
Pattern Matching in Unicon

Clinton Jeffery, Sudarshan Gaikaiwari,
John Goettsche and Paden Rumsey

Unicon Technical Report: 18c

October 2, 2017

Abstract

Unicon Version 13 introduces a pattern type for matching strings. The literal
constants for this pattern type are strings, csets, and regular expressions, while
the operators and composition features are based on the SNOBOL4 pattern type.
Patterns are both an alternative and an addition to the string scanning control
structure.

Unicon Project
http://unicon.org

University of Idaho
Department of Computer Science

Moscow, ID, 83844, USA

1 Introduction

This technical report is a user’s guide and reference to the pattern data type in the Unicon
programming language. In order to understand this report, it will be helpful if the reader is
familiar with Icon and Unicon’s string scanning control structure. Compared with traditional
methods, the pattern type allows more concise, more readable, and/or faster solutions for
many string analysis problems. It is especially useful when:

� the format of strings is less than ideally structured

� the complexity of the patterns to be matched is high

� the ability to compose new patterns on the fly at runtime is desired

� there is a lot of string data and performance may be important

1.1 Icon Scanning vs. Snobol Patterns vs. Unicon Patterns

Icon replaced SNOBOL’s pattern data type with a string scanning control structure. The
pattern type reintroduced into Unicon Version 13 is important for all the reasons that data
is more convenient to manipulate than code: easier composition and reuse, modification and
dynamic altering of patterns on the fly, and so on. SNOBOL veterans have complained that
the Icon string scanning control structure is not as concise as SNOBOL patterns. Unicon
patterns answer that criticism.

A “hello, world” type of example is

procedure main()
write(read() ?? <[hH]ello[\t]*[wW]orld>)

end

This program reads a single line from standard input and executes a pattern match. The
pattern will match as long as “hello” is followed by “world”, with optional whitespace in
between. Either or both words may be capitalized. If the match is successful, the substring
that matched is written to standard output, stripped of any leading or trailing characters.

1.2 The Two Types of SNOBOL Pattern Statements

The two types of SNOBOL pattern statements, pattern matching and pattern replacement,
use the following two templates:

label subject pattern goto
label subject pattern = object goto

Instead of using a “label” or “goto”, the pattern match in Unicon is a predicate expres-
sion, often used as the condition in an if expression. The SNOBOL pattern replacement
statement has a more interesting Unicon embodiment. If a pattern match is performed on a
variable, the matched portion is a substring variable that may be assigned with a replacement
string. The following example searches for (a subset of) American-style dates and replaces
them, moving the day to the beginning, as is common in other countries.

1

procedure main()
s := "Adam’s birthday is February 28, 1969. He is no spring chicken."
month := <January|February|March>
day := <[1-3]?[0-9]>
year := <[0-9]{4}>
s ?? month->part1 ||" "|| day->part2 || (", "||year)->part3 :=

part2 || " " || part1 || part3
write(s)

end

This is neither SNOBOL nor Icon, exactly. Details of the patterns and operators used
are presented later in this report. After you have read about them, as an exercise you can
modify the regular expressions here to be more complete or more correct.

2 Pattern Matching Foundations

Pattern matching consists of two phases: (1) construction of a pattern to be matched, and
(2) application of the pattern in a context. Application of a pattern in turn features two
primary modes: match and search. A match reports whether a pattern matches a given
string at a specific location. Its result is an extent of the match, or a failure. The search for
a pattern involves finding a match, reporting the start position and perhaps extent where
the match has occurred.

In string scanning, the duality of match and search is seen in the built-in function set:
find() is a search for a match(); upto() is a search for an any(). Pattern matching
has two forms of pattern application: anchored and unanchored. An anchored pattern match
tests whether a pattern occurs at a given position within a given subject string. An anchored
match is performed by the tabmatch operator =p. It is legal only within a string scanning
environment.

s ? { ... =p ... }

An unanchored pattern match is a search for a match, performed with the syntax

s ?? p

This is a new string scan in a new environment, except with a pattern to match instead of
an expression on the right side.

3 Pattern Literals

The simplest to interpret pattern values are literals, expressed as regular expressions . Regular
expressions are concise, simple, readable, and sufficient for many purposes. However, regular
expressions cannot match everything. Additional, more complex patterns can be constructed
using pattern constructor operators and functions, described in the next section.

Unicon regular expressions consist of a regular expression body, enclosed in less than (<)
and greater than marks (>), as in the example

2

x := <abc>

A regular expression is a pattern constructor that produces a single result of type pattern
that may be used in subsequent pattern construction and matching operations. Within the
body of a regular expression, most printable characters match themselves, and normal Unicon
variables, values, operators and syntax constructs do not have their usual meaning. Instead,
the following operators are supported:

ordinary characters evaluate to themselves – for example < a > is a pattern that
matches the letter a. Spaces inside a regular expression literal are not typically signif-
icant; to allow a space as part of a pattern it must be quoted.

implicit concatenation – inside a regular expression, juxtaposing two symbols is a con-
catenation. < abc > matches the string abc.

strings evaluate to their contents – for example, <"abc"> and < abc > construct the
same pattern. Such ordinary Unicon string literals are the way to match any character
that would otherwise be interpreted as a regular expression operator.

alternation – the lowest precedence regular expression operator is alternation, indicated by
a single vertical bar, which means either-or. < a|b > matches either a or b. Alternation
is lower precedence than concatenation.

