
Unicon OpenGL 2D and 2D/3D
Graphics User’s Guide

Gigi Young and Clinton Jeffery

Unicon Technical Report: 22

April 19, 2021

Abstract

Unicon version 13.3 adds a new graphics implementation that extends
the language’s 2D capabilities. This guide is a gentle introduction to the
new graphics features introduced by the OpenGL-based implementation
of Unicon’s 2D and integrated 2D/3D facilities.

Unicon Project
http://unicon.org

University of Idaho
Department of Computer Science

Moscow, ID, 83844, USA

New Mexico Institute of Mines and Technology
Department of Computer Science and Engineering

Socorro, NM, 87801, USA

1 Introduction

A new OpenGL-based implementation of 2D graphics facilities in Version 13.3 of
Unicon introduces new features, such as a display list architecture inherited from
the 3D facilities and an integrated 2D/3D graphics mode. This report describes the
new features provided by the OpenGL-based implementation of Unicon’s graphics
facilities. This report supplements IPD268a [1] for Unicon’s 2D facilities and UTR9d
[2] for Unicon’s 3D facilities. The reader should consult [3] for additional details on
this implementation.

The OpenGL-based 2D facilities described in this report have thusfar only been
implemented and tested on Linux systems. The OpenGL 2D and 2D/3D facilities are
enabled by installing the OpenGL and FreeType development headers and libraries
prior to configuring and building Unicon. Additionally, Linux systems require the
installation of X11 development headers and libraries. The source code is configured
when OpenGL graphics appears in the unicon -features listing.

The OpenGL graphics implementation is toggled on/off by setting/unsetting the
environment variable UNICONGL2D. Use mode "g" with function open() to open a
2D-only window and mode "gl" to open an integrated 2D/3D window.

2 2D Features

The OpenGL implementation of the 2D facilities introduces a display list achitecture
and transparency that will be familiar to users of Unicon’s 3D facilities. These two
primary added features and a number of smaller items augment Unicon’s previous
2D graphics feature set. While great effort has been made to preserve compatibility
with Unicon’s other 2D graphics implementations, a few changes can be observed.

2.1 Display List

The display list of the 2D facilities is a list of records. Every record on the display
list possesses the field name which contains the string literal identifying its record
type. Most Unicon 2D graphics functions create and append corresponding graphics
records to the display list. See Section 4 in this report for details on display list
records and their corresponding graphics functions.

Graphics function WindowContents() returns a reference to the display list. The
reference to the most recently generated display list record can be obtained by grab-
bing the last element of the display list after returning from a successful call to a
Unicon graphics procedure that creates a display list record.

1

DrawRectangle(0,0,100,100)

drawrect := WindowContents()[-1]

The display list can be modified by the user. It may contain only records in the
format specified in Section 4. Failure to comply will result in a run-time error.

2.1.1 Animation

The display list allows for intuitive animation. References to primitives on the display
list can be used to modify position, color, text, font, and more without needed to
write specialized drawing procedures for changing these attributes. See Section 4
in this report (Modifiable Display List Record Fields) for details on which fields of
display list records are modifiable. Changes to display list record fields only become
visible when the runtime system redraws the screen, such as when the program calls
the function Refresh().

All graphical primitives except FillPolygon, DrawPolygon, DrawLine,
DrawSegment, and DrawPoint have x and y (positional) fields to be used for modi-
fying the position of a particular primitive.

drawrect.x +:= 5

drawrect.y +:= 5

Refresh()

For graphical primitives that do not possess positional fields, the translational
coordinates dx and dy can be used instead. Display list records Dx and Dy affect
the translational coordinates of all subsequent graphical primitives until another
translational display list record of the same type is encountered. Thus, Dx and Dy

can be used to translate groups of primitives. This is more efficient than modifying
each x and y for each graphical primitive that possesses those fields.

Context attribute display list records are created and appended to the display
list by WAttrib() in order of the argument list given. Only assignments create
display list records. However, all records are created before the first suspension of
WAttrib().

dl := WindowContents()

WAttrib("dx=0","dy=0")

dx := dl[-2]

dy := dl[-1]

DrawPolygon(0,0,0,100,100,100,100,0)

2

DrawLine(0,0,100,100)

DrawLine(0,100,100,0)

dx.val +:= 5

dy.val +:= 5

Refresh()

Another technique is to build a list of references to display list records that need
to be modified in a render loop. A case expression can be used on the name field
of the records to differentiate between the types of records. The following program
uses an animation loop which results in a color-shifting, filled circle that bounces off
the walls of the window.

