structure
typedef struct uri {

int status ; /∗ Success or error code ∗/
char ∗scheme; /∗ Access scheme (http, mailto, etc) ∗/
char ∗user ; /∗ Username for authentication ∗/
char ∗pass; /∗ Password for authentication ∗/
char ∗host; /∗ Server hostname ∗/
int port ; /∗ Service port number ∗/
char ∗path; /∗ Pathname (file, email address, etc) ∗/
} URI, ∗PURI;

Communication with the remote server follows a transaction model whereby the program tells
the library to send a request using the structure in Listing 11 and receives a response in the structure
shown in Listing 12.

Listing 11: The Tprequest t structure
typedef int Tpreqtype t;
enum tpreqtype e {

NOOP=1,
GET, HEAD, POST, PUT, /∗ HTTP ∗/
DELE, LIST, QUIT, RETR, STAT, /∗ POP3 ∗/
DATA, HELO, MAIL, RCPT /∗ SMTP ∗/
};

typedef struct tprequest s Tprequest t;

struct tprequest s
{

Tpreqtype t type; /∗ kind of request ∗/
char∗ header; /∗ ready−to−send header ∗/
char∗ args ; /∗ request argument string ∗/
};

Listing 12: The Tpresponse t structure
typedef struct tpresponse s Tpresponse t;

struct tpresponse s
{

int sc ; /∗ error/success code ∗/
char∗ msg; /∗ message/string part of response ∗/
char∗ header; /∗ header part of response ∗/
};

Three methods for making requests are provided, depending on the functionality required. The
most general is to call tp begin() which will start the request, including sending all headers. The

17

program may then call tp write() as many times as necessary to send the body of the request,
and then tp end() to finish the request and retrieve the status code, reason phrase (if any), and
headers (if any) from the server. Depending on the protocol and request type, the program might
call tp read() in order to read the body part of the response. The tp sendreq() function is easier to
use when the request does not have a body part. It is equivalent to calling tp begin() immediately
followed by tp end(). The program may still call tp read() to receive the body of the response. The
last request function, tp quickreq(), is for very simple protocols where requests and responses do
not even have headers. It reads the request from a buffer, returns the response in another buffer,
and handles management of the structures automatically. See Table 5 for the definitions of these
functions.

If the protocol is of the type where the connection remains open after a transaction, more
requests may be made. When done using a connection, the program should call tp free () to release
the handle. The complete libtp API is given in Table 5.

Adding a New Method

To add a new method to the library, start with the tpm.template file in the libtp distribution.
Replace XX in identifiers with your protocol name (e.g. XXbegin() to httpbegin()), and fill in the
function bodies. Functions which use the Tprequest t structure usually include a switch statement
which takes different actions based on the value of req−>type, so appropriate request types should
be added to the Tpreqtype t enum in tp.h. Use one of the existing methods as an example.
When the method has been written, add extern Tpmethod t∗ TpmXX; to the end of tp.h and
tpmXX.o/tpmXX.c to the OBJS and SRCS variables in Makefile.in. Then run make to rebuild the
library with the new method.

If the method is not going to be added to the library, follow the instructions above but don’t
modify tp.h or Makefile.in. As long as the method follows the correct form, you can use it
simply by compiling it into your program and passing it to the tp new() function when opening a
connection.

Adding a New Discipline

Adding a new discipline is simply a matter of extending the general discipline structure to
include any system-dependent data and defining all of the functions. As with adding a method, the
discipline can be added to Makefile.in and tp.h to make it a part of the library. You are strongly
encouraged to read through the Unix discipline in tpdunix.c and tpdunix.h paying special attention
to the definition of the unixexcept() function. Proper use of exception handling will make the job
of discipline writing much easier.

Conclusions

The libtp library provides access to Internet resources through a single standard API. Practice
has shown that it is easy to extend the library with new protocol methods. Although only a Unix
discipline has been implemented at this time, the discipline and method architecture has been strictly
adhered to and the library is therefore believed to be highly portable.

The library is available as part of the µnicon distribution at <http://www.cs.unlv.edu/
~slumos/municon.html>.

18

Table 5: The libtp API
Function Definition Notes

URI∗ uri parse(char ∗uri); Parses the URL in the string uri into
the structure given in Listing 10 and
returns a pointer to it. The status
member of the URI structure will
contain URI_OK on success, or an er-
ror number which can be used as an
index into the _uri_errlist array
to obtain a string representation of
the error.

void uri free (URI∗ puri); Releases the URI structure returned
by uri parse ().

