
The Implementation of Graphics
in Unicon Version 11

Clinton Jeffery and Naomi Martinez
Unicon Technical Report: UTR-5a

June 25, 2003

Abstract

Graphics facilities in Unicon Version 11 are a large component of the Unicon language.
Version 11 introduces a powerful set of 3D facilities. This document describes the design
and implementation internals of the 2D and 3D graphics facilities and their window
system implementation. It is intended for persons extending the graphics facilities or
porting Unicon to a new window system.

New Mexico State University
Department of Computer Science

Las Cruces, NM 88003

This work was sponsored by the National Library of Medicine, the Alliance for Minority
Participation, and by NSF grants EIA-0220590 and EIA-9810732.

1. Introduction

This documentdescribestheinternalsof the implementationof Unicon'sgraphicsand
window systemfacilities. Much of the codeis devotedto hiding specific featuresof C
graphicsinterfacesthatweredeemedoverly complexor not worth thecodingeffort they
entail. Other implementationtechniquesare motivatedby portability concerns. The
graphics interface described below has been implemented to various levels of
completenesson the X Window System, Microsoft Windows, OS/2 Presentation
Manager,and Macintoshplatforms. Most of this discussionis relevantalso for Icon
Version 9.4; Unicon's graphics facilities include minor improvements.

1.1 Relevant Source File Summary

This documentassumesa familiarity with the generalorganizationand layout of
Unicon sourcesandthe configurationandinstallationprocess.For more informationon
thesetopics,consultIcon ProjectDocumentsIPD 238[TGJ96]andIPD 243[TGJ98] for
UNIX, and Appendix B of this document for MS Windows.

Unicon'swindow facilities consistof severalsourcefiles, all in the runtimedirectory
unless otherwise noted. They are discussed in more detail later in this document.

header files -- h/graphics.h containsstructuresandmacroscommonacrossplatforms.
Each platform adds platform-specificelementsto the common window structures
definedin this file. In addition,eachplatformgetsits own headerfile, currentlythese
consist of X Windows (h/xwin.h), Microsoft Windows (h/mswin.h), OS/2
PresentationManager(h/pmwin.h),and the Macintosh(h/mac.h). Every platform
definesseveralcommonmacrosin thewindow-systemspecificheaderfile in addition
to its window systemspecificstructuresandmacros.Thecommonmacrosareusedto
insert platform-dependent pieces into platform-independent code.

Unicon functions -- fwindow.r containsthe RTL (Run-TimeLanguage)interfacecode
usedto definebuilt-in graphicsfunctionsfor theUniconinterpreterandcompiler. For
most functions,this consistsof type checkingandconversioncodefollowed by calls
to platform-dependentgraphics functions. The platform dependentfunctions are
describedlater in this document; fwindow.r is platform independent. You will
generallymodify it only if you areaddinga new built-in function. For example,the
Windows native functions are at the bottom of this file.

internal support routines -- rwindow.r, rwinrsc.r, rgfxsys.r and rwinsys.r are basically
C files with somewindow systemdependenciesbut mostly consistingof codethat is
usedon all systems. For example,rwindow.r is almost 100 kilobytes of portable
sourcecode relatedto Unicon'sevent model, attribute/valuesystem,portablecolor
names,GIF andJPEGimagefile support,palettes,fonts,patterns,splinecurvesandso
forth.

window-system specific files -- Each window systemgets its own sourcefiles for C
code,includedby thevariousr*.r files in theprevioussection. Currentlytheseinclude
rxwin.ri and rxrsc.ri for X Window; rmswin.ri for MS Windows; rpmwin.ri,

2

rpmrsc.ri, and rpmgraph.ri for Presentation Manager; and rmac.ri for the Macintosh.
Each platform will implement one or more such r*.ri files. In addition,
common/xwindow.c contains so many X Window includes that it won't even compile
under UNIX Sys V/386 R 3.2 if all of the Unicon includes are also present -- so its a .c
file instead of a .r file.

tainted "regular" Unicon sources -- Many of the regular Unicon source files include
code under #ifdef Graphics and/or one or more specific window system definitions
such as #ifdef XWindows or #ifdef PresentationManager. The tainted files that
typically have to be edited for a new window system include h/grttin.h, h/features.h,
h/rexterns.h, h/rmacros.h, h/rproto.h, h/rstructs.h, and h/sys.h. Other files also
contain Graphics code. This means that most of the system has to be recompiled with
rtt and cc after Graphics is defined in h/define.h. You will also want to study the
Graphics stuff in h/grttin.h since several profound macros are there. Also, any new
types (such as structures) defined in your window system include files will need
dummy declarations (of the form typedef int foo;) to be added there.