link graphics

$include "keysyms.icn"

procedure main()

width := height := 400

L := []

&window := open("simple animation", "g", "size="||width||","||height)

dl := WindowContents()

WAttrib("fg=red")

put(L, dl[-1])

FillCircle(10,200,10)

put(L, dl[-1])

dirx := diry := 1

speed := .1

repeat {

if *Pending() > 0 then {

case Event() of {

"q": exit(0)

}

}

else every obj := !L do {

case obj.name of {

"FillCircle": {

if (obj.x + dirx*(obj.r + speed) > width) then

3

dirx := -1

else if (obj.x + dirx*(obj.r + speed) < 0) then

dirx := 1

if (obj.y + diry*(obj.r + speed) > height) then

diry := -1

else if (obj.y + diry*(obj.r + speed) < 0) then

diry := 1

obj.x +:= speed*dirx

obj.y +:= speed*diry

}

"Fg": {

tmp := obj.r

obj.r := obj.g

obj.g := obj.b

obj.b := tmp

}

}

}

WDelay(1)

Refresh()

}

end

2.1.2 Optimizing Performance

Graphics facilities that utilize a display list should provide a mechanism by which to
manage the list size. For Unicon, graphics functions CopyArea() and EraseArea()

may be used to truncate the display list, preventing the display list from growing
indefinitely.

Calling CopyArea() with positional and dimensional arguments to cover the en-
tire destination window will delete the destination window’s display list and add a
CopyArea display list record. Calling EraseArea() with positional and dimensional
arguments to cover the entire window will cause the display list to be deleted without
appending a new display list record. These uses of CopyArea() and EraseArea() are
useful when previous rendering operations are fully obscured and no longer needed.

EraseArea() is useful when previous rendering operations are fully obscured and
no longer needed. On the other hand, CopyArea() can be used to condense multiple
rendering operations into one display list record as long as animation is no longer

4

needed for any part of the area copied. CopyArea() can also be used to reduce the
number of items on the display list for any portion of the window smaller than its
maximum dimensions if the obscured items are removed manually.

2.2 Transparency

Transparency is denoted by the alpha value, which ranges from 0 (fully transparent)
to 1 (fully opaque). To ensure proper transparency blending, any transparent objects
should be drawn in the correct order, i.e. objects that appear farther away should
be drawn first. Once drawn in the correct order, the display list will preserve the
order, unless the ordering list is modified by the user.

2.2.1 Color Specification

Transparency can be specified explicitly within a color specification in a few different
ways. The first of which is a transparency modifier that prepends the usual Unicon
color name string. The available transparency modifiers are in the following table
taken from [2].

Transparency name percent visible
opaque 100
dull, a.k.a. subtranslucent 75
translucent 50
subtransparent 25
transparent 5

Alternatively, the transparency modifier can be a floating-point number from (0, 1].
If the transparency modifier is 0, then the value of context attribute alpha is
used. If the transparency modifier is greater than 1, then an alpha of 1 is used.
Thus, Fg("translucent red") is equivalent to Fg("0.5 red"). The alpha value
can also be set by defining RGBA values directly, such as Fg("#FF000080") or
Fg("#65535,0,0,32768").

2.2.2 Context Attribute

The OpenGL implementation introduces a new context attribute, alpha, which has
a default value of 1 (fully opaque). alpha denotes the alpha value of a color spec-
ification which does not explicitly assign transparency, i.e. "red" or "#FF0000".
Thus,

5

WAttrib("alpha=0.5","fg=red","bg=black")

would assign an alpha value of 0.5 to both the fg and bg colors. However, if alpha
values are specified in the color phrase

WAttrib("alpha=0.5","fg=0.4 red","bg=0.7 black")

then the value of alpha is ignored.

2.2.3 Modifying Display List Record Fields

The third way is by modifying the alpha field, a, of a Fg or Bg display list record
(see Section 4 in this report for more details).

Fg("red")

fg := WindowContents()[-1]

fg.a := 32768

Refresh()

It should be noted that the RGBA fields of Fg and Bg display list records are 16-bit
integers ranging from 0 to 65535 opposed to the alpha values ranging from 0.0 to
1.0. To apply the alpha (or color) change, simply use the library function Refresh().
This is also an alternative to using native mutable colors.