Tpdisc t∗ tp newdisc(Tpdisc t∗ disc); Allocates a new discipline structure
and fills it with values from disc.

Tp t∗ tp new(URI∗ puri, Tpmethod t∗ meth, Tpdisc t∗ disc); Opens a connection to puri using
method meth and discipline disc

void tp free(Tp t∗ tp); Closes connection (if necessary) and
releases the handle.

int tp begin(Tp t∗ tp, Tprequest t∗ req); Begins a request. Use tp write() to
send the body of the request and
tp end() to finish the request. Used
by HTTP POST and PUT methods,
and SMTP.

Tpresponse t∗ tp end(Tp t∗ tp); Finishes the request and returns the
server response code and headers.
Use tp read() or tp readln() to re-
trieve the response body if neces-
sary.

Tpresponse t∗ tp sendreq(Tp t∗ tp, Tprequest t∗ req); For services that have short
requests, but potentially long
responses. Use tp read() or
tp readln() to retrieve the response
body if necessary. Used for HTTP
GET and HEAD requests, Finger,
etc.

int tp quickreq(Tp t∗ tp, char∗ req, char∗ resp, size t n); For very simple protocols with short
(or no) requests and responses. In-
ternal structures are managed au-
tomatically, and no other functions
should be called. Used for Daytime
requests.

ssize t tp read(Tp t∗ tp, void∗ buf, size t n); Reads n bytes from the server into
buf.

ssize t tp readln(Tp t∗ tp, void∗ buf, size t n); Reads one line (up to maximum of
n bytes) from the server and adds
a null termination. The line is re-
turned in buf.

ssize t tp write(Tp t∗ tp, void∗ buf, size t n); Sends n bytes from buf to the server.
char∗ tp headerfield(char∗ header, char∗ field); Returns a pointer to the value part

of a header field.

APPENDIX A

PROGRAMS

StockTracker

StockTracker is a program that helps with tracking stocks thoughout the day. For stocks listed
on the command line, it uses the object oriented Unicon GUI to display last trade and change data
in a table format. The display is updated periodically from the Yahoo! Finanace web site. Clicking
on a stock will open a second window displaying detailed information on the stock.

Figure 2: A screenshot of the StockTracker program

Listing 13: StockTracker.icn: A longer messaging example
1 link printf
2

3 global lastread , stocks
4

5 class dialog : Dialog(Stocks, tcStock, tcSymbol, tcLast, tcChange)
6 method handle Stocks(ev)
7 local selected , detailList
8 static dDetails
9 case ev.event of {

10 &lpress : {
11 selected := Stocks$get contents()[Stocks$get which down()][2]
12 /dDetails := Details()
13 /dDetails.is open & dDetails.show modeless()
14 dDetails. tlDetails . set contents (GetDetails(selected))
15 }
16 &lrelease : {
17 Stocks$clear selections ()

19

20

18 }
19 default: write("Stocks: ", ev.event)
20 }
21 end
22

23 method handle tcStock(ev)
24 Stocks$set contents(sortf(Stocks$get contents (), 1))
25 end
26

27 method handle tcSymbol(ev)
28 Stocks$set contents(sortf(Stocks$get contents (), 2))
29 end
30

31 method handle tcLast(ev)
32 local L, row
33 L := Stocks$get contents()
34 every row := !L do row[3] := real(row[3])
35 L := sortf(L, 3)
36 every row := !L do row[3] := sprintf("%.2r", row[3])
37 Stocks$set contents(L)
38 end
39

40 method handle tcChange(ev)
41 local L, row
42 L := Stocks$get contents()
43 every row := !L do row[4] := real(row[4])
44 L := sortf(L, 4)
45 every row := !L do row[4] := fmtChange(row[4])
46 Stocks$set contents(L)
47 end
48

49 method handle default(ev)
50 if ev.event == "q"then exit()
51 end
52

53 method tick()
54 local yahoo, yahoourl, row, tContents
55

56 lastread := GetSummary(stocks)
57 tContents := ParseCSV(lastread)
58 every row := !tContents do {
59 row[3] := sprintf ("%.2r", row[3])
60 row[4] := fmtChange(row[4])
61 }
62 Stocks. set contents (tContents)
63 end
64