Kleene star – a unary suffix asterisk indicates that a pattern may occur zero or more times.
Kleene star is of high precedence, so < abc∗ > matches a followed by b followed by
zero or more c’s. In contrast, < (abc)∗ > matches zero or more repetitions of abc,
and < [abc]∗ > matches zero or more occurrences of a, b, or c in any order.

csets – within regular expressions, square brackets denote a pattern that matches any one
member of the designated character set. Ordinary cset literals delimited by apostrophes
are also accepted. Inside square bracketed csets, hyphens indicate ranges of characters,
such as < [a − z] >. Logically, a cset is just shorthand for a big alternation of all its
members, so < [abc] > is equivalent to < (a|b|c) >.

A more detailed definition of regular expressions in Unicon may be found in the Appendix.
Other tools support many extensions of regular expressions, sometimes incompatibly, that
you will not see here. Notably missing, for now, are caret (ˆ) and dollar ($) for beginning-
of-line and end-of-line.

Unicon regular expressions compile down to SNOBOL-style patterns, and SNOBOL-style
pattern matching generally matches the shortest string that can be matched by a pattern,
not the longest possible match. In the current version of Unicon, this can cause surprises in
behavior, especially in patterns that can match the empty string. If your regular expression
can match the empty string, that is the shortest match and that is what you will get.

3

4 The Unicon Pattern Data Type

It is usually trivial to translate SNOBOL4 pattern construction code to Unicon patterns.
This section explains Unicon patterns in detail so that programmers who have never been
exposed to SNOBOL can understand and use them. Where necessary, differences between
Unicon patterns and SNOBOL patterns are also pointed out. The simplest operands for
pattern matching in Unicon are strings and character sets. These match themselves when
used in a pattern matching expression, for example:

"Unicon" ?? "nic"

Like all Unicon expressions this expression can either succeed or fail. If the pattern
is found in the subject then the expression succeeds and returns the first substring of the
subject matched by the pattern. In the above expression a substring corresponding to the
2nd to 5th characters of the subject is returned. While strings and characters can be used
in pattern matching expressions the pattern data type allows complicated patterns to be
constructed and stored in variables. This pattern construction is done with the following
operators and functions.

4.1 Operators

Patterns are often built up from simple components using concatenation (||) and alterna-
tion (.|). These operators seem redundant and less concise than the corresponding regular
expression operators, but unlike regular expressions, they accept arbitrary Unicon expres-
sions (variables, function calls, etc.) as operands. While Unicon’s usual string concatenation
operator is used for pattern concatenation, the alternation pattern constructor .| is very dif-
ferent from the alternation control structure | — it constructs an alternative to be explored
later during a pattern match, rather than indicating an immediate alternative (a generator)
during the current expression evaluation.

When pattern match time occurs, a pattern formed by alternation of two elements suc-
ceeds if either of the elements matches. A pattern formed by concatenation of two elements
matches if both those elements match consecutively. When two patterns are joined together
by alternation they are called alternates. When two patterns P1 and P2 are combined using
concatenation as P1 || P2 then P2 is the subsequent of P1. Pattern concatenation has
higher precedence than pattern alternation. So the pattern P1 .| P2 || P3 matches either
the pattern P1 or the pattern formed by concatenation of P2 and P3. Parentheses can be
used to group patterns differently. (P1 .| P2) || P3 matches P1 or P2 followed by P3.

Thus patterns can be composed from subpatterns. When a subpattern successfully
matches a portion of the subject, the matching subject characters are bound to it. The
next sub pattern in the pattern must match beginning with the very next subject character.
If a subsequent fails to match, the pattern backtracks, unbinding patterns until another al-
ternative can be tried. A pattern match fails when an alternative that matches cannot be
found.

Suppose we wanted to construct a pattern that matched any of the following strings:
COMPATIBLE, COMPREHENSIBLE and COMPRESSIBLE. The pattern can be con-
structed by

4

"COMP" || ("AT" .| "RE" || ("HEN" .| "S") || "S") || "IBLE"

One way to understand patterns is to construct bead diagrams for them. In a bead
diagram, pattern matching is the process of attempting to pass a needle and thread through
a collection of beads which model the individual pattern components. Pattern subsequents
are drawn side-by-side, left-to-right. Pattern alternates are stacked vertically, in columns,
with a horizontal line between each alternative. A bead diagram for the preceding pattern
is shown in Figure 1.

Figure 1: Bead Diagram

Consider the following pattern and its application

Manufacturer := "SONY" .| "DELL"
Type := "Desktop" .| "Laptop"
Machine := Manufacturer || " " || Type
"SONY Laptop" ?? Machine

The pattern matching will succeed. However we would also like to determine which of the
pattern alternatives actually matched. For this we use the conditional binary operator −>.
The operator is called conditional, because assignment occurs only if the pattern match is
successful. It assigns the matching substring on its left to the variable on its right. Note that
the direction of assignment is just the opposite of the assignment operator :=. Changing the
above example to use conditional assignment.