2.2.4 A Simple Program

To bring everything together, the following program phases three colored rectangles
in and out in a loop.

link graphics

$include "keysyms.icn"

procedure main()

local const := 0.01, incr1, incr2, incr3, alpha1, alpha2, alpha3,

fg1, fg2, fg3

incr1 := incr2 := incr3 := const

&window := open("","g","size=200,200","bg=black")

Fg("blue")

fg1 := WindowContents()[-1]

alpha1 := fg1.a/65535.0

6

FillRectangle(25,25,150,150)

Fg("0.67 green")

fg2 := WindowContents()[-1]

alpha2 := fg2.a/65535.0

FillRectangle(50,50,100,100)

Fg("0.33 red")

fg3 := WindowContents()[-1]

alpha3 := fg3.a/65535.0

FillRectangle(75,75,50,50)

Refresh()

repeat {

if *Pending() > 0 then

case Event() of {

"q": exit()

}

else {

WDelay(10)

if alpha1 >= 1.0 then incr1 := -const

else if alpha1 <= 0 then incr1 := const

alpha1 +:= incr1

if alpha2 >= 1.0 then incr2 := -const

else if alpha2 <= 0 then incr2 := const

alpha2 +:= incr2

if alpha3 >= 1.0 then incr3 := -const

else if alpha3 <= 0 then incr3 := const

alpha3 +:= incr3

fg1.a := alpha1*65535

fg2.a := alpha2*65535

fg3.a := alpha3*65535

Refresh()

}

7

}

end

2.3 Fonts

The OpenGL-based implementation uses FreeType for font rasterization, which now
allows for family in the font string format family[,styles],size to specify a
TrueType or OpenType font file. Both library functions WAttrib() and Font() can
be used to select a user-specified font file with

WAttrib("font=mymonofont.ttf,18")

or

Font("mymonofont.ttf,18")

The semantics of font specification remains otherwise unchanged.

8

3 Integrated 2D/3D Features

The integrated 2D/3D facilities are an optional extension to Unicon’s 3D mode, the
mode obtained by passing "gl" to open(). The semantics of the integrated graphics
mode can be imagined by looking through the lens of a camera. The lens (near plane),
contains all 2D rendering, while the rest of the space (viewing volume) contains all
3D rendering. Effectively, 3D windows now have an additional display list for 2D
primitives, and an integrated 2D/3D window is a 3D window in which the 2D display
list is non-empty.

Figure 1: Orthogonal viewing volume
Figure 2: Perspective viewing volume

3.1 Canvas Attribute projection

The canvas attribute projection was added to give the option of selecting an orthog-
onal (one-to-one) or perspective (foreshortening) projection for the viewing volume.
The call WAttrib("projection=ortho") selects an orthogonal projection while the
call WAttrib("projection=perspec") selects a perspective projection. The default
value of attribute projection is "projection=perspec". Changes to viewing vol-
ume projection can be applied by calling Refresh().

3.2 Canvas Attribute camwidth

To give more control over the camera (viewing volume) dimensions, an additional can-
vas attribute camwidth was added. By adjusting the camera width with camwidth,
the camera height is implicitly calculated based on the ratio of window width to
height. camwidth cannot be given a value less than or equal to 0. Assigning 0 to
camwidth causes WAttrib() to fail, while assigning a negative value to camwidth

causes its absolute value to be assigned. Changes to camera dimensions can be
applied by calling Refresh().

9

3.3 Context Attribute rendermode

The new context attribute rendermode dictates whether 2D or 3D rendering is ac-
tive. The semantics of the 2D and 3D graphics facilities remain unaffected by the
integrated graphics mode. WAttrib("rendermode=2d") activates 2D rendering and
WAttrib("rendermode=3d") activates 3D rendering. By default, "rendermode=3d"
for mode "gl". If a graphics function is used in the incorrect render mode, a run-time
error will occur.

WAttrib("rendermode=2d") # Activate 2D rendering

DrawPolygon(...)

WAttrib("rendermode=3d") # Activate 3D rendering

DrawPolygon(...)

For graphics function Clone(), rendermode defaults to the value of the source
context unless specified by the passed argument list. Clone() can be used to bind a
new context to the canvas to alleviate the need to call WAttrib() to switch render
modes. The following example designates a window each for 2D and 3D rendering.

w3d := open("", "gl", ...)

w2d := Clone(w3d, "rendermode=2d", ...)

DrawPolygon(w2d, ...) # Draw in 2D mode

DrawPolygon(w3d, ...) # Draw in 3D mode

WindowContents() returns the display list of the corresponding rendermode. Both

w3d := open("", "gl", ...)

w2d := Clone(w3d, "rendermode=2d", ...)

...

dl := WindowContents(w2d)

and

&window := open("", "gl", ...)

...

WAttrib("rendermode=2d")

dl := WindowContents()

return the 2D display list. Graphics function Refresh() redraws both (2D and
3D) display lists, if available. If a display list is empty, it is ignored. Eye(), a
3D graphics function, performs an implicit Refresh() in addition to changing the
camera attributes.

