
Ui: a Unicon Development Environment

Clinton L. Jeffery and Hani Bani-Salameh
March 11, 2010

Unicon Technical Report #12

Abstract

Ui is a simple integrated development environment (IDE) for the Unicon programming
language. Ui makes it simple to edit, compile, run, and debug Unicon programs. Ui runs on
both UNIX-based and Windows platforms. Its source code provides various examples of
extending and customizing a graphical user interface generated using the IVIB interface
builder tool.

http://unicon.org/utr/utr12.html

Department of Computer Science
University of Idaho
Moscow, ID 83844

1



Contents

Introduction1.
Editing, Compiling, and Executing Programs2.
Error Handling3.
Projects4.
Ui Options5.
History and Related Work6.
Conclusions and Future Work7.

1. Introduction

This report describes a simple integrated development environment for the Unicon
programming language[1], called Ui. The basic goal for Ui is to make it as simple as
possible to edit, compile, and execute Unicon programs. By design and intention, Ui is
much smaller and easier to learn than industry behemoths such as Eclipse and Visual
Studio. Power users who want a much more ambitious Unicon IDE are directed to Ui's big
brother project which is under construction at http://cve.sourceforge.net". That IDE,
which includes multi-user collaboration facilities, borrows much from Ui's code and adds
many features.

Even Ui's very "simple" goals are complicated by the fact that the tool needs to run on any
machine where Unicon runs with graphics facilities enabled. At this time, this primarily
consists of UNIX-based systems that run the X Window System, such as Linux, Solaris, Mac
OS X, and Microsoft Windows-based machines. There is a practical minimal screen
resolution limit, probably around 800x600 for this tool.

Ui is a product of the Unicon Project and is a standard part of the Unicon programming
language distribution, developed under the GPL, hosted on Source Forge, and downloaded
from the web site at http://unicon.org. If you are not already familiar with Unicon you may
wish to consult other technical reports from that site, such as UTR #7[2], along with this
one. Windows Unicon and the Ui environment are based on the volunteer work of many
people; final responsibility for this release rests with Clinton Jeffery of University of Idaho.
Send requests, and bug reports to jeffery@cs.uidaho.edu.

2. Editing, Compiling, and Executing Programs

Double-click the Windows Unicon icon to launch Ui, the Unicon IDE (integrated
development environment). Ui is written in Unicon and allows you to edit, compile, and
execute programs from a graphic user interface. Ui is designed to run the same on UNIX
and Linux as it does on Windows. Ui's documentation (this file) may be accessed on-line
through its Help menu. To start, you must select the name of a file to edit, in following
dialog:

2



Figure 1: Opening a File within Ui

You can easily select an existing Unicon source file, or name a new one. If you click "Open"
without choosing a name, you will be given the default name of "noname.icn". Unicon
source files generally must use the extension .icn and should be plain text files without line
numbers or other extraneous information. Editing your program occurs within the main Ui
window, which might look like this:

3



Figure 2: Ui's Editing Interface

The top area shows program source code, while the bottom portion shows messages such
as compiler errors. You can change the font and the number of lines used to show
messages from the Edit menu.

When you are done editing your program, you can save it, compile it, or just "make" (save,
compile and link an executable) and run your program with menu options. The Arguments
command in the Run... menu let's you specify any command-line arguments the program
should be given when it is executed.

3. Error Handling

Compile errors result in a message in which the editor highlights the line at which the
error was detected, like this:

4



Figure 3: Reporting Compiler Errors in Ui

Run-time errors also result in a message for which the source line is highlighted. The
message for a run-time error includes Unicon's standard traceback of procedures from
main() to the procedure in which the error occurred. When the error messages get long, you
can either increase the number of lines for the message window (as was done here) or
scroll through the message window's entire text using the scrollbar.

5



Figure 4: A Run-time Error in Ui. The message window's size is adjustable.

4. Projects

Ui works on programs comprised of any number of source files. By default, Ui assumes a
single file program consisting of the current source file. If you are working on a single-file
program, and you open a new .icn source file, Ui switches the editor and compile and link
commands to work on a different program.

Project files are plain text files with extension .icp. They list source files, one file per line.
When you open a project file, Ui goes into "project mode", and adds the source files in the
project to your File menu, allowing you to switch easily between files in the project. If you
subsequently open a source file not in the project, Ui asks if you want to add that source
file to the project, or switch out of project mode and edit that file as a separate program. In
general, project files allow you to "make" large projects efficiently. Underneath the covers,
Ui invokes the other Unicon program executables to do the work of compiling and running
programs, described below.

