
Ulex: A Lexical Analyzer
 Generator for Unicon

Katrina Ray, Ray Pereda, and Clinton Jeffery

Unicon Technical Report UTR – 02a

May 21, 2003

Abstract

Ulex is a softwaretool for building languageprocessors.It implementsa compatible
subsetof the well-known UNIX C tool calledlex(1) for programswritten in Unicon
and Icon. This paper provides a brief description of Ulex and how to use the tool.

Department of Computer Science
New Mexico State University

Las Cruces, NM 88003

School of Computer Science
University of Nevada Las Vegas

Las Vegas, NV 89154

1. Introduction

Building a languageprocessorsuch as a compiler is a complex task. A language
processormust be able to extract the grammaticalstructureof a sentencein the
language.This extractionis knownasparsing.Thefirst stepin parsingis scanningto
determine the lexical items or “words” in a sentence.

Ulex is a tool for building scannersthat perform lexical analysis.Ulex standsfor
UniconLexical Analyzer.It wasdesignedto function like theclassicUNIX program
calledlex, exceptthat it generatesUniconcoderatherthanC. Lex datesbackto 1975
and is documented in [Lesk75].

Ulex usesregularexpressionnotationto specifylexical analysis;the lexical structure
of many languagescan be conciselyand preciselystatedusing this notation..The
regular expressions supported in Ulex are given in Table 1.

Operator Description
a ordinary non-operator symbols match themselves
. a period matches any single character except newline
| alternation matches either the preceding or following expression

bc concatenation is an implicit binary operator with low precedence
* matches zero or more occurrences of the preceding expression

[] matches any one character within the brackets
+ matches one or more occurrences of the preceding expression
? matches zero or one occurrences of the preceding expression

“…” matches characters in quotes literally
(e) groups regular expressions, overriding operator precedence

Table 1: Regular Expressions in Ulex.

This documentassumesyou aresomewhatfamiliar with regularexpressions;if not,
you may alsowish to readLex and Yacc, by [Levine92].Ulex is usuallyusedwith
Iyacc, a parser generatortool that is a companionprogram for Ulex. Iyacc is
documented in [Pereda00]. Ulex and Iyacc are additionally described in [Jeffery03].

2. Ulex Program Structure

The Ulex tool takes a lexical specificationand producesa lexical analyzer that
correspondsto that specification.The specification consistsof a list of regular
expressions,with auxiliary code fragments,variables,and helper functions. The
resulting generated analyzer is in the form of a procedure named yylex() .

All Ulex programsconsist of a file with an extensionof .l that containsthree
sections,separatedby linesconsistingof two percentsigns.Thethreesectionsarethe
definitions section, the rules section,and the proceduressection.The definitions

section has two kinds of components. Macros define shorthand for regular
expressions that will be used in the next section. Code fragments enclosed by %{ and
%} are copied verbatim to the generated lexical analyzer. The rules section contains
the actual regular expressions that specify the lexical analysis that is to be performed.
Each regular expression may be followed by an optional semantic action enclosed in
curly brackets, which is a segment of Unicon code that will be executed whenever
that regular expression is matched. The procedures section is also copied out verbatim
into the generated lexical analyzer.

The yylex() function and its return value constitute the primary interface between the
lexical analyzer and the rest of the program. yylex() returns a -1 if it consumes the
entire input; returning different integer values from within semantic actions in the
rules section allows yylex() to break the input up into multiple chunks of 1+
characters (called tokens), and to identify different kinds of tokens using different
integer codes. In addition to the return value, the generated lexical analyzer also
makes use of several global variables. The names and meanings of these are
summarized in Table 2.

Variable Name Description
yyin File from which characters will be read; default: &input

yytext String of characters matched by a regular expression
yyleng Length of yytext (*yytext)
yychar Integer category of the most recent token
yylval Lexical value(s) (often a record) of the most recent token

Table 2: Ulex global variables.

3. Example 1: A Word Count Program

There is a UNIX program called wc, short for word count, that counts the number of
lines, words, and characters in a file. This example demonstrates how to build such a
program using Ulex. A short, albeit simplistic, definition of a word is any sequence of
non-white space characters, where white space characters are blanks and tabs. See
Listing 1 for a Ulex program that operates like wc.

ws [\t]
nonws [^ \t\n]

%{
global cc, wc, lc
%}

%%
{nonws}+ { cc +:= yyleng; wc +:= 1 }
{ws}+ { cc +:= yyleng }
\n { lc +:= 1; cc +:= 1 }
%%

procedure main()
cc := wc := lc := 0
yyulex()
write(right(lc, 8), right(wc, 8), right(cc, 8))

end

Listing 1. wc using ulex.

In the word count program, the definitions section consists of two definitions, one for
white space characters (ws) and one for non-white space characters (nonws). These
definitions are followed by code to declare three global variables: cc , wc , and lc .
These are the counters for characters, words, and lines, respectively. The rules section
in this example contains three rules. White space, words, and newlines each have a
rule that matches and counts their occurrences. The procedure section has one
procedure, main() . It calls the lexical analyzer and then prints out the counted values.