5

Manufacturer := ("SONY" .| "DELL") -> Corporation
Type := ("Desktop" .| "Laptop") -> SysType
Machine := Manufacturer || " " || Type
"SONY Laptop" ?? Machine
write(Corporation)
write(SysType)

OUTPUT
SONY
Laptop

The immediate assignment operator => allows us to capture intermediate results during
the pattern match. Immediate assignment occurs whenever a subpattern matches, even if the
entire pattern match ultimately fails. Like conditional assignment, the matching substring
on its left is assigned to the variable on its right. Immediate assignment is often used as
a debugging tool to observe the pattern matching process. When used with unevaluated
expressions immediate assignment allows creation of a powerful class of patterns as we will
see later.

During a pattern match, the cursor is Unicon’s pointer into the subject string. It is integer
valued, and points between two subject characters. It may also may be positioned before
the first subject character, or after the final subject character. Its value may never exceed
the size of the subject string by more than 1. An example of the index numbering system for
the subject string UNICON can be found in below, in the discussion of the function Pos().

The cursor is set to 1 when a pattern match begins, corresponding to a position imme-
diately to the left of the first subject character. As the pattern match proceeds, the cursor
moves right and left across the subject to indicate where Unicon is attempting a match. The
value of the cursor is assigned by the unary cursor position operator .> to a variable. It
appears within a pattern, preceding the name of a variable. For example,

p := ("b" .| "r") || ("e" .|"ea") || ("d" .| "ds")
pattern := .>x || p || .>y
write("the beads are red")
if "the beads are red" ?? pattern then

write(repl(" ",x - 1) , repl("_", y - x))

The above code will underline the part of the substring that is matched by the pattern.
The output is

the beads are red

Table 1 summarizes the Unicon pattern matching operators.
The previous examples used patterns created from literal strings. Instead of specific

characters, qualities of the string to be matched can also be specified.The ability to specify
these qualities makes patterns powerful at recognizing more abstract patterns. There are 3
different types of pattern construction functions that allow specification of pattern qualities:

6

Operator Operation
|| Pattern concatenate
.| Pattern alternation
−> Conditional assignment
=> Immediate assignment
. > Cursor position assignment

Table 1: Pattern Construction Operators

� Integer pattern functions

� Character pattern functions

� Pattern primitives

4.2 Integer Pattern Functions

These pattern construction functions take an integer as a parameter and return a pattern as
result. The integer pattern functions are:

4.2.1 Len(i): Match fixed-length string

Len(i) produces a pattern which matches a string exactly i characters long. i must be an
integer greater than or equal to zero. Any character may appear in the matched string. For
example, Len(5) matches any 5-character string, and Len(0) matches the empty string.
Len() may be constrained to certain portions of the subject by other adjacent patterns:

s := "abcda"
write(s ?? Len(3) -> out)
s ?? Len(2) -> out || "a"
write(out)

OUTPUT
abc
cd

The first pattern match had only one constraint: the subject had to be at least three
characters long. Thus Len(3) matched its first three characters. The second case imposes
the additional restriction that Len(2)’s match be followed immediately by the letter "a".
This disqualifies the intermediate match attempts "ab" and "bc".

Using Len() with keyword &ascii as the subject provides a simple way to obtain a
string of unprintable characters. For example, the ASCII control characters occupy positions
0 through 31 in the 256-character ASCII set. To obtain a 32-character string containing these
control codes, use:

&ascii ?? Len(32) -> controls

7

4.2.2 Pos(i), Rpos(i): Verify cursor position

The Pos(i) and Rpos(i) patterns do not match subject characters. Instead, they succeed
only if the current cursor position is a specified value. They often are used to tie points of
the pattern to specific character positions in the subject. The following shows the cursor
positions as used by Pos():

8

The following are the cursor positions used by Rpos().

Pos(I) counts from the left end of the subject string, succeeding if the current cursor
position is equal to I. Rpos(I) is similar, but counts from the right end of the subject. If
the subject length is N characters, Rpos(I) requires the cursor be (N - I). If the cursor
is not the correct value, these functions fail, and the pattern matcher tries other pattern
alternatives.

s := "abcda"
if s ?? Pos(1) || "b" then

write("Match succeeded")
else

write("Match failed")
s ?? Len(3) -> out || Rpos(0)

write(out)
s ?? Pos(4) || Len(1) -> out

write(out)
if s ?? Pos(1) || "abcd" || Rpos(0) then

write("Match succeeded")
else

write("Match failed")
OUTPUT
Match failed
cda
d
Match failed

The first example requires a "b" at cursor position 1, and fails for this subject. Pos(1)
anchors the match, forcing it to begin with the first subject character. Similarly, Rpos(0)
anchors the end of the pattern to the tail of the subject. The next example matches at a spe-
cific mid-string character position, Pos(3). Finally, enclosing a pattern between Pos(1)
and Rpos(0) forces the match to use the entire subject string. At first glance these func-
tions appear to be setting the cursor to a specified value. Actually, they never alter the
cursor, but instead wait for the cursor to come to them as various match alternatives are
attempted.