Under UNIX the window facilities are turned on at configuration time by typing
make X-Configure name=system

instead of the usual make Configure invocation. The X configuration modifies
makefiles and defines the symbolic constant Graphics in h/define.h. If OpenGL
libraries are detected, configuration enables them automatically. Similar but less
automatic configuration handling is performed for other systems; for example, an
alternate .bat file is used in place of os2.bat or turbo.bat.

1.2 Graphics #define-d symbols

The primary, window-system-independent defined symbol that turns on window
facilities is simply Graphics. Underneath this parent #ifdef, the symbol XWindows is
meant to mark all X Window code. Other window systems have a definition comparable
to XWindows: for Microsoft Windows it is MSWindows, for OS/2 it is
PresentationManager, and for the Macintosh, MacGraph. Turning on any of the
platform specific graphics #define symbols turns on Graphics implicitly.

2. Structures Defined in graphics.h

The header file graphics.h defines a collection of C structures that contain pointers to
other C structures from graphics.h as well as pointers into the window system library
structures. The internals for the simplest Unicon window structure under X11 are
depicted in Figure 1. The picture is slightly simpler under MS Windows, with no display
state or related color or font management; on the other hand MS Windows maps the
Unicon context onto a large set of resources, including pens, brushes, fonts and bitmaps.

3

 Figure 1: Internal Structure of an Unicon Window Value

At the top, Unicon level, there is a simple structure called a binding that contains a
pointer to a window state and a window context. Pointers to bindings are stored in the
FILE * variable of the Unicon file structure, and most routines that deal with a window
take a pointer to a binding as their first argument. Beneath this facade, several structures
are accessed to perform operations on each window.

The window state holds the typical window information (size, text cursor location, an
Unicon list of events waiting to be read) as well as a window system pointer to the actual
window, a pointer to a backing pixmap (a "compatible device context" used to handle
redraw requests), and a pointer to the display state.

The window context contains the current font, foreground, and background colors
used in drawing/writing to the window. It also contains drawing style attributes such as
the fill style. Contexts are separate from the window state so that they may be shared
among windows. This is a big win, and Unicon programs tend to use it heavily, so in
porting the window functions a central design issue must be the effective use of a
comparable facility on other window systems, or emulating the context abstraction if
necessary. Nevertheless, one might start out with Couple() and Clone() disabled and
only allow one hardwired context associated with each window.

The display state contains whatever system resources (typically pointers or handles)
that are shared among all the windows on a given display in the running program. For
example, in X this includes the fonts, the colors, and a window system pointer for an
internal Display structure required by all X library calls to denote the connection to the X
server.

4

Binding

Window Context

Pixmap

Window

State

Graphics Context

Display State

Display

Colors Fonts

long

XFontStruct *

Iconx

Xlib

3. Macros and Coding Conventions in Window System Headers

Since the above structure is many layers deep and sometimes confusing, Unicon's
graphics interface routines employ coding conventions to simplify things. In order to
avoid many extra memory references in accessing fields in the multi-level structure,
"standard" local variables are declared in most of the platform dependent interface
routines in rxwin.ri and rmswin.ri. The macro STDLOCALS(w) declares local variables
pointing to the most commonly used pieces of the window binding, and initializes them
from the supplied argument; each window system header should define an appropriate
STDLOCALS(w) macro. Under some window systems, such as MS Windows,
STDLOCALS(w) allocates resources which must be freed before execution continues, in
which case a corresponding FREE_STDLOCALS(w) macro is defined.

Some common standard locals are wc, ws, stdwin, and stdpix. While wc, and ws are
pointers to structures copied from the window binding, stdwin, and stdpix are actual X
(or MS Window) resources that are frequently supplied to the platform-dependent
routines as arguments. Each window system will have its own standard locals. For
example, MS Windows adds stddc and pixdc since it uses a device context concept not
found in X11.

In much of the platform-dependent source code, the window system calls are
performed twice. This is because most platforms including X, MS Windows, and
PresentationManager do not remember the contents of windows when they are reduced to
iconic size or obscured behind other windows. When the window is once again exposed,
it is sent a message to redraw itself. Unicon hides this entirely, and remembers the
contents of the window explicitly in a window-sized bitmap of memory. The calling of
platform graphics routines twice is so common that a set of macros is defined in xwin.h
to facilitate it. The macros are named RENDER2 through RENDER6, and each of them
takes an Xlib function and then some number of arguments to pass that function, and then
calls that function twice, once on the window and once on the bitmap.