When Ui "makes" a program executable, it recompiles those modules listed in the project
file whose modified time is newer than their corresponding object files. On the other hand,
Ui knows nothing about link declarations embedded in source files, and recompilation will
not be triggered by such dependencies. When you use Ui, you should generally use link
statements for library files (such as Unicon Program Library modules), and use .icp files for
your own sources. Files listed in the .icp file must not also be referenced in a link
statement; linking the same module twice causes link errors. For projects, the executable
.bat that is produced by "make" is named after the first program in the project file.

5. Ui Options

Ui supports command-line options to be passed to wicont with the Compiler Options...
menu item in the Compile menu. Command-line arguments passed to the Unicon program
when it is run are supplied via the Arguments... menu item in the Run menu.

6



The font in the edit window can be picked from the Font... command in the Edit menu. The
number of lines to use for messages can be picked with the Message window... menu item
in the Edit menu.

The font and message line options, as well as a default window width and height, may be
specified in a file called ui.ini that Ui reads when it starts up. The file ui.ini from the
current directory is used, unless a UNICONINI environment variable is set, in which case
it is taken to be the pathname of the initialization file that Ui is to use. An example ui.ini file
is the following:

width=800
height=800
font=times,28
msglines=3

6. History and Related Work

Many Bothan spies died to bring us this information. -- Mon Mothma

In the early 1990's, a prominent member of the Icon community (Bob Goldberg, if I recall
correctly) did a very rough prototype IDE for Icon on Windows, which whetted our
appetite for this category of tool. An M.S. student at UTSA, Steve Schiavo, did a second
prototype IDE in Borland Delphi. These efforts featured basic editing, compiling, and
executing but were not feature complete and never released.

Clint Jeffery ported Icon's graphics facilities to Windows while at UTSA, as part of his
agreed contribution for the book "Graphics Programming in Icon"[3]. An IDE (along with a
setup.exe installer) was considered essential for the Windows Icon distribution. In order to
minimize external language- and compiler-dependencies, and in order to test and
demonstrate the functionality of Windows Icon, Schiavo's IDE was reimplemented in Icon
by Clint Jeffery as a program called Wi (Windows icon). In order to provide an attractive,
native-looking GUI, Windows95 native dialogs (the Win* functions) were added to the
language specifically for use in Wi. The Wi program was modified slightly to form Wu
(Windows unicon) when that language was invented.

Although the Wu program was nice, it was limited to only run on Windows, and made
extensive use of Windows-only native GUI functions. Even on Windows it had some nasty
limitations, such as a 32kb file size limit imposed by the classic native windows text editor
widget. After Robert Parlett contributed his wonderful GUI class library, which supported
fonts and colors, it became ever more desirable to build a Unicon IDE that would run on all
Unicon platforms. There were multiple failed attempts, such as Bryan Ross's RUDE (Ross'
Unicon Development Environment).

Finally, the Ui program was developed by Clint Jeffery, using Parlett's IVIB interface
builder and adapting code from Wu. Unfortunately, various elements of Wu were not
replicated immediately in Ui, and it has only gradually progressed towards a complete or
usable feature set. Its toolbar was added by Nolan Clayton. Syntax coloring was added by
Luis Alvidrez. Hani bani Salameh ported it to version 2 of the GUI classes. It is by now the
work of several people, and remains very small and lacks features compared with
mainstream IDE's. However, it continues to evolve.

7



7. Conclusions and Future Work

The Ui program is a relatively small multi-platform IDE for Unicon. Its original author
(Jeffery) is perpetually embarrassed by its lack of features, and is grateful for the help he
has received towards making Ui less of a toy. Ui remains perpetually in need of more and
better "polish", and the list of planned features is long.

integration of IVIB and Ui -- like other languages' IDE's.
Emacs mode -- ground work for programmable keybindings has been laid.
integration of UDB

References

1. Clinton Jeffery, Shamim Mohamed, Ray Pereda, and Robert Parlett, Programming with
Unicon, http://unicon.org/ub/ub.pdf, 2005.

2. Clinton Jeffery, Version 11 of Unicon for Microsoft Windows, http://unicon.org
/utr/utr7.html, 2006.

3. Gregg M. Townsend, Ralph E. Griswold, and Clinton L. Jeffery, Graphics Facilities for
the Unicon Programming Language Version 9.3, The Univ. of Arizona Icon Project
Document IPD281, 1996.

8


