
iyacc: A Parser Generator for Icon
and Unicon

Ray Pereda and Clinton Jeffery

Unicon Technical Report: 3a

2018-02-21

Abstract

iyacc is software tool for building language processors. It is based
on byacc, a well-known tool for the C programming language.
This report describes how to use the tool.

Unicon Project
http://unicon.org

University of Idaho
Department of Computer Science

Moscow, ID, 83844, USA

1 Introduction

The iyacc program takes a context free grammar that you specify and gen-
erates a parser that recognizes whether an input conforms to that grammar.
iyacc is a modified version of byacc (Berkeley YACC), modified to generate
Icon code as an alternative to C. The name iyacc stands for Icons yacc, where
yacc stands for Yet Another Compiler Compiler.

iyacc has been used in large production tools for quite some time, such
as the Unicon translator itself. If this report is your first introduction to
the yacc family of parser generator tools, you may wish to also read “Lex &
Yacc”, by John Levine [Levine92].

2 From Grammar to Parse Tree

A parser allows you to do more than just tell whether a sentence is valid
according to the grammar; it also allows you to preserve the structure of the
sentence for later use. This internal structure explains why the sentence is
grammatical, and it is also the starting point for most translation tasks. The
structure is often a tree called a parse tree. The language used by iyacc to
express the grammar is based on a form of BNF, which stands for Backus-
Naur Form. A grammar in BNF consists of a series of production rules, each
one specifying how a component of the parse is constructed from simpler
parts. For example, here is a grammar similar to the one used to build the
calculator:

assignment : NAME ASGN expression ;

expression : NUMBER

| expression + NUMBER

| expression - NUMBER

;

This grammar has rules for constructing two symbols to the left of a colon;
these symbols are called non-terminal symbols. Such non-terminal symbols
denote an abstraction for a logically related sequence of symbols, analogous
to a phrase (in natural language) or some part of a syntax construct (in a
programming language), such as a statement, or an expression.

Each symbol to the right of the colon can be either another non-terminal
or a terminal symbol. If it is a terminal, then the scanner will recognize the

1

symbol. If it is not, then a rule will be used to match that non-terminal. It is
not legal to write a rule with a terminal to the left of the colon. The vertical
bar means there are different possible matches for the same non-terminal.
For example, an expression can be a number, an expression plus a number,
or an expression minus a number.

The iyacc programs input files are structured into three sections, sepa-
rated by double percent signs (%%): a definitions section, a rules section,
and a procedures section. The definitions section includes code to be copied
into the output file before the parser code, surrounded by %{ and %}. This
section also includes the declarations of each of the tokens that are going to
be returned by the scanner.

The term “token” is just another name for a terminal symbol, or a word.
Tokens can be given a left or right associativity, and they are declared from
lowest precedence to highest precedence. You may want to consult a reference
on yacc for details on how these features are used. The next section is the
rules section. The left and right sides of a rule are separated by a colon. The
right side of the rule can be embedded with semantic actions consisting of
Icon code that is surrounded by curly braces. Semantic actions execute when
the corresponding grammar rule is matched by the input. The last section
is the procedures section. In the calculator, there is one procedure, main(),
that calls the parser once for each line.

3 A Parser for a Desktop Calculator

The following calculator program is a minimalist example of using iyacc.
Iyacc’s generated parser reads tokens by calling a function yylex(). yylex()
can be written by hand, or generated by a lexical analyzer generator program
such as ulex [Ray03]. In the example, a very crude hand-written lexical
analyzer is provided for completeness.

%{

add any special linking stuff here

global vars

%}

/* YACC Declarations */

%token NUM NAME ASSIGNMENT

%left ’-’ ’+’

2

%left ’*’ ’/’

%left NEG /* negation -- unary minus */

%right ’^’ /* exponentiation */

/* Grammar follows */

%%

input : /* empty string */

| input line

;

line: ’\n’

| exp ’\n’ { write($1) }

| NAME ASSIGNMENT exp ‘\n’ {

vars[$1] := $3

write($3)