Platforms that provide backing store may avoid this duplicated effort. In practice
however it seems most window systems have redraw events even if they implement
retained windows (for example, MGR [Uhler88]).

4. Window Manipulation in rxwin.ri and rmswin.ri

The platform-dependent calls in the Unicon run-time system can be categorized into
several major areas:

� Window creation and destruction
� Low-level event processing
� Low-level text output operations
� Window and context attribute manipulation

5

4.1 Window Creation and Destruction

A graphics window is created when the Unicon program calls open() with file
attribute "g". The window opening sequence consists of a call to wopen() to allocate
appropriate Unicon structures for the window and evaluate any initial window attributes
given in additional arguments to open(). After these attributes have been evaluated,
platform resources such as fonts and colors are allocated and and the window itself is
instantiated. Under X, wopen() busy-waits until the window has received its first expose
event, ensuring that no subsequent window operation takes place before the window has
appeared onscreen.

A window is closed by a call to wclose(); this removes the on-screen window even if
other bindings (Unicon window values) refer to it. A closed window remains in memory
until all Unicon values that refer to it are closed. A call to unbind() removes a binding
without necessarily closing the window.

4.2 Event Processing

The system software for each graphics platform has a huge number of different types
of events. Unicon ignores most of them. Of the remainder, some are handled by the
runtime system code in the .ri files implicitly, and some are explicitly passed on to the
Unicon program.

Most native graphic systems require that applications be event-driven; they must be
tightly I/O bound around the user's actions. The interaction between user and program
must be handled at every instant by the program. Unicon, on the other hand, considers
this event-driven model optional.

Making the event-driven model optional means that the Unicon interface must
occasionally read and process events when the Unicon program itself is off in some other
computation. In particular, keystrokes and mouse events must be stored until the user
requests them, but exposure events and resizes must be processed immediately. The
Unicon interpreter pauses at regular intervals in between its virtual machine instructions
(the Unicon compiler emits polling code in its generated C code, so window system
facilities are supported by the compiler as well) and polls the system for events that must
be processed; this technique fails when no virtual machine instructions are executing,
such as during garbage collections or when blocked on file I/O.

On some platforms such as X, this probably could be done using the platform event
queue manipulation routines. Instead, the Unicon window interface maintains its own
keystroke and mouse event queue from which the Unicon functions obtain their events.
This additional queue makes the implementation more portable. Various window systems
probably do not support queue manipulation to the extent or in the same way that X does.
It also provides the programmer with a higher level event processing abstraction which
has proven useful.

6

Window resizing is partly handled by the interface. The old contents of the window
are retained in their original positions, but the program is informed of the resize so it can
handle the resize in a more reasonable manner. As has already been noted exposure
events are hidden entirely via the use of a backing pixmap with identical contents for
each window. The pixmap starts out the same size as the window. It is resized whenever
the window grows beyond one of its dimensions. It could be reduced whenever the
window shrinks, but then part of the window contents would be lost whenever the user
accidentally made the window smaller than intended.

The platform-dependent modules also contains tables of type stringint. These tables
are supported by routines that map strings for various attributes and values to native
window system integer constants. Binary search is employed. This approach is a crude
but effective way to provide symbolic access "built-in" to the language without requiring
include files. Additional tables mapping strings to integers are found in the platform
independent source files.

5. Resource Management

One of the most important tasks performed by platform-specific graphics functions is
the management of resources, both the on-screen resources (windows) and the drawing
context elements used by the window system in performing output.

5.1 Memory Management and r*rsc.ri Files

Memory management for internal window structures is independent of Unicon's
standard memory management system. Xlib memory is allocated using malloc(2).

Most internal Unicon window structures could be allocated in Unicon's block region,
but since they are acyclic and cannot contain any pointers to Unicon values, this would
serve little purpose (Actually, it is probably the right thing to do, and will probably
happen some day, but its just not in the cards right now unless you feel like messing with
the garbage collector.). In addition when an incoming event is being processed it has to
be matched up with the appropriate window state structure, so some of the window
structures must be easily reached, not lost in the block region. The window interface
structures are reference counted and freed when the reference count reaches 0.

5.2 Color Management

Managing colors under X Windows is painful. In particular, if the same color is
allocated twice the color table entry is shared (which is good) and that entry may only be
freed once (which is bad). For this reason, every color allocated by Unicon is
remembered and duplicate requests are identified and freed only once. In the general
case it is impossible to detect when a particular color is no longer being displayed, and so
colors are only freed on window closure or when a window is cleared.