4. Example 2: A Lexical Analyzer for a Desktop Calculator

The previous example demonstrates using Ulex to create standalone programs.
However, yylex() is typically called from a parser. The yylex() function can be used
to produce a sequence of words so that a parser such as that generated by the iyacc
program can combine those words into sentences. Thus it makes sense to study how
ulex is used in this context. One obvious difference is that in the earlier example,
yylex() was only called once to process the entire file. In contrast, when a parser uses
yylex() , it calls the analyzer repeatedly, and yylex() returns with each word that it
finds. This will be demonstrated in the example that follows.

A calculator program is simple enough to understand in one sitting and complex
enough to get a sense of how to use Ulex with its parser generator counterpart: Iyacc.
In a general desktop calculator program, the user types in complex formulas, which
the calculator evaluates and then prints the result. The generated lexical analyzer must
recognize the words of this language, which will be handled by the parser. In this case
the words are numbers, math operators, and variable names.

A number is one or more digits, followed by an optional decimal point and one or
more digits. In regular expressions, this may be written as:

[0-9]+(\.[0-9]+)?

The math operators are simple words composed of one character. Variable names can
be any combination of letters, digits, and underscores. So as not to confuse them with
numbers, refine the definition by making sure that the variables do not begin with a
number. This definition of variable names corresponds to the following regular
expression:

[a-zA-Z_][a-zA-Z0-9_]*

Recall that thereare threesectionsto every Ulex program:a definitions section,a
rulessection,anda proceduressection.TheUlex programfor matchingthewordsof
a calculator is given in Listing 2.

%{
y_tab.icn contains the integer codes for representing the
terminal symbols NAME, NUMBER, and ASSIGNMENT.
$include y_tab.icn
%}

letter [a-zA-Z_]
digiletter [a-zA-Z0-9_]

%%
{letter}{digiletter}* { yylval := yytext; return NAME }
[0-9]+(\.[0-9]+)? { yylval := numeric(yytext); return NUMBER }
\n {

 return 0 # logical end-of-file
}

“:=” { return ASSIGNMENT }
[\t]+ {

 # ignore white space
}

. { return ord(yytext) }
%%

Listing 2. Ulex program for recognizing the lexical elements of a calculator.

Thedefinitionssectionhasboth a componentthat is copieddirectly to thegenerated
lexical analyzeraswell asa setof macros.The first rule matchesvariablenames;the
secondrule matchesnumbers.Thethird rule returns0 to indicateto theparserthat it
shouldevaluatetheexpression.Thefourth rule lets theparserknow that therewasan
assignmentoperator,andthefifth is usedto ignorewhite space.Thelastrule matches
everythingelseincluding the othermathematicaloperators.The character’snumeric
code (e.g. ASCII) is returned directly to the parser.

yylval is usedto store the result wheneverwe match either a variable nameor a
number.This way when the lexical analyzerreturnsthe integer code for nameor
number,the parserknowsto look in yylval for the actualnameor numberthat was
matched.SinceUniconallowsvariablesto hold anytypeof valuethereis no needfor
a complicatedconstructto handlethefact thatdifferenttokenshavedifferenttypesof
lexical values.

Notice that the matchesthat are allowed by this set of regular expressionsare
somewhatambiguous.For example,count10maymatcha variablenameandthenan

integer, or one variable name. The Ulex tool is designedto match the longest
substringof input that can match the regular expression.So count10 would be
matchedasoneword,which is a variablein this case.In thecasewheretwo different
expressionmatch the same number of characters,the first rule listed in the
specification will be used.

5. Conclusion

Theexamplesin this paperintroducehow Ulex maybeusefulin languageprocessing
either as a standaloneapplicationor in conjunctionwith a parser.Ulex is still in a
preliminarystate,but is now readyfor testing;when matureit shouldbe useful for
experimental compiler prototyping.

Acknowledgements

The Ulex tool is primarily the work of Katrina Ray; she was supported by an NMSU
fellowship and by the National Library of Medicine during its development.

Ray Pereda wrote the first version of this document to describe his iflex tool.

References

[Jeffery03] C. Jeffery, S. Mohamed, R. Pereda, and R. Parlett. Programming with
Unicon. http;//unicon.sf.net/book/ub.pdf, 2003.

[Lesk75] M.E. Lesk and E. Schmidt. LEX – Lexical Analyzer Generator. Computer
Science Technical Report No. 39, Bell Laboratories, Murray Hill New Jersey,
October 1975.

[Levine92] J.R. Levine, T. Mason, and D. Brown. Lex & Yacc, O”Reilly &
Associates, Cambridge, Massachusetts, 1992.

[Pereda00] Ray Pereda. Iyacc – a Parser Generator for Icon, Unicon Technical
Report 03, http://unicon.sf.net/utr/utr3.pdf, February 2000.

Appendix: Differences Between Ulex and UNIX lex(1)

This appendixsummarizestheknowndifferencesbetweenUlex andtheUNIX lex(1)
tool. Ulex is a large subset of lex, but has several important limitations to note.

No lookahead – the lookahead operator / is not yet supported
Naïve semantic actions – semantic actions must be enclosed in curly brackets
No repetition – the repetition operators (e.g. a{2:5}) are not yet supported.