65 method dialog event(ev)
66 case ev$get component() of {
67 Stocks : handle Stocks(ev)
68 tcStock : handle tcStock(ev)
69 tcSymbol : handle tcSymbol(ev)
70 tcLast : handle tcLast(ev)
71 tcChange : handle tcChange(ev)
72 default : handle default(ev)
73 }
74 end
75

76 method init dialog()

21

77 end
78

79 method end dialog()
80 end
81

82 method setup()
83 local fwidth
84 self$set attribs ("size=380,250", "bg=light grey", "label=StockTracker")
85 self$set ticker (60000)
86 Stocks := Table()
87 Stocks$set pos("5", "15")
88 Stocks$set size ("370", "230")
89 Stocks$set attribs ("bg=white")
90 Stocks$set tooltip ("Select stock for more stats")
91 Stocks$set contents ([])
92 Stocks$set select one ()
93 fwidth := 9
94 tcStock := StaticTableColumn()
95 tcStock$set label ("Stock")
96 tcStock$set internal alignment("l")
97 tcStock$set column width(16∗fwidth)
98 tcStock$set attribs ("bg=light grey")
99 Stocks$add(tcStock)

100 tcSymbol := StaticTableColumn()
101 tcSymbol$set label("Symbol")
102 tcSymbol$set internal alignment("c")
103 tcSymbol$set column width(6∗fwidth)
104 tcSymbol$set attribs("bg=light grey")
105 Stocks$add(tcSymbol)
106 tcLast := StaticTableColumn()
107 tcLast$set label ("Last")
108 tcLast$set internal alignment("r")
109 tcLast$set column width(9∗fwidth)
110 tcLast$set attribs ("bg=light grey")
111 Stocks$add(tcLast)
112 tcChange := StaticTableColumn()
113 tcChange$set label("Change")
114 tcChange$set internal alignment("r")
115 tcChange$set column width(7∗fwidth)
116 tcChange$set attribs("bg=light grey")
117 Stocks$add(tcChange)
118 self$add(Stocks)
119 end
120

121 method component setup()
122 self$setup ()
123 end
124

125 initially
126 self$ Dialog . initially ()
127 end
128

129 class Details : Dialog(bClose, tlDetails)
130 method dialog event(ev)
131 case ev$get component() of {
132 bClose : {
133 self .dispose()
134 }
135 }

22

136 end
137

138 method init dialog()
139 end
140

141 method end dialog()
142 end
143

144 method setup()
145 self$set attribs ("size=300,400", "bg=light gray")
146 bClose := TextButton()
147 bClose$set pos(146, 390)
148 bClose$set align("c", "b")
149 self$set focus (bClose)
150 bClose$set label("Close")
151 bClose$set internal alignment("c")
152 self$add(bClose)
153 tlDetails := TextList()
154 tlDetails$set pos ("5", "5")
155 tlDetails$set size ("290", "350")
156 tlDetails$set contents ([""])
157 self$add(tlDetails)
158 end
159

160 method component setup()
161 self$setup ()
162 end
163

164 initially
165 self$ Dialog . initially ()
166 end
167

168 class StaticTableColumn : TableColumn()
169 method handle event(e)
170 return self$TextButton.handle event(e)
171 end
172 end
173

174 procedure main(args)
175 local d
176

177 if ∗args = 0 then
178 stop("usage: ", &progname, " <stocks to display>")
179

180 stocks := args
181

182 d := dialog()
183 d$show modal()
184 end
185

186 procedure GetSummary(stocks)
187 local s , yahoo, yahoourl
188

189 yahoourl := "http://finance.yahoo.com/d/quotes.csv?e=.csv&f=nsl1c1"

190 every yahoourl ||:= ("&s=" || ! stocks)
191

192 yahoo := open(yahoourl, "m",
193 "User-Agent: Unicon",
194 "X-Unicon: http://icon.cs.unlv.edu/")

23

195

196 if yahoo["Status-Code"] >= 300 then {
197 write(&errout, "Yahoo error: ", yahoo["Status-Code"], " ",
198 \yahoo["Reason-Phrase"] | "")
199 fail
200 }
201 s := reads(yahoo, −1)
202 close(yahoo)
203 return s
204 end
205

206 procedure GetDetails(stock)
207 local s , yahoo, yahoourl, dlist , i
208 static fields , fw
209

210 initial {
211 fields := ["Symbol", "Name", "Last Trade", "Change", "Change %",
212 "Volume", "Avg. Day Vol.", "Bid", "Ask", "Prev. Close",
213 "Open", "Day Range", "52-Week Range", "Earnings/Share",
214 "P/E Ratio", "Dividend/Share", "Dividend Yield"]
215 fw := 0
216 every fw <:= ∗(!fields)
217 fw +:= 2
218 }
219