4.2.3 Rtab(i), Tab(i): Match to fixed position

These patterns are hybrids of Arb(), Pos(), and Rpos(). They use specific cursor po-
sitions, like Pos() and Rpos(), but match subject characters, like Arb() (see section

9

4.4.2). Tab(i) matches any characters from the current cursor position up to the specified
position i. Rtab(i) does the same, except, as in Rpos(), the target position is measured
from the end of the subject. Tab() and Rtab() will match the empty string, but will fail
if the current cursor is to the right of the target. They also fail if the target position is past
the end of the subject string. These patterns are useful when working with tabular data.
For example, if a data file contains name, street address, city and state in columns 1, 30, 60,
and 75, this pattern will break out those elements from a line:

P = Tab(30) -> NAME || Tab(60) -> STREET ||
Tab(75) -> CITY || Rem() -> ST

The pattern Rtab(0) is equivalent to primitive pattern Rem(). It counts from the right
end of the subject, but matches to the left of its target cursor. Example:

s := "abcde"
s ?? Tab(3) -> out1 || Rtab(1) -> out2

write(out1, "\n", out2)
OUTPUT
ab
cd
Success

Tab(3) matches "ab", leaving the cursor at 2, between "b" and "c". The subject is
5 characters long, so Rtab(1) specifies a target cursor of 6 - 1, or 5, which is between the
"d" and "e". Rtab() matches everything from the current cursor, 3, to the target, 5.

4.3 Character Pattern Functions

These functions produce a pattern based on a character set argument. The argument passed
to these functions is always converted to a character set

4.3.1 Any(c), NotAny(c): Match one character

Any(c) matches the next subject character if it appears in the cset c, and fails otherwise.
NotAny(c) matches a subject character only if it does not appear in c. Here are some
sample uses of each:

vowel := Any("aeiou")
dvowel := vowel || vowel
notvowel := NotAny("aeiou")
"vacuum" ?? vowel -> out

write(out)
"vacuum" ?? dvowel -> out

write(out)
"vacuum" ?? (vowel || notvowel) -> out

write(out)

10

OUTPUT
a
uu
ac

In a larger pattern context, and when many alternatives are being tried, you may search
for the multi-letter vowel combinations before falling back on a single-letter vowel match. A
pattern such as:

vowel := "oy" .| "ei" .| "ie" .| Any(’aieouy’)

allows a few common digraphs in the definition of vowel. Of course, in a complex language
such as English, the rabbit-hole is almost bottomless.

4.3.2 Break(c), Span(c), Nspan(c): Match a run of characters

Break(c) and Span(c) are multi-character versions of NotAny() and Any(). These
functions require a non-empty cset argument to specify a set of characters. Span(c)
matches one or more subject characters from the set in c. Span() must match at least
one subject character, and will match the longest subject string possible. Nspan() matches
zero or more subject characters from set c; it is equivalent to (Span(c) .|"").

Break(c) matches up to but not including any character in c. The string matched
must always be followed in the subject by a character in c. Unlike Span() and NotAny(),
Break() will match the empty string. Break() and Span() are called stream functions
because each streams by a series of subject characters. Span() is most useful for matching
a group of characters with a common trait. For example, we can say an English word is
composed of one or more alphabetic characters, apostrophes, and hyphens. A pattern for
this is:

word := Span(&letter ++ "’-")

Some patterns that can be formed by Span() and Break().

Pattern Function
a run of blanks Span(’ ’)
a string of digits Span(&digits)
a run of letters Span(&lettters)
everything up to the next blank Break(’ ’)
everything up to the next punctuation mark Break(’,.;:!?’)

11

4.3.3 Breakx(): Extended Break() function

Like SPITBOL, Unicon provides an extended version of Break() called Breakx(). If
necessary, Breakx() will look past the place where it stopped to see if a longer match is
possible. It will do this if some subsequent pattern element fails to match. The pattern
matcher checks to see if extending Breakx() might allow the subsequent pattern element
match. If so, the operation succeeds. If not, other pattern alternatives (if any) prior to
Breakx() are attempted. Suppose the pattern needs to match everything before the first
"e" in a subject string, as with:

"integers" ?? Break("e") -> out
write(out)
OUTPUT
int

Break() works fine in this scenario, however if whatever comes before the first occur-
rence of a two-letter pattern "er" is to be matched, then Breakx() is more appropriate.

"integers" ?? Breakx("e") -> out || "er"
write(out)
OUTPUT
integ

Breakx() stopped at the first e in "integer", and tried to match the next pattern
element, the two letters "er". But the next subject characters were "eg", a mismatch,
so Breakx() was instructed to try again. Breakx() extended itself to the next "e",
where "er" in the subject matches "er" in the pattern. The above example illustrates
that Break(c) will never return a string containing any characters in c, while Breakx(c)
might, if a subsequent pattern requires it. Breakx(c) provides a more selective, and more
efficient version of the Arb() pattern. For example the following construction could have
been used:

"integers" ?? Arb() -> out || "er"
write(out)
OUTPUT
integ

but Arb() pokes along one character at time, matching "i", "in", "int", and "inte",
before finding the desired match, "integ". In contrast, Breakx() gets the right answer
after only two attempts: "int" and "integ". The increased efficiency is even more
pronounced with a long subject.