}

;

exp: NUM { $$:= $1 }

| NAME { $$:= vars[$1] }

| exp ’+’ exp { $$:= $1 + $3 }

| exp ’-’ exp { $$:= $1 - $3 }

| exp ’*’ exp { $$:= $1 * $3 }

| exp ’/’ exp { $$:= $1 / $3 }

| ’-’ exp %prec NEG { $$:= -$2 }

| exp ’^’ exp { $$:= $1 ^ $3 }

| ’(’ exp ’)’ { $$:= $2 }

;

%%

procedure main()

vars := table(0) # initialize all variables to zero

write("IYACC Calculator Demo")

repeat {

write("expression:")

yyparse()

}

end

procedure yylex()

local tok

static token_char, line

initial {

3

token_char := ~ ’ \t’

line := ""

}

if line == "" then line := (read()||"\n") | exit()

line ? while tab(upto(token_char)) do {

if yylval := tab(many(&letters)) then tok := NAME

else if yylval := tab(many(&digits++’.’)) then tok := NUM

else if yylval := =":=" then tok := ASSIGNMENT

else { yylval := move(1); tok := ord(yylval) }

line := tab(0)

return tok

}

tok := ord(’\n’)

line := ""

return tok

end

iyacc allows single quoted character constants to be used as tokens with-
out declaring them, so ’+’, ’’, ’*’, ’/’, ’ˆ’, ’(’, and ’)’ are not declared in the
above grammar. The unary minus makes use of the %prec keyword to give
it priority over binary minus.

Note that such character constants are yacc’s notation for small integers
with the corresponding ASCII values; ’+’ in a grammar is a shorthand for
the token that matches ord(”+”) here, not a cset. Tokens NUM, NAME,
ASSIGNMENT, and NEG are declared.

4 Semantic Actions and Values

When the parser matches a rule, it executes the code associated with the
rule, if there is any. Actions can appear anywhere on the right-hand side
of a rule, but their semantics are intuitive only at the end a rule. Vertical
bars actually mark alternative rules, so it makes sense to have a (possibly
different) action for each alternative. The action code may refer to the value
of the symbols on the right side of the rule via the special variables $1, $2...
and they can set the value of the symbol on the left of the colon by assigning
to the variable $$.

4

The value of a terminal symbol is the contents of global variable yyl-
val, which is assigned by the scanner. The value of a non-terminal is the
value assigned to the $$ variable in the grammar rule that produced that
non-terminal. As was mentioned for the yylval variable, in other languages,
assigning different kinds of values to $$ for different non-terminals is awk-
ward. In iyacc, it is very easy because variables can hold values of any type.

5 Command-Line Usage

The preceding calculator example is standalone and can be compiled by just
saying

iyacc -i calc.y

followed by invoking icont (or unicon) on the resulting calc.icn.
Here is the sequence of commands you would type for creating a calculator

if you were using ulex to generate the lexical analyzer. This would mainly
add a -d option to specify that iyacc should produce an include file, y tab.icn,
containing the $define’s for the terminal symbols that yylex() must produce
as return values when called by yyparse(). You would normally use a “make”
program to manage the dependencies of these different files and programs,
to avoid typing this all by hand.

$ iyacc -i -d calc.y creates calc.icn & y_tab.icn

$ ulex calc_lex.l creates calc_lex.icn

$ unicon calc.icn calc_lex.icn creates the program calc*

The resulting calculator program might be executed in a session such as
the following:

$ calc runs calc

iyacc Calculator Demo

expression: (3 + 5)*2 enter an expression

16 prints out the answer

expression: x := 16 enter an expression

16 prints out the answer

expression: 2 * x enter an expression

32 prints out the answer

expression: ^D control-D (EOF) stops the program

5

References

[Jeffery00] Jeffery, C., Al-Gharaibeh, J., Mohamed, S., Pereda, R. and Par-
lett, R., Programming with Unicon: very high-level object-oriented applica-
tion and system programming. unicon.org/book/ub.pdf
[Levine92] Levine, J. R., Mason, T., and Brown, D. Lex & Yacc, OReilly and
Associates, Cambridge, Massachusetts, 1992.
[Ray03] Ray, K., Pereda, R., and Jeffery, C., Ulex A Lexical Analyzer Gener-
ator for Unicon, Unicon Technical Report 2a, unicon.org/utr/utr2/utr2a.pdf,
May 2003.

6