220 yahoourl := "http://finance.yahoo.com/d/quotes.cvs?e=.csv&"||
221 "f=snl1c1cva2bapomwerdy&s=" || stock
222 yahoo := open(yahoourl, "m",
223 "User-Agent: Unicon",
224 "X-Unicon: http://icon.cs.unlv.edu/")
225 if yahoo["Status-Code"] >= 300 then {
226 write(&errout, "Yahoo error: ", yahoo["Status-Code"], " ",
227 \yahoo["Reason-Phrase"] | "")
228 fail
229 }
230 dlist := ParseCSV(reads(yahoo, −1))[1]
231 close(yahoo)
232 s := list ()
233 every i := (1 to ∗ fields) do
234 put(s, left(fields [i], fw) || dlist [i])
235 return s
236 end
237

238 procedure ParseCSV(csv)
239 local row, col , cell , parsed, nlchar
240

241 nlchar := ’\n\r’

242 parsed := list ()
243 csv ? while line := tab(upto(nlchar)) do {
244 row := list()
245 line ? while col := (tab(upto(’,’)) | tab(0)) do {
246 col ? {
247 if ="\"" then {
248 cell := ""

249 while cell ||:= tab(upto(’\\’)) do {

250 move(1)
251 cell ||:= move(1)
252 }
253 cell ||:= tab(upto(’"’))

24

254 }
255 else {
256 cell := tab(upto(’,’)) | tab(0)
257 }
258 }
259 put(row, cell)
260 move(1) | break
261 }
262 put(parsed, row)
263 tab(many(nlchar))
264 }
265 return parsed
266 end
267

268 procedure fmtChange(c, prec)
269 local s
270 /prec := 2
271 if c > 0 then s := "+"else s := ""

272 s ||:= integer(c ∗ 10.0ˆprec) ∗ (10.0ˆ−prec)
273 return s
274 end

tpget

This program is a simple example of using the libtp library. It retrieves a file via HTTP and
sends its contents to standard output.

Listing 14: tpget.c, using the libtp library
1 #include "tp.h"

2

3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <string.h>
6 #include <errno.h>
7 #include <unistd.h>
8

9 Tpexcept f tpexcept;
10

11 char∗ url;
12

13 int exception(int e , void∗ obj, Tpdisc t∗ disc)
14 {
15 int rc = tpexcept(e, obj , disc);
16 if (rc == TP RETURNERROR) {
17 if (errno != 0) {
18 perror(url);
19 }
20 else {
21 switch (e)
22 {
23 case TP EHOST:
24 fputs(url , stderr); fputs(": Unknown host\n", stderr);
25 break;
26

27 default:
28 fputs(url , stderr); fputs(": Error connecting\n", stderr);
29 }

25

30 }
31 exit (1);
32 }
33 else {
34 return rc;
35 }
36 }
37

38 int main(int argc, char ∗∗argv)
39 {
40 Tp t∗ tp;
41 Tpdisc t∗ disc ;
42 Tprequest t req = { GET, "User-Agent: libtp/0.0\r\n"};
43 Tpresponse t∗ resp;
44

45 PURI puri;
46 int i ;
47 char buf[8192];
48 ssize t nread;
49

50 if (argc < 2) {
51 fprintf (stderr , "usage: %s url\n", argv[0]);
52 exit (1);
53 }
54

55 url = argv [1];
56 puri = uri parse(url);
57 if (puri−>status != URI OK) {
58 fprintf (stderr , "%s: %s\n", url, uri errlist [puri−>status]);
59 exit (1);
60 }
61

62 if (strcmp(puri−>scheme, "http") != 0) {
63 fprintf (stderr , "%s: not a http URL\n", url);
64 exit (1);
65 }
66

67 disc = tp newdisc(TpdUnix);
68 tpexcept = disc−>exceptf;
69 disc−>exceptf = exception;
70

71 tp = tp new(puri, TpmHTTP, disc);
72 resp = tp sendreq(tp, &req);
73 while((nread = tp read(tp, buf, sizeof(buf)))) {
74 fwrite(buf , 1, nread, stdout);
75 }
76 tp free (tp);
77

78 return 0;
79 }

26

wtrace

The wtrace program is an example of extending a provided discipline with new functionality. In
this case, the disciplines are replaced with wrapper functions which trace the action of the internal
read and write routines for debugging purposes. It also demonstrates how the exception handling
function may be extended to exit gracefully on certain errors. This obviates the usual practice of
checking the return value of every function call for errors and makes the program easier to read.