4.4 Primitives

There are eight primitives built into the Unicon pattern matching system, of which seven
have known uses. They are:

12

4.4.1 Rem(): Match remainder of the subject

Rem() will match zero or more characters at the end of the subject string. For example

"NMSU Aggies" ?? "NMSU" || Rem() -> out
write(out)

OUTPUT
Aggies

The subpattern "NMSU" is matched at its first occurrence in the subject. Rem() is
matched from there to the end of the subject. If the example is changed to

"NMSU Aggies" ?? "Aggies" || Rem() -> out
write(out)
OUTPUT

the "Aggies" matches at the end of the string leaving an empty remainder for Rem().
Rem() then matches the empty string and the assignment to the out causes just a newline
to be written to the standard output.

The pattern components to the left of Rem() must successfully match some portion
of the subject string. Rem() begins after the last character matched by the earlier pattern
component and matches all subject characters till the end of the string. There is no restriction
on the particular characters matched.

4.4.2 Arb(): Match arbitrary characters

Arb() matches an arbitrary number of characters from the subject string. It matches the
shortest possible substring, including the empty string. The pattern components on either
side of Arb() determine what is matched. Example:

"Pragmatic Programmer" ?? "a" || Arb() -> out || "a"
write(out)
OUTPUT
gm

"Pragmatic Programmer" ?? "a" || Arb() -> out || "g"
write(out)
OUTPUT

In the first statement, the Arb() pattern is constrained on either side by the known
patterns "a" and "a". Arb() expands to match the subject characters between, "gm".
Note the smaller substring between two occurences of "a" is matched. In the second state-
ment, there is nothing between "a" and "g", so Arb() matches the empty string. Arb()
behaves like a spring, expanding as needed to fill the gap defined by neighboring patterns.

13

4.4.3 Arbno(): Match zero or more consecutive occurences of pattern

This function produces a pattern which will match zero or more consecutive occurrences
of the pattern specified by its argument. Arbno() is useful when an arbitrary number of
instances of a pattern may occur. For example, Arbno(Len(3)) matches strings of length
0, 3, 6, 9, ... There is no restriction on the complexity of the pattern argument. Like the
Arb() pattern, Arbno() tries to match the shortest possible string. Initially, it simply
matches the empty string. If a subsequent pattern component fails to match, Unicon backs
up, and asks Arbno() to try again. Each time Arbno() is retried, it supplies another
instance of its argument pattern. In other words, Arbno(PAT) behaves like

("" | PAT | PAT PAT | PAT PAT PAT | ...)

Also like Arb(), Arbno() is usually used with adjacent patterns to draw it out. Con-
sider the following example which tests for a list of one or more numbers separated by
commas and enclosed by parentheses.

item := Span(&digits)
list := Pos(1) || "(" || item || Arbno("," || item) ||

")" || Rpos(0)
if "(12,345,6)" ?? list then

write("Match succeeded")
else

write("Match failed")
if "(12,,6)" ?? list then

write("Match succeeded")
else

write("Match failed")
OUTPUT
Match succeeded
Match failed

Arbno() is retried and extended till the subsequent ")"matches. Pos(1) and Rpos(0)
force the pattern to be applied to the entire subject string.

4.4.4 Abort(): End pattern match

The Abort() pattern causes immediate failure of the entire pattern match, without seeking
other alternatives. Usually a match succeeds when we find a subject sequence which satisfies
the pattern. The Abort() pattern does the opposite: if we find a certain pattern, we will
abort the match and fail immediately. For example suppose we are looking for an "a" or
"b", but want to fail if "1" is encountered first:

if "ab1" ?? Any("ab") .| "1" || Abort() then
write("Match succeeded")

else

14

write("Match failed")
if "1ab" ?? Any("ab") .| "1" || Abort() then

write("Match succeeded")
else

write("Match failed")
OUTPUT
Match succeeded
Match failed

The second pattern matching expression deserves some elaboration as it shows how the
pattern matching engine works. At each cursor position all pattern alternatives are tried.
In the second pattern matching expression after the literal "1" matches Abort() matches
causing the pattern to fail. The Any() pattern thus does not get a chance to match the
character "a" at cursor position 2.

4.4.5 Bal(): Match balanced string

The Bal() function produces a pattern that matches the shortest non-empty string in which
parentheses are balanced. A string without parentheses is also considered to be balanced,
so in the absence of parentheses, in unanchored mode Bal() simply matches each letter of
the string one after another. According to Bal() the following strings are balanced:

(X) Y (A!(C:D)) (AB)+(CD) 9395 (8+-9/2)

and these are not:

)A+B (A*(B+) (X))

Unlike string scanning function bal(), pattern Bal() is hardwired to only look for left
and right parentheses. The matching string does not have to be a well-formed expression in
the algebraic sense; it might just as easily be a Lisp S-expression or other parenthesis-based
notation. Like Arb(), Bal() is often useful when constrained by other pattern components.
For example:

"ab+(14-2)*c" ?? Any("+-*/") || Bal() -> out ||
Any("+-*/")

OUTPUT
(14-2)

Some additional examples of using Bal() are presented in the program below. Since
Bal() happily matches spaces, these examples discard matches that consist only of a space
character. In example 1, the pattern match applied to Bal() is used as a generator to drive
an every loop; example 2 does the same, but also stores the matched string into a variable
for convenient processing in a separate loop body. Example 3 uses the pattern from within
a string scanning environment.