5.3 Font Management

7

Unicon supports a portable font name syntax. Since the available fonts on systems
vary widely, "interesting" code has been written to support these portable names on
various X servers. Each window system may need to include heuristics to pick an
appropriate font in the font allocation routine in the window system's r*.ri file.

6. External Image Files and Formats

Reading and writing window contents to external files is accomplished by the routines
loadimage() and dumpimage(), implemented in each platform's window system
specific file, such as rxwin.ri. These routines take a window binding and a string
filename and perform the I/O transfer. Presently, the file format is assumed to be
indicated by the filename extension; this is likely to change. Ideally Unicon should
tolerate different file formats more flexibly, inferring input file formats by reading the file
header where possible, and running external conversion programs where appropriate.

GIF and JPEG files are self-identifying, so they are always recognized independent of
name. They are checked in system-independent code before platform-specific image
reading code is invoked.

7. Implementation of 3D Facilities

In order to implement the 3D facilities, the Unicon runtime system was modified
to support 2D and 3D windows. The Unicon runtime system is written in a custom
superset dialect of C called RTL [Walker94]. The 3D facilities use the existing 2D
facilities code for window creation and destruction, as well as handling keyboard and
mouse input.

7.1 Requirements
The Unicon 3D graphics facilities were developed using OpenGL 1.2; OpenGL

1.2 or later must be present on the system in order for the 3D graphics facilities to work.
A check for this is performed in wopengl() which can be found in the file ropengl.ri.
The requirement of OpenGL 1.2 is based on the fact that the function glTexBind(),
which make the implementation of textures more efficient, is only available in OpenGL
1.2 and later.

Also needed for the Unicon 3D graphics facilities is a system that supports a true
color visual with a depth buffer of 16 and a double buffer. The requirement of a depth
buffer is a necessity to implement lighting. For lighting to work properly in OpenGL, a
depth test must be performed, hence the need of a depth buffer. A double buffer is needed
to implement the list structure that is used to redraw a window. More information can be
found on redrawing of windows in section 7.3.

7.2 Files
Several files were modified in the implementation of the Unicon 3D graphics

facilities. Also a new file was added.

8

New File
ropengl.ri – contains the C helper functions for functions in fwindow.r, rxwin.ri, and
rwindow.r.

Modified Files
data.r – new runerr error codes.
fwindow.r – contains the built-in function implementations for the Unicon 3D graphics
facilities.
rmemmgt.r – garbage collector has been modified to recognize the Unicon list of lists
used to redraw windows.
rxwin.ri – modified WOpen() and wmap() to open windows in “gl” mode.
rwindow.r – WAttrib() was modified to recognize the context attribute in the Unicon

 3D graphics facilities.
rwinsys.r – inclusion of ropengl.ri.
graphics.h – new fields were added to the context, binding, and canvas structures.
sys.h – OpenGL header file inclusion (glu.h, gl.h, and glx.h).
fdefs.h – Unicon 3D graphics facilities function definitions.
grittin.h – OpenGL type definitions.

7.3 Redrawing Windows
In the 2D graphicsfacilities, eventsthat requirethe redrawingof a window are

handledby using a pixmap. Insteadof using a pixmap, for the Unicon 3D graphics
facilities, a Unicon list of lists is createdfor eachwindow openedin “gl” mode.This list
of lists keepstrackof all objectsin a 3D graphicsscene.This list is calledfunclist andis
found in the wstate structureof a "gl" window. The individual lists of contain the
function nameandthe parametersof that function.Also placedon the list areattributes
that affect the scene.Theseinclude dim, linewidth, texcoord, texture, texmode, and fg.
When a window receivesan event that requiresredrawing,the window is cleared,all
attributesareresetto thedefaults,andtheUniconlist of lists is traversedto redrawevery
object in the scene.

Therearesomefunctionsandattributesthatarenot placedin thelist. Insteadthey
mucheithermodify the list or call thelist to redrawthescene.ThefunctionEraseArea(),
not only clearsthe screenbut also clearsthe contentsof the list. The attributeslight0-
light7, eye, eyeup, eyedir, and eyepos usethe list to redrawthe window with the new
attributes. So if the position of a light changes,the new lighting calculationsare
preformedandthesceneis redraw.Besidesthesefunctionsandattributes,everyfunction
or attributeavailablein the3D graphicsfacilities is placedon this list. In is importantto
notethat functionsandattributesthat haveno effect in the3D graphicsfacilities arenot
placed in this list.