Listing 15: wtrace.c, extending a discipline
1 /∗ wtrace.c : Dump a trace of communication with a web server. ∗/
2

3 /∗ This program makes an HTTP request (GET by default) and shows the
4 ∗ communication that goes on between the server and the program, by
5 ∗ replacing the default discipline with one that wraps readf,
6 ∗ readlnf , and writef. ∗/
7

8 #ifdef HAVE CONFIG H
9 #include "config.h"

10 #endif
11

12 #include "tp.h"

13

14 #ifdef STDC HEADERS
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <string.h>
18 #endif
19

20 #ifdef HAVE ERRNO H
21 #include <errno.h>
22 #endif
23

24 #ifdef HAVE SYS ERRNO H
25 #include <sys/errno.h>
26 #endif
27

28 #ifdef HAVE UNISTD H
29 #include <unistd.h>
30 #endif
31

32 Tpexcept f tpexcept;
33 Tpread f tpread;
34 Tpreadln f tpreadln;
35 Tpwrite f tpwrite;
36

37 char∗ url;
38

39 int exception(int e , void∗ obj, Tpdisc t∗ disc)
40 {
41 int rc = tpexcept(e, obj , disc);
42 if (rc == TP RETURNERROR) {
43 if (errno != 0) {
44 perror(url);
45 }
46 else {
47 switch (e)

27

48 {
49 case TP EHOST:
50 fputs(url , stderr); fputs(": Unknown host\n", stderr);
51 break;
52

53 default:
54 fputs(url , stderr); fputs(": Error connecting\n", stderr);
55 }
56 }
57 exit (1);
58 }
59 else {
60 return rc;
61 }
62 }
63

64 ssize t readf(void∗ buf, size t n, Tpdisc t∗ disc)
65 {
66 ssize t nread;
67

68 if ((nread = tpread(buf, n, disc)) <= 0) {
69 return nread;
70 }
71

72 if (write (2, "\n<<", 3) < 0) {
73 perror("write");
74 exit (1);
75 }
76

77 if (write (2, buf , nread) < 0) {
78 perror("write");
79 exit (1);
80 }
81

82 if (write (2, ">>\n", 3) < 0) {
83 perror("write");
84 exit (1);
85 }
86

87 return nread;
88 }
89

90 ssize t readlnf(void∗ buf, size t n, Tpdisc t∗ disc)
91 {
92 ssize t nread;
93

94 if ((nread = tpreadln(buf, n, disc)) <= 0) {
95 return nread;
96 }
97

98 if (write (2, "\n<<", 3) < 0) {
99 perror("write");

100 exit (1);
101 }
102

103 if (write (2, buf , nread) < 0) {
104 perror("write");
105 exit (1);
106 }

28

107

108 if (write (2, ">>\n", 3) < 0) {
109 perror("write");
110 exit (1);
111 }
112

113 return nread;
114 }
115

116 ssize t writef (void∗ buf, size t n, Tpdisc t∗ disc)
117 {
118 ssize t nwritten;
119

120 if (write (2, "\n[[", 3) < 0) {
121 perror("write");
122 exit (1);
123 }
124

125 if (write (2, buf , n) < 0) {
126 perror("write");
127 exit (1);
128 }
129

130 if (write (2, "]]\n", 3) < 0) {
131 perror("write");
132 exit (1);
133 }
134

135 nwritten = tpwrite(buf, n, disc);
136 return nwritten;
137 }
138

139 int main(int argc, char ∗∗argv)
140 {
141 Tp t∗ tp;
142 Tpdisc t∗ disc ;
143 Tprequest t req = { HEAD, "User-Agent: libtp/0.0\r\n"};
144 Tpresponse t∗ resp;
145

146 PURI puri;
147 int i ;
148 char∗ type = "head";
149 char buf[8192];
150

151 if (argc < 2) {
152 fprintf (stderr , "usage: %s url\n", argv[0]);
153 exit (1);
154 }
155

156 for (i=1; i<argc;) {
157 if (argv[i][0] != ’-’) {
158 url = argv[i];
159 break;
160 }
161

162 switch (argv[i][1])
163 {
164 case ’t’:
165 type = argv[i+1];