15

procedure main()
s1 := "(a + b) - (c - (d*e)) + (f/g)"

example 1
every write(" " ˜== (s1 ?? Bal()))

example 2
every (s1 ?? Bal() -> z) ˜== " " do

write("z: ", image(z))

example 3
s1 ? {

repeat {
if s2 := =Bal() then write("s2: ", image(s2))
else {

write("didn’t balance at ", &pos)
move(1)
}

if pos(0) then break
}

}
end

4.4.6 Fail(): Seek other alternatives

The Fail() pattern signals the failure of this portion of the pattern match, causing the
pattern matcher to backtrack and seek other alternatives. Fail() will also suppress a
successful match, which can be very useful when the match is being performed for its side
effects, such as immediate assignment. For example this fragment will display the subject
characters, one per line:

out := &output
subject ? Len(1) => out => Fail()

Len(1) matches the first subject character, and immediately assigns it to out. Fail()
tells the pattern matcher to try again, and since there are no other alternatives, the entire
match is retried at the next subject character. Forced failure and retries continue until the
subject is exhausted. The difference between Abort() and Fail() is that Abort() stops
all pattern matching, while Fail() tells the system to back up and try other alternatives
or other subject starting positions.

4.4.7 Fence(): Prevent match retries

Pattern Fence() matches the empty string and has no effect when the pattern matcher is
moving left to right in a pattern. However, if the pattern matcher is backing up to try other
alternatives, and encounters Fence(), the match fails. Fence() can be used to lock in

16

an earlier success. Consider the following example: The pattern succeeds if the first "a" or
"b" in the subject is immediately followed by a plus sign.

"1ab+" ?? Any("ab") || Fence() || "+"

In the example above, the pattern matcher matches the "a" and goes through the
Fence(), only to find that "+" does not match the next subject character, "b". The
pattern matcher then tries to backtrack, but is stopped by the Fence() and fails. If
Fence() were omitted, backtracking would match Any() to "b", and then proceed for-
ward again to match "+". If Fence() appears as the first component of a pattern, the
pattern matcher cannot back up through it to try another subject starting position. This
allows the unanchored pattern matching mode to simulate the anchored mode.

4.4.8 Succeed(): Match Always

This pattern was added to Unicon to match SNOBOL4 pattern for pattern. The authors do
not know of any meaningful use of Succeed().

4.5 Unevaluated Expressions

Consider the following pattern construction example which captures the next i characters
after a colon:

npat := ":" || Len(i) -> item

This pattern is static in the sense that the value of i at time of pattern construction is
captured by the pattern. Even if i subsequently changes the pattern uses the original value
of i. One way to use the current value of i is to specify the pattern each time it is used.

SUBJECT ?? ":" || Len(i) -> item

However this is not only inefficient, but also a possible maintainence nightmare. The
unevaluated expression facility allows us to obtain the efficiency of static pattern construction
yet use the current value of variables. An unevaluated expression is constructed by enclosing
it in a pair of backquotes (‘). So we can construct the pattern npat as

npat := ":" || Len(‘i‘) -> item

The pattern is only constructed once, and assigned to npat. i’s current value is ignored
at this time; the variable’s name is stored in the pattern. Later, when npat is used in a
pattern match, the deferred evaluation operator fetches the then current value of i. De-
ferred evaluation may appear as the argument of the pattern functions Any(), Break(),
Breakx(), Len(), NotAny(), Pos(), Rpos(), Rtab(), Span(), or Tab().

17

procedure main()
pat := Tab(‘i‘) -> out1 || Span(‘s‘) -> out2
sub := "123aabbcc"
i := 5
s := "ab"
sub ?? pat
write(out1, ":", out2)
i := 4
sub ?? pat
write(out1, ":", out2)

end

OUTPUT

123a
abb
123
aabb

Note that i and s were undefined when pat was first constructed.

4.5.1 Immediate Assignment

Immediate assignment can be used as a debugging aid to view the pattern matching pro-
cess. However combined with unevaluated expressions immediate assignments give rise to a
powerful class of patterns. In these patterns a variable that is assigned to during the pattern
matching process is used later in the very same pattern match. Consider the following exam-
ple where the first part of the subject contains the length of the field that is to be extracted.
So the pattern first assigns the length to a variable n and uses that variable as a argument
to Len().

fpat := Span(&digits) => n || Len(‘n‘) -> field
"12abcdefghijklmn" ?? fpat
write(field)

OUTPUT
abcdefghijkl

4.5.2 Lack of Recursive Pattern Support

At the present time, Unicon’s pattern facilities do not support the use of an unevaluated
expression to achieve recursive patterns. For example, in SNOBOL it was possible to write
a recursion comparable to the following:

procedure main()
out := &output
p := ‘p‘ || "Z" .| "Y"

18

po := p -> out
L := ["Y", "YZZZ", "XYZ", "YZZX", "AYZZZZB"]
every !L ?? po

end

On Unicon, this will result in a pattern stack overflow run-time error.

4.5.3 Limitations due to lack of eval()

A major difference between the SNOBOL4 and Icon families is that Icon lacks a general
facility for evaluating string contents as expressions, the ability to introduce new code on the
fly that is available in SNOBOL. To somewhat ameliorate this limitation, the pattern feature
was augmented so that certain operations will be evaluated during the pattern matching
phase instead of the pattern construction phase. Unicon supports the following language
constructs in unevaluated expressions.