7.4 Textures
In OpenGL,texturescanbeone,two, or three-dimensionalandarerepresentedas

multi-dimensional arrays. In the Unicon 3D graphics facilities all texture are 2D
dimensional,andrepresentedasthree-dimensionalarrays. This arraykeepstrack of the
positionandred,green,andbluecomponentsof eachpixel in the textureimage.Whena

9

textureimageis specifiedin a Uniconprogram,thetextureis convertedfrom theUnicon
internal representationof the imageto a three-dimensionalarray. For most cases,this
doesnot takea long time, but asa textureimagegetslarger,the slower the application
will run. Several measureshave been taken in order to increasethe efficiency of
converting the texture image into an array. Since lighting and texturing are fairly
expensiveoperations,especially if several lights are activated, these features are
temporarilydeactivated. Despitetheseefforts, convertinga “g” window to a textureis
still fairly expensive. Possible future work includes ways to speed up this process.

Instead of adding a texture to the list of lists as described in section 7.3,
OpenGL’s internal texture resources are used. OpenGL assigns to each texture a name.
The names assigned to each texture in a Unicon scene are stored in texname[], which can
be found in a “gl” window’s context. To ensure that a texture name is not reused, a call to
glGenTextures() made which produces unused texture names. When a texture is applied
to the scene, only the index of the array texname[] is stored in the list. When the list is
traversed, a call to glBindTexture() is made which binds the texture to the subsequent
objects in the scene. One problem of using this representation of textures is that it places
an upper bound on the number of texture used. This is because glGenTextures() requires
the number of texture names to generate. Also by using glBindTexture(), never deletes a
texture from the texture resources, possibly using up all texture resources. Future work
might look into when to delete a texture an ways to check when the texture resources
have been used up.

7.5 Texture Coordinates
Theprimitivesasmentionedin previoussectionsarecubes,tori, cylinders,disks,

partialdisks,points,lines,polygons,spheres,line segments,andfilled polygons.Someof
theseprimitivesaredrawnusingdifferentaspectof theOpenGLlibrary, with someusing
the glu library. Points,lines, line segments,polygons,and filled polygonsare drawing
using glBegin(), glEnd(), and vertices in betweenthe function calls. Cylinders, disks,
partial disks,andspheresareimplementedusingthe glu library. They areconsideredto
be gluQuadrics objects. Finally cubes and tori are a composition of several polygons.

The texturingmethodusedis influencedby the how the primitive is composed.
For the primitives built usingthe OpenGLlibrary, defaulttexturecoordinatesareobtain
much differently than thoseprimitives built using the glu library. For thoseprimitives
built usingglBegin() andglEnd(), glTexGen() is usedto determinethedefaultparameters
when "texcoord=auto". In order to usethis featurewe mustenableGEN_S andGEN_T
with glEnable(). This generatestexture coordinatesfor a 2D textures.The texture
coordinates for a torus are obtained in the same ways.

Primitives built using the glu library, have texture coordinatesassociatedwith
them.Thesetexturecoordinatescanbe obtainedby calling gluQuadricTexture().Theuse
of the glu texturecoordinatesversesthe OpenGLcoordinates,is dueto the fact that the
glu texturecoordinatelook nicer. In orderto usethesetexturecoordinatesinsteadof the
onesspecifiedby OpenGL, it is necessaryto disableGEN_S and GEN_T. After the
object has been drawn, GEN_S and GEN_T are turned back on.

A cube uses default texture coordinates that map the texture onto each of the faces
of a cube. In order to use these default coordinates, it is necessary to disable GEN_S and
GEN_T, similar to glu objects.

10

8.0 Porting Reference

This section documents the window-system specific functions and macros that
generally must be implemented in order to port Unicon's graphics facilities to a new
window system. The list is compiled primarily by studying fwindow.r, rwindow.r, and
the existing platforms.

A note on types: w is a window binding pointer (wbp), the top level Unicon "window"
value. i is an integer, s is a string. wsp is the window state (a.k.a. canvas) pointer, and
wcp is the window context pointer. A bool return value returns one of the C macro
values Succeeded or Failed, instead of the usual C booleans 1 and 0.

ANGLE(a)

Convert from radians into window system units. For example, under X these are 1/64 of
a degree integer values, while under PresentationManager it converts to units of 1/65536
of a degree in a fixed-point format.

ARCHEIGHT(arc)

The height component of an XArc.

ARCWIDTH(arc)

The width component of an XArc.

ASCENT(w)

Returns the number of pixels above the baseline for the current font. Note that when
Unicon writes text, the (x,y) coordinate gives the left edge of the character at its baseline;
some window systems may need to translate our coordinates.

int blimage(w, x, y, width, height, ch, s, len)

Draws a bi-level (i.e. monochrome, 1-bit-per-pixel) image; used in DrawImage() which
draws bitmap data stored in Unicon strings.

wcp clone_context(w)

Allocate a new context, cloning attributes from w's context.