29

166 i += 2;
167 break;
168

169 default:
170 fprintf (stderr , "Unrecognized option: %s", argv[i]);
171 exit (1);
172 }
173 }
174

175 if (strcasecmp(type, "get") == 0) {
176 req.type = GET;
177 }
178

179 puri = uri parse(url);
180 if (puri−>status != URI OK) {
181 fprintf (stderr , "%s: %s\n", url, uri errlist [puri−>status]);
182 exit (1);
183 }
184

185 if (strcmp(puri−>scheme, "http") != 0) {
186 fprintf (stderr , "%s: not a http URL\n", url);
187 exit (1);
188 }
189

190 disc = tp newdisc(TpdUnix);
191 tpexcept = disc−>exceptf;
192 disc−>exceptf = exception;
193 tpread = disc−>readf;
194 disc−>readf = readf;
195 tpreadln = disc−>readlnf;
196 disc−>readlnf = readlnf;
197 tpwrite = disc−>writef;
198 disc−>writef = writef;
199

200 tp = tp new(puri, TpmHTTP, disc);
201 resp = tp sendreq(tp, &req);
202 while(tp read(tp, buf, sizeof(buf))) {
203 ; /∗ Everything is done by the tracing read ∗/
204 }
205 tp free (tp);
206

207 return 0;
208 }

APPENDIX B

UNICON MESSAGING REFERENCE

This is a reference for those Unicon operators and functions which have been extended. For a
reference to the complete Unicon language, see [16].

Operators

!M : string∗ generate messages from POP
!M : string∗ generate lines from a messaging file

The action of the generate operator depends on the type of server the messaging file M refers
to. A POP connection is treated as a list of messages, so !M will generate messages from specified
mailbox producing each message as a single string. For any other type of connection, !M generates
lines of output from the server as strings.

Examples:

M := open("http://icon.cs.unlv.edu/", "m")
every write(!M) # Writes the contents of a web page by lines

M := open("pop://user:password@pop.myisp.net", "m")
every write(!M) # Writes messages one message at a time

M[string] : string results header reference
M[number] : string POP message reference

The first form returns a string containing the value of the specified header field in the server
response. The special values Status-Code and Reason-Phrase refer to the result of the request and
its descriptive text (e.g. 404 and “Not Found” for HTTP). All of the values are protocol dependent.
Only Status-Code is guaranteed to be non-null and is filled in by the system if the protocol does
not provide one. Status codes follow the convention whereby codes less than 300 mean success,
300–399 means a error occurred which may be correctable, and 400 or above means that a fatal
error occurred.

The second form is only valid for POP connections. The expression M[n] returns the n-th
message in the specified mailbox.

Examples:

M := open("http://icon.cs.unlv.edu/", "m")
if (M["Status-Code"] >= 300) then

stop(M["Status-Code"], " ", (\M["Reason-Phrase"] | ""))

(Note that you must handle the case where Reason-Phrase is null.)

M := open("pop://user:password@pop.myisp.net", "m")
write(M[3]) # Writes the 3rd message in the mailbox

30

31

Functions

close(file) : file close a messaging file

close(M) completes any pending request, closes the connection to the server and returns any
resources associated with the file to the operating system. It returns the closed file.

delete(file, integer [, integer ...]): file delete a message

delete(M, N1 , ..., Nn) deletes all messages numbered Nx from a POP server and returns M. It
always succeeds. As a feature of POP, messages are not actually deleted until a successful close(M)
is done. If the connection is lost (e.g. because the program exited) without an explicit close, no
messages are actually deleted.

open(string, ”m”, ...) : file? open messaging file

open(U, "m", H1 , ..., Hn) connects to the Internet server specified by the URL U and sends
H1 through Hn as headers for the request part of the transaction, or fails if the connection can not
be made.

Some protocols specify default headers if they are not supplied by the program. For HTTP,
the User-Agent field is automatically given the value “Unicon Messaging/10.0”, and the Host field
is given the host and port parts of the URL. The Host field is required by the standard and most
programs should use the default value. For SMTP, the From field is automatically copied from the
UNICON_USERADDRESS environment variable.

Examples:

M := open("http://icon.cs.unlv.edu/", "m", "User-Agent: Unicon") # Web site

M := open("mailto:unicon-group@cs.unlv.edu", "m",
"From: Steve Lumos <slumos@cs.unlv.edu>",
"To: Unicon Group <unicon-group@cs.unlv.edu>",
"Subject: Unicon test",
"X-Unicon: Sent with Unicon!") # Email message

pop(file) : string? ‘pop’ message

pop(M) will remove the first message in the POP mailbox specified by M and return it as
a single string. No messages are actually deleted from the server until a successful close(M) is
performed.