� function call

� method call

� variable reference

� field reference

Note the function or method calls can only have identifiers or constants as parameters.
Expressions as parameters are not allowed. Multiple field references of the form x.y.z are
not yet supported. An unevaluated function or method call is used in two ways. The pattern
matcher performs the call and if it fails, treats the failure as if a pattern subcomponent has
failed and tries to backtrack in seach of other alternatives. However if the pattern call
succeeds then the pattern matcher can either ignore the result of the function or use the
result in the pattern matching process. To specify that the result should be used in pattern
matching the unevaluated function call is enclosed in ‘ ‘. Unevaluated expressions can also
include operators for example to check if a variable is non null

‘\(x)‘

binary operators can be used using the prefix notation. Only one operator or function call
can be used in an unevaluated expression. Unicon programs that use unevaluated expressions
must be compiled with the "-f s" option which enables full string invocation.

4.6 Pattern expressions and Unicon control structure

One of the goals while introducing pattern types in Unicon was to ensure that it integrated
well with Unicon’s syntax and features such as goal directed evaluation. Unicons features
such as generators and limiting generators can be used along side the pattern matching
features to write concise and readable code. The following code changes all lines of the
format

19

year month day unchanged portion
in the input file to
month day year unchanged portion
in the output file.

procedure main()
p := Fence() || Len(4) -> yr || " " ||

Len(4) -> mo || " " || Len(2) -> day
in := open("leninput", "r")
out := open("lenoutput", "w")
every write(out, (line := !in) ??

p := mo || " " || day || ", " || yr || " ")
end

The following code shows how the limiting generation control structure can be used to
obtain the nth occurrence of a pattern. In this example the word red before the third
occurrence of fish will be output

procedure main()
s := "One fish two fish red fish blue fish"
wrdpat := Break(&letters) || Span(&letters) -> word
p := wrdpat || Span(" ") || "fish"
every (s ?? p) \ 3
write(word)

end

5 Conclusions

The pattern matching facilities are still rough around the edges, but nevertheless provide
benefits in many text processing tasks. They allow Unicon programmers to write more
succinct and efficient code to perform text processing.

Since the new pattern facility closely follows the implementation of patterns in SNOBOL
it also provides a path for programmers to migrate legacy SNOBOL code to Unicon. Trans-
lating SNOBOL pattern matching code to Unicon has been simplified because of the nearly
one to one matching between SNOBOL operators and functions and Unicon operators and
functions. The lack of an eval function in Unicon prevents the pattern data type from
exhibiting all the power of SNOBOL patterns.

APPENDIX A: Language Reference

Regular Expressions

Regular expressions in Unicon are pattern literals; evaluation constructs and produces a
pattern value. Regular expressions are enclosed in tag-like < and > characters, within which

the usual Unicon operator syntax does not apply and instead, the following elements are
allowed. Unicon presently recognizes only the classic small core set of regular expression
operators and a few common extensions. Regular expressions are extended incompatibly in
myriad tools and if your favorite regular expression operator is not listed here, it is probably
not in Unicon at present.

r – ordinary symbol r is a regular expression that matches r.

r1 r2 – juxtaposition of two regular expressions is a concatenation.

r1 | r2 – alternation of two regular expressions produces a regular expression that matches
either r1 or r2. It is not a generator.

r* – the asterisk is a postfix operator that produces a regular expression that matches zero
or more occurrences of r.

r+ – the plus is a postfix operator that produces a regular expression that matches one or
more occurrences of r.

r? – the question mark is a postfix operator that produces a regular expression that matches
zero or one occurrences of r.

r{n} – the curly braces are a postfix operator that produces a regular expression that
matches n occurrences of r.

"lit" – string literals produce a regular expression that matches the characters of the
string, with the usual escapes.

’lit’ – cset literals produce a regular expression that matches any one character of the
cset, with the usual escapes.

[chars] – square brackets produce a regular expression that matches any one character of
the cset, with minus interpreted as a range character. Not yet implemented: hex
or octal escapes.

. – in a regular expression, the period matches any one character except the newline char-
acter.

(r) – parentheses are used for grouping and produce a regular expression that matches r.

Pattern Variables

variable
a variable in a pattern definition that may not be changed during a pattern match operation.

‘variable‘
an unevaluated variable in a pattern definition that can be changed in a pattern match op-
eration.

21

Pattern Operators

pattern1 || pattern2 pattern concatenation
pattern concatenation operator produces a new pattern containing the left operand followed
the right operand.

pattern1 .| pattern2 pattern alternation
pattern alternation operator produces a pattern containing either the left operand or the
right operand.

substring -> variable conditional assignment
assigns the substring on the left to the variable on the right if the pattern match is successful.

result => variable immediate assignment
assigns the immediate result on the left to a variable on the right within a pattern.

.> variable cursor position assignment
assigns the cursor position of the string to a variable on the right within a pattern.

string ?? pattern comparison operator
compares the string on the left to see if there are any matches of the pattern on the right in
the un-anchored mode.

=pattern comparison operator
compares the current string in the string scanning environment to see if there is a match of
the pattern on the right in the anchored mode.