10

4 Modifiable Display List Record Fields

The display list records with their modifiable fields are shown as Unicon record
declarations. Every display list record has the field name, containing the string
literal which identifies it. name should not be modified. It is shown here as useful
information rather than a modifiable field. If no fields other than name are shown,
it means that no modifiable fields are available. It is possible to query the fields of
these records at runtime, but modifying any fields other than the ones shown in this
section will result in undefined behavior.

4.1 Primitives

gl2d blimage: record DrawImage()
name: "BilevelImage",
x: Real, y: Real, width: Int, height: Int,

gl2d readimage: record ReadImage()
name: "ReadImage",
x: Real, y: Real, width: Int, height: Int,

gl2d strimage: record DrawImage()/ReadImage()
name: "StringImage",
x: Real, y: Real, width: Int, height: Int,

gl2d drawstring: record DrawString()
name: "DrawString",
x: Real, y: Real, s: Int

gl2d wwrite: record WWrite*()
name: "WWrite",
x: Real, y: Real, s: Int

gl2d copyarea: record CopyArea()
name: "CopyArea",
x: Real, y: Real,

x and y define the coordinates of the destination window.

11

gl2d erasearea: record EraseArea()
name: "EraseArea",
x: Real, y: Real, width: Real, height: Real

gl2d fillpolygon: record FillPolygon()
name: "FillPolygon"

gl2d drawpolygon: record DrawPolygon()
name: "DrawPolygon"

gl2d drawline: record DrawCurve()/DrawLine()
name: "DrawLine"

gl2d drawsegment: record DrawSegment()
name: "DrawSegment"

gl2d drawpoint: record DrawPoint()
name: "DrawPoint"

gl2d drawcircle: record DrawCircle()
name: "DrawCircle",
x: Real, y: Real, r: Real, theta: Real, alpha: Real

gl2d fillcircle: record FillCircle()
name: "FillCircle",
x: Real, y: Real, r: Real, theta: Real, alpha: Real

gl2d drawarc: record DrawArc()
name: "DrawArc",
x: Real, y: Real, width: Real, height: Real, theta: Real, alpha: Real

gl2d fillarc: record FillArc()
name: "FillArc",
x: Real, y: Real, width: Real, height: Real, theta: Real, alpha: Real

gl2d drawrectangle: record DrawRectangle()
name: "DrawRectangle",
x: Real, y: Real, width: Real, height: Real

gl2d fillrectangle: record FillRectangle()
name: "FillRectangle",
x: Real, y: Real, width: Real, height: Real

12

4.2 Context Attributes

gl2d fg: record WAttrib()/Fg()
name: "Fg",
r: Int, g: Int, b: Int, a: Int

gl2d bg: record WAttrib()/Bg()
name: "Bg",
r: Int, g: Int, b: Int, a: Int

gl2d reverse: record WAttrib()
name: "Reverse"

gl2d gamma: record WAttrib()
name: "Gamma",
val: Real

gl2d drawop: record WAttrib()
name: "Drawop",
s: String

gl2d font: record WAttrib()/Font()
name: "Font",
s: String

gl2d leading: record WAttrib()
name: "Leading",
val: Int

gl2d linewidth: record WAttrib()
name: "Linewidth",
val: Int

gl2d linestyle: record WAttrib()
name: "Linestyle",
s: String

gl2d fillstyle: record WAttrib()
name: "Fillstyle",
s: String

13

gl2d pattern: record WAttrib()
name: "Pattern",
s: String

gl2d clip: record WAttrib()
name: "Clip",
x: Int, y: Int, width: Int, height: Int

gl2d dx: record WAttrib()
name: "Dx",
val: Int

gl2d dy: record WAttrib()
name: "Dy",
val: Int

14

5 References

[1] Gregg M. Townsend, Ralph E. Griswold, Clinton L. Jeffery (1995) Graphic Fa-
cilities for the Icon Programming Language. IPD268a, Department of Computer
Science, The University of Arizona. Available at https://www2.cs.arizona.edu/

icon/ftp/doc/ipd268.pdf [Verified 21 Oct 2020]

[2] Naomi Martinez, Clinton Jeffery, Jafar Al Gharaibeh (2017) Unicon 3D Graphics
User’s Guide and Reference Manual. UTR9d, University of Idaho, Moscow, ID 83844.
Available at http://unicon.org/utr/utr9.pdf [Verified 21 Oct 2020]