Examples:

M := open("pop://user:password@pop.myisp.net", "m")
while write(pop(M))

32

read(file) : string? read line

read(M) completes any pending request and reads a line from the server. The end of line
marker is discarded.

reads(file, integer:1) : string? read characters

reads(M, n) completes any pending request and reads n characters from the server. If n is −1,
the maximum number of characters possible are returned, which usually means the entire file.

write(x, ...) : x write line

write(args) writes out its arguments, each followed by a newline. If any argument is a messaging
file, subsequent arguments are written as parts of a request to the server.

writes(x, ...) : x write strings

writes(args) writes out its arguments. If any argument is a messaging file, subsequent argu-
ments are written as parts of a request to the server.

APPENDIX C

ACRONYMS

FTP File Transfer Protocol. An Internet protocol for interactively transfering files from one host
to another [26].

HTML Hypertext Markup Language [32].

HTTP Hypertext Transfer Procotol. HTTP is the protocol used by the World Wide Web. It is
described in RFC1945 [1] and RFC2616 [6].

IP Internet Protocol. A low-level networking protocol. Most other protocols are implemented on
top of a networking layer that is in turn implemented on top of IP.

ODBC Open Database Connectivity. A standard, open program interface for accessing online
relational databases [37].

POP Post Office Protocol. A standard protocol for downloading email over a network, usually to a
personal computer or workstation [19]. Somtimes written as POP3 when referring to version
3 of the protocol.

POSIX Portable Operating System Interface. A standard for operating system interfaces, including
programmer and end-user levels [38].

REBOL Relative Expression-based Object Language. REBOL is a messaging language. It is
described in Chapter 1. See also [28].

RFC Request for Comments. Documents which define Internet standards.

SMTP Simple Mail Transfer Protocol. Used for transmission of email messages from one point to
another, possibly relaying through several servers along the way [24].

TCP Transport Control Protocol. A low level networking protocol. Almost all of the other protocols
cited usually operate on top of TCP, which in turn operates on top of IP (TCP/IP).

UDP User Datagram Protocol. A low level networking protocol. Unlike TCP, UDP does not have
built-in features for flow-control or reliable transmission.

URL Uniform Resource Locator. A method for specifying an Internet resource, including protocol,
hostname, and path [2,5, 9, 12,22].

W3C World Wide Web Consortium. An industry consortium/standards body which oversees the
protocols and other standards used by servers and clients on the WWW.

WWW World Wide Web. The World Wide Web is a collection of standards for serving and
accessing information over the Internet. The World Wide Web Consortium (W3C) [32] oversees
most of those standards.

33

REFERENCES

[1] T. Berners-Lee, R. Fielding, and H. Frystyk. RFC 1945: Hypertext Transfer Protocol —
HTTP/1.0, May 1996. Status: INFORMATIONAL.

[2] T. Berners-Lee, L. Masinter, and M. McCahill. RFC 1738: Uniform resource locators (URL),
December 1994. Status: PROPOSED STANDARD.

[3] Thomas W. Christopher. Icon Programming Language Handbook, Beta Version. Tools
of Computing LLC, P.O. Box 6335, Evanston IL, 60204-6335, 1996. Available online as
<http://www.toolsofcomputing.com/iconprog.pdf>.

[4] Daniel Cooke, Joseph Urban, and Scott Hamilton. Unix and beyond: An interview with Ken
Thompson. Computer, 32(5):58–64, May 1999.

[5] R. Fielding. RFC 1808: Relative uniform resource locators, June 1995.

[6] R. Fielding, J. Gettys, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. RFC 2616:
Hypertext Transfer Protocol — HTTP/1.1, June 1999. Status: DRAFT STANDARD.

[7] N. Freed and N. Borenstein. RFC 2045: Multipurpose Internet Mail Extensions (MIME) part
one: Format of Internet message bodies, November 1996. Status: DRAFT STANDARD.

[8] N. Freed and N. Borenstein. RFC 2046: Multipurpose Internet Mail Extensions (MIME) part
two: Media types, November 1996. Status: DRAFT STANDARD.

[9] R. Gellens. RFC 2384: POP URL scheme, August 1998. Status: PROPOSED STANDARD.