Pattern Built-In Functions

The new built-in functions in this section generally construct and produce a pattern as
their return value. The resulting pattern may then be stored in a variable or composed with
others to form more complex platterns, or used in the pattern match (??) or string scanning
operators as described above.

Abort() pattern cancel
causes an immediate failure of the entire pattern match.

Any(c) match any
matches any single character contained in c appearing in the subject string.

Arb() arbitrary pattern
matches zero or more characters in the subject string.

22

Arbno(p) repetitive arbitrary pattern
matches repetitive sequences of p in the subject string.

Bal() balanced parentheses
matches the shortest non-null string which parentheses are balanced in the subject string.

Break(c) pattern break
matches any characters in the subject string up to but not including any of the characters
in cset c.

Breakx(c) extended pattern break
matches any characters up to any of the subject characters in c, and will search beyond the
break position for a possible larger match.

Fail() pattern back
signals a failure in the current portion of the pattern match and sends an instruction to go
back and try a different alternative.

Fence() pattern fence
signals a failure in the current portion of the pattern match if it is trying to backing up to
try other alternatives.

Len(i) match fixed-length string
matches a string of a length of i characters in the subject string. It fails if i is greater than
the number of characters remaining in the subject string.

NotAny(c) match anything but
matches any single character not contained in character set c appearing in the subject string.

Nspan(c) optional pattern span
matches the longest available sequence of zero or more characters from the subject string
that are contained in c.

Pos(i) cursor position
sets the cursor or index position of the subject string to the position i according the Unicon
index system shown below:

-6 -5 -4 -3 -2 -1 0
| U | n | i | c | o | n |
1 2 3 4 5 6 7

Rem() remainder pattern
matches the remainder of the subject string.

23

Span(c) pattern span
matches one or more characters from the subject string that are contained in c. It must
match at least one character.

Succeed() pattern succeeds
produces a pattern that, when matched, will cause the surrounding pattern match to succeed
without further scrutiny.

Tab(n) pattern tab
matches any characters from the current cursor or index position up to the specified position
of the subject string. Tab() uses the Unicon index system shown in Pos() and position n
must be to the right of the current position.

Rpos(n) reverse cursor position
sets the cursor or index position of the subject string to the position n back from the end of
the string, equivalent to using Unicon’s negative indices in Pos().

6 5 4 3 2 1 0
| S | N | O | B | O | L |

Rtab(i) pattern reverse tab
matches any characters from the current cursor or index position up to the specified position
(back from the end) of the subject string, equivalent to using a negative index in Tab().
Position n must be to the right of the current position.

In addition to these new functions, the built-in function image(x) produces an interest-
ing string when invoked with a pattern argument, including the pattern’s serial number and
number of elements along with an approximation of the pattern’s components. For example,
if p were the pattern

p := Break(&letters) || Span(&letters) -> word
write(image(p))

writes out

pattern_3(4) = Break(&letters) || (Span(&letters)) -> word

APPENDIX B: Monitoring Pattern Matching

Unicon’s execution monitoring facilities have been extended to allow the observation of pat-
tern matching execution that is otherwise internal to the runtime system. Pattern matching
always occurs in a string scanning context, so the execution monitoring events related to
string scanning environments, including E Snew, E Sfail, E Ssusp and E Sresum, are
typically monitored as part of a tool that is monitoring pattern matches. The pre-existing

24

events E Spos, E Assign, E Value, and E Deref also occur as side-effects of pattern
matching evaluation.

The following new events occur during pattern creation and pattern matching.

String Scanning Event Event Value Meaning
E Pattern number of bytes allocated pattern (block) allocation
E Pelem number of bytes allocated pattern element (block) allocation
E PatCode integer pattern element code

E PatAttempt pattern attempt to match a pattern
E PatMatch string matched pattern match succeeded
E PatFail (none) pattern match failed

E PelemAttempt integer pattern code attempt to match an element
E PelemMatch integer pattern code element match succeeded
E PelemFail integer pattern code element match failed
E PatArg value value being matched
E PatVal value result of deferred evaluation
E PatPush 1 = Region Push pattern elements pushed
E PatPop (none) pattern elements popped

25

	Introduction
	Icon Scanning vs. Snobol Patterns vs. Unicon Patterns
	The Two Types of SNOBOL Pattern Statements

	Pattern Matching Foundations
	Pattern Literals
	The Unicon Pattern Data Type
	Operators
	Integer Pattern Functions
	Len(i): Match fixed-length string
	Pos(i), Rpos(i): Verify cursor position
	Rtab(i), Tab(i): Match to fixed position

	Character Pattern Functions
	Any(c), NotAny(c): Match one character
	Break(c), Span(c), Nspan(c): Match a run of characters
	Breakx(): Extended Break() function

	Primitives
	Rem(): Match remainder of the subject
	Arb(): Match arbitrary characters
	Arbno(): Match zero or more consecutive occurences of pattern
	Abort(): End pattern match
	Bal(): Match balanced string
	Fail(): Seek other alternatives
	Fence(): Prevent match retries
	Succeed(): Match Always

	Unevaluated Expressions
	Immediate Assignment
	Lack of Recursive Pattern Support
	Limitations due to lack of eval()

	Pattern expressions and Unicon control structure

	Conclusions
	APPENDICES