COLTOX(w, i)

Return integer conversion from a 1-based text column to a pixel coordinate.

11

copyArea(w1, w2, x, y, width, height, x2, y2)

Copies a rectangular block of pixels from w1 to w2.

DESCENT(w)

Returns the number of pixels below the baseline for the current font.

DISPLAYHEIGHT(w)

Return w's display (screen) height in pixels.

DISPLAYWIDTH(w)

Return w's display width in pixels.

bool do_config(w, i)

Performs move/resize operations after one or more attributes have been evaluated.
Config is a word with two flags: the one bit indicates a move, the two bit indicates a
resize. The desired sizes are in the window state pointer, e.g. w->window->width.

drawarcs(w, thearcs, i)

Draw i arcs on w, given in an array of XArc structures. Define an appropriate XArc
structure for your window system; it must include fields x, y and width and height fields
accessible through macros ARCWIDTH() and ARCHEIGHT(). Also, a starting angle
angle1 and arc extent angle2, assigned through macros ANGLE(), EXTENT(), and
FULLARC. This is currently a mess. Imitation of the X or PresentationManager code is
in order.

drawlines(w, points, i)

Draw i-1 connected lines, connecting the dots given in points.

drawpoints(w, points, i)

Draw i points.

drawsegments(w, segs, i)

Draw i disconnected line segments; define an Xsegment structure appropriate do your
window system, consisting of fields x1, y1, x2, y2. This type definition requirement
should be cleaned up someday.

12

drawstring(w, x, y, s, s_len)

Draw string s at coordinate (x,y) on w. Note that y designates a baseline, not an upper-
left corner, of the string.

drawrectangles(w, rectangles, i)

Draw i rectangles. Define an XRectangle structure appropriate to your window system.

int dumpimage(w, s, x, y, width, height)

Write an image of a rectangular area in w to file s. Returns Succeeded, Failed, or
NoCvt if the platform doesn't support the requested format. Note that this is the
"platform- dependent image writing function"; requests to write GIF or JPEG are
handled outside of this function.

eraseArea(w, x, y, width, height)

Erase a rectangular area, that is, set it to the current background color. Compare with
fillrectangles().

EXTENT(a)

Convert from radians into window system units, e.g. under PresentationManager it
converts to units of 1/65536 of a circle and does some weird type conversion.

fillarcs(w, arcs, i)

Fill wedge-like arc sections (pie pieces). See drawarcs().

fillrectangles(w, rectangles, i)

Fill i rectangles. See drawrectangles().

fillpolygon(w, points, i)

Fill a polygon defined by i points. Connect first and last points if they are not the same.

FHEIGHT(w)

Returns the pixel height of the current font, hopefully ASCENT + DESCENT.

free_binding(w)

Free binding associated with w. This gets rid of a binding that refers to w, without
necessarily closing the window itself (other bindings may point to that window).

13

free_context(wc)

Free window context wc.

free_mutable(w, i)

Free mutable color index i.

free_window(ws)

Free window canvas ws.

freecolor(w, s)

Free a color allocated on w's display.

FS_SOLID

Define this to be the window system's solid fill style symbol.

FS_STIPPLE

Define this to be the window system's stippled fill style symbol.

FULLARC

Window-system value for a complete (360 degree) circle or arc.

FWIDTH(w)

Returns the pixel width of the widest character in the current font.

wsp getactivewindow()

Return a window state pointer to an active window, blocking until a window is active.
Probably will be generalized to include a non-blocking variant. Returns NULL if no
windows are opened.

getbg(w, s)

Returns (writes into s) the current background color.

getcanvas(w, s)

Returns (writes into s) the current canvas state.

14

getdefault(w, s_prog, s_opt, s)

Get any window system defaults for a program named s_prog resource named s_opt,
write result in s.

getdisplay(w, s)

Write a string to s with the current display name.

getdrawop(w, s)

Return current drawing operation, one of various logical combinations of source and
destination bits.

getfg(w, s)

Returns (writes into s) the current foreground color.

getfntnam(w, s)

Returns (writes into s) the current font. This interface may get changed since a portable
font naming mechanism is to be installed. Name is presently always prefixed by "font="
(pretty stupid, huh); must be an artifact of merging window system ports, will be
changed.

geticonic(w, s)

Return current window iconic state in s, could "iconify" or whatever. Obsolete (subsumed
by canvas attribute, getcanvas()).

geticonpos(w, s)

Return icon's position to s, an encoded "x,y" format string.

int getimstr(w, x, y, width, height, paltbl, data)

Gets an image as a string. Used in GIF code.

getlinestyle(w, s)

Return current line style, one of solid, dashed, or striped.

get_mutable_name(w, i)

Returns the string color name currently associated with a mutable color.