[3] Kevin Z. Young (2020) Unicon’s OpenGL 2D and Integrated 2D/3D Graphics
Implementation. University of Idaho, Moscow Idaho. Available at http://unicon.
org/reports/young.pdf [Verified 30 Oct 2020]

[4] Ralph Griswold, Clinton Jeffery, and Gregg Townsend (1998) Graphics Program-
ming in Icon. Peer to Peer Communications, San Jose CA. Available at http:

//www2.cs.arizona.edu/icon/ftp/doc/gb1up.pdf [Verified 24 Nov 2020]

15

https://www2.cs.arizona.edu/icon/ftp/doc/ipd268.pdf
https://www2.cs.arizona.edu/icon/ftp/doc/ipd268.pdf
http://unicon.org/utr/utr9.pdf
http://unicon.org/reports/young.pdf
http://unicon.org/reports/young.pdf
http://www2.cs.arizona.edu/icon/ftp/doc/gb1up.pdf
http://www2.cs.arizona.edu/icon/ftp/doc/gb1up.pdf

A Platform Differences

Unicon’s OpenGL-based 2D implementation strives to be backwards-compatible with
its X11-based predecessor and run existing Unicon 2D graphics applications as-is.
Platform differences between Unicon 2D implementations do exist but great effort is
made to minimize them; see Appendix N of [4]. The OpenGL 2D implementation
achieves compatibility that is as good or better than most other ports of Unicon’s
2D graphics, such as the MS Windows port.

This appendix summarizes the most relevant information to the Unicon program-
mer from [3]. See Section 5 from [3] for a more detailed evaluation of the OpenGL
2D implementation.

A.1 Graphical Accuracy

Due to semantic differences between OpenGL and platform-native APIs, there are
minor differences in the appearance of some primitives, especially fonts and lines.
Additional graphical differences occur on different OpenGL implementations, such
as Nvidia hardware-based rendering versus Mesa software rendering.

The following figures depict the differences in rendering between the X11 imple-
mentation and the OpenGL implementation with Mesa and Nvidia OpenGL drivers
through the Unicon program gpxtest.

Figure 3: gpxtest (Xlib) Figure 4: gpxtest (Mesa) Figure 5: gpxtest (Nvidia)

A.1.1 Fonts

The migration to FreeType for font rasterization requires the use of font files which
differ from native X11 fonts. Consequently, the four supported Unicon font names—
mono, typewriter, sans, and serif—use different base fonts. It is possible for users
to load a specific font if needed by providing their own TrueType or OpenType font
files. See Section 2.3 (Fonts) for more details.

16

Figure 6: gpxtest dialog
(Xlib)

Figure 7: gpxtest dialog
(Mesa)

Figure 8: gpxtest dialog
(Nvidia)

A.1.2 Lines

The OpenGL implementation currently lacks a quality algorithm for rendering thick
lines (linewidth greater than 1) in addition to capping and joining thick lines. Minor
differences in arcs and circles should be expected due to differences the algorithm
between the OpenGL and X11 implementations.

A.2 Performance

The OpenGL 2D implementation’s performance is different than the X11 implemen-
tation. The OpenGL implementation is faster on some operations such as rendering
dashed lines of any type, while the X11 implementation excels at rendering normal
filled and unfilled geometric primitives, text strings, and copyareas.

Depending on the OpenGL driver used (e.g. Mesa vs. Nvidia), the X11 implemen-
tation is anywhere from 3-5x faster than the OpenGL implementation on programs
that use a majority of filled and unfilled primitives (rectangles, arcs, circles, poly-
gons, and copyareas) with linestyle=solid and fillstyle=solid. This type of
primitive composition is most likely to reflect the average 2D graphics program.

A.3 What to Expect

This is the beta-test release of the OpenGL-based implementation for the 2D and
integrated 2D/3D graphics facilities. The majority of existing Unicon 2D programs
should work as expected under the OpenGL-based implementation. However, pro-
grams that periodically draw new graphics without erasing the window are likely
to run into performance issues over time due to display list growth. To improve
performance of legacy programs, see Section 2.1.2 (Optimizing Performance) in this
report.

17

	Introduction
	2D Features
	Display List
	Animation
	Optimizing Performance

	Transparency
	Color Specification
	Context Attribute
	Modifying Display List Record Fields
	A Simple Program

	Fonts

	Integrated 2D/3D Features
	Canvas Attribute projection
	Canvas Attribute camwidth
	Context Attribute rendermode

	Modifiable Display List Record Fields
	Primitives
	Context Attributes

	References
	Platform Differences
	Graphical Accuracy
	Fonts
	Lines

	Performance
	What to Expect