[10] Ralph E. Griswold and Madge T. Griswold. The Implementation of the Icon Programming
Language. Princeton University Press, Princeton, NJ, USA, 1986.

[11] Ralph E. Griswold and Madge T. Griswold. The Icon programming language. Peer-to-Peer
Communications, San Jose, CA, USA, third edition, 1997.

[12] P. Hoffman, L. Masinter, and J. Zawinski. RFC 2368: The mailto URL scheme, July 1998.

[13] Peter E. Hoffman. finger url specification. <http://www.ics.uci.edu/pub/ietf/uri/
draft-ietf-uri-url-finger-03.txt>. Note: This is an expired IETF draft, but there does
not appear to have ever been an update.

[14] E. Huizer. RFC 1844: Multimedia E-mail (MIME) user agent checklist, August 1995. Status:
INFORMATIONAL.

[15] Clinton Jeffery. The Unicon homepage. <http://icon.cs.unlv.edu/>.

[16] Clinton Jeffery, Shamim Mohamed, Robert Parlett, and Ray Pereda. Programming with Unicon.
Draft manuscript. Available online as <http://icon.cs.unlv.edu/ib/ib.pdf>.

[17] L. Masinter. RFC 2388: Returning values from forms: multipart/form-data, August 1998.
Status: PROPOSED STANDARD.

[18] J. Myers. RFC 1734: POP3 AUTHentication command, December 1994. Status: PROPOSED
STANDARD.

[19] J. Myers and M. Rose. RFC 1939: Post Office Protocol — version 3, May 1996. Status:
STANDARD.

34

35

[20] E. Nebel and L. Masinter. RFC 1867: Form-based file upload in HTML, November 1995. Status:
EXPERIMENTAL.

[21] R. Nelson. RFC 1957: Some observations on implementations of the Post Office Protocol
(POP3), June 1996. Status: INFORMATIONAL.

[22] C. Newman. RFC 2192: IMAP URL scheme, September 1997. Status: PROPOSED STAN-
DARD.

[23] PHP: Hypertext preprocessor. <http://www.php.net/>.

[24] J. Postel. RFC 821: Simple mail transfer protocol, August 1982. Status: STANDARD.

[25] J. Postel. RFC 867: Daytime protocol, May 1983.

[26] J. Postel and J. K. Reynolds. RFC 959: File transfer protocol, October 1985. Status: STAN-
DARD.

[27] REBOL in ten steps. <http://www.rebol.com/rebolsteps.html>. Accessed 2 May 2000.

[28] REBOL Technologies. <http://www.rebol.com/>. For general information on the Rebol
language.

[29] What is a messaging language? <http://www.rebol.com/>. Accessed 27 October 1999, no
longer available online.

[30] New messaging language REBOL transforms information exchange over networks. <http:
//www.rebol.com/news8a01.html>, October 1998. Accessed 2 May 2000.

[31] D. Smallberg. RFC 876: Survey of SMTP implementations, September 1983. Status: UN-
KNOWN.

[32] (homepage) the World Wide Web Consortium. <http://www.w3c.org/>.

[33] Various. REBOL the “messaging language”. <http://slashdot.org/articles/99/05/14/
1921231.shtml>, May 1999. Accessed 2 May 2000.

[34] Kiem-Phong Vo. Vmalloc: A general and efficient memory allocator. Software—Practice and
Experience, 26(3):357–374, March 1996. Also available online as <http://www.research.att.
com/sw/tools/vmalloc/vmalloc.ps>.

[35] Kiem-Phong Vo. An architecture for reusable libraries. In P. Devanbu and J. Poulin, ed-
itors, Proceedings: Fifth International Conference on Software Reuse, pages 184–195. IEEE
Computer Society Press, 1998. Also available online as <http://www.research.att.com/sw/
tools/sfio/dm.ps>.

[36] Kenneth Walker. A run-time implementation language for Icon. Technical Report IPD261, The
University of Arizona Icon Project, June 28 1994.

[37] What is. . . ODBC. <http://www.whatis.com/odbc.htm>. Accessed 2 May 2000.

[38] What is. . . POSIX. <http://www.whatis.com/posix.htm>. Accessed 2 May 2000.

[39] Yahoo! finance. <http://finance.yahoo.com/>. Accessed 2 May 2000.

[40] D. Zimmerman. RFC 1288: The finger user information protocol, December 1991. Status:
DRAFT STANDARD.