15

getpattern(w, s)

Return current fill pattern in s.

getpixel(w, x, y, long *rv)

Assign RGB value for pixel (x,y) into *rv.

getpixel_init(w, struct imgmem *imem)

Prepare to fetch pixel values from window, obtaining contents from server if necessary.
This function does all the real work used by subsequent calls to getpixel().

getpointername(w, s)

Write mouse pointer appearance, by name, to s.

getpos(w)

Update the window state's posx and posy fields with the current window position.

getvisual(w, s)

Write a string to s that explains what type of display w is on, e.g. "visual=x,y,z", where x
is a class, y is the bits per pixel, and z is number of colormap entries available. This X-
specific anachronism is likely to go away.

HideCursor(wsp ws)

Hide the text cursor on window state ws.

ICONFILENAME(w)

Produce char * for window's icon image file name if there is one.

ICONLABEL(w)

Produce char * for icon's title if there is one.

isetbg(w, i)

Set background color to mutable color table entry i. Mutable colors are not available on
all display types.

16

isetfg(w, i)

Set foreground color to mutable color table entry i. Mutable colors are not available on
all display types.

ISICONIC(w)

Return 1 if the window is presently minimized/iconic, 0 otherwise.

ISFULLSCREEN(w)

Return 1 if the window is presently maximized/fullscreen, 0 otherwise.

ISNORMALWINDOW(w)

Return 1 if the window is neither minimized nor maximized, 0 otherwise.

LEADING(w)

Return current integer leading, the number of pixels from line to line.

LINEWIDTH(w)

Return current integer line width used during drawing.

lowerWindow(w)

Lower the window to the bottom of the stack.

mutable_color(w, dptr dp, i, C_integer *result)

Allocate a mutable color from color spec given by dp and i, placing result (a small
negative integer) in *result.

nativecolor(w, s, r, g, b)

Interpret a platform-specific color name s (define appropriately for your window system).
Under X, we can do this only if there is a window.

pollevent()

Poll for available events on all opened displays. This is where the interpreter calls the
window system interface. Return a -1 on an error, otherwise return count of how long
before it should be polled (400).

17

query_pointer(w, XPoint *xp)

Produce mouse pointer location relative to w.

query_rootpointer(XPoint *xp)

Produce mouse pointer location relative to root window on default screen.

raiseWindow(w)

Raise the window to the top of the stack.

bool readimage(w, s, x, y, int *status)

Read image from file s into w at (x,y). Status is 0 if everything was kosher, 1 if some
colors weren't available but the image was read OK; if a major problem occurs it returns
Failed. See loadimage() for the real action.

rebind(w, w2)

Assign w's context to that of w2.

RECHEIGHT(rec)

The height component of an XRectangle. Gets "fixed up" (converted) into a Y2 value if
necessary, in window system specific code.

RECWIDTH(rec)

The width component of an XRectangle. Gets "fixed up" (converted) into a X2 value if
necessary, in window system specific code.

RECX(rec)

The x component of an XRectangle.

RECY(rec)

The y component of an XRectangle.

ROWTOY(w, i)

Return integer conversion from a 1-based text row to a pixel coordinate.

18

SCREENDEPTH(w)

Returns the number of bits per pixel.

int setbg(w, s)

Set the context background color to s. Returns Succeeded or Failed.

setcanvas(w, s)

Set canvas state to s, make it "iconic", "hidden" or whatever. A canvas value extension
such as fullscreen would go here. Changes in canvas state are tantamount to destroying
the old window, creating a new window (with appropriate size and style) and adjusting
the pixmap size correspondingly. Much of the associated logic, however, might be
located in the event handlers for related window system events.

setclip(w)

Set (enable) clipping on w from its context.

setcursor(w, i)

Turn text cursor on or off. Text cursor is off (invisible) by default.

setdisplay(w, s)

Set the display to use for this window; fails if the window is already open somewhere.

setdrawop(w, s)

Set drawing operation to one of various logical combinations of source and destination
bits.

int setfg(w, s)

Set the context foreground color to s. Returns Succeeded or Failed.

setfillstyle(w, s)

Set fill style to solid, masked, or textured.

bool setfont(w, char **s)

Set the context font to s. This function first attempts to use the portable font naming
mechanism; it resorts to the system font mechanism if the name is not in portable syntax.

19

setgamma(w, gamma)

Set the context's gamma correction factor.

setgeometry(w, s)

Set the window's size and/or position.

setheight(w, i)

Set window height to i, whether or not window is open yet.

seticonicstate(w, s)

Set window iconic state to s, it could be "iconify" or whatever. Obsolete; setcanvas() is
more important.

seticonimage(w, dptr d)

Set window icon to d. Could be string filename or existing pixmap (i.e. another
window's contents). Pixmap assignment no longer possible, so one could simplify this to
just take a string parameter.

seticonlabel(w, s)

Set icon's string title to s.

seticonpos(w, s)

Move icon's position to s, an encoded "x,y" format string.

setimage(w, s)

Set an initial image for the window from file s. Only valid during open().

setleading(w, i)

Set line spacing to i pixels from line to line. This includes font height and external
leading, so i < fontheight means lines draw partly over preceding lines, i > fontheight
means extra spacing.

setlinestyle(w, s)

Set line style to solid, dashed, or striped.

20

setlinewidth(w, i)

Set line width to i.

set_mutable(w, i, s)

Set mutable color index i to color s.

SetPattern(w, s, s_len)

Set fill pattern to bits given in s. Fill pattern is not used unless fillstyle attribute is
changed to "patterned" or "opaquepatterned".

SetPatternBits(w, width, bits, nbits)

Set fill pattern to bits given in the array of integers named bits. Fill pattern is not used
unless fillstyle attribute is changed to "patterned" or "opaquepatterned".

setpointer(w, s)

Set mouse pointer appearance to shape named s.

setpos(w, s)

Move window to s, a string encoded "(x,y)" thing.

setwidth(w, i)

Set window width to i, whether or not window is open yet.

setwindowlabel(w, s)

Set window's string title to s.

ShowCursor(wsp ws)

Show the text cursor on window state ws.

int strimage(w, x, y, width, height, e, s, len)

Draws a character-per-pixel image, used in DrawImage(). See blimage().

21

SysColor

Define this type to be the window system's RGB color structure.

TEXTWIDTH(w, s, s_len)

Returns the integer text width of s using w's current font.

toggle_fgbg(w)

Swap the foreground and background on w.

unsetclip(w)

Disable clipping on w from its context.

UpdateCursorPos(wsp ws, wcp wc)

Move the text cursor on window state ws and context wc.

walert(w, i)

Sounds an alert (beep). i is a volume; it can range between -100 and 100; 0 is normal.

warpPointer(w, x, y)

Warp the mouse location to (x,y).

wclose(w)

Closes window w. If there are other bindings that refer to the window, they are converted
into pixmaps, i.e. the window disappears but the canvas is still there and can be written
on and copied from.

wflush(w)

Flush output to window w; a no-op on some systems.

wgetq(w, dptr result)

Get an event from w's pending queue, put results in descriptor *res. Returns -1 for an
error, 1 for success (should fix this).

22

WINDOWLABEL(w)

Produce char * for window's title if there is one.

FILE *wopen(s, struct b_list *lp, dptr attrs, i, int *err_index, is_3d)

Open window named s, with various attributes. This ought to be merged from various
window system dependent files, but presently each one defines its own. Copy and
modify from rxwin.ri or rmswin.ri. The return value is really a wbp, cast to a FILE *.

wputc(c, w)

Draw character c on window w, interpret newlines, carriage returns, tabs, deletes,
backspaces, and the bell.

wsync(w)

Synchronize server and client (a no-op on some systems).

xdis(w, s, s_len)

Draw string s on window w, low-level.

XTOCOL(w, i)

Return integer conversion from a 0-based pixel coordinate to text column.

YTOROW(w, i)

Return integer conversion from a 0-based pixel coordinate to text row.

Acknowledgements

Ralph Griswold and Gregg Townsend co-designed the 2D graphics facilities that
originated in Icon and are used in Unicon. Gregg Townsend and Sandy Miller
contributed to the implementation of those facilities. Darren Merrill performed the first
port of the facilities, to OS/2, and in the process developed most of the separation into
platform-dependent and independent modules. Xuhua Zhang contributed the JPEG image
support.

23

Appendix A: The X Implementation

The reference implementation of Unicon's graphics facilities is written in terms of
Xlib, the lower-level X Window C interface [Nye88]. It does not use the X resource
manager. The end result of these two facts is that the implementation is relatively visible:
the semantics are expressed fairly directly in the source code. Although it is necessary to
understand the semantics of the underlying X routines, hidden behavior has been
minimized.

Unicon does not rely on the X Toolkit Intrinsics (Xt) or any higher level widget set
such as Motif. This guarantees that Unicon will compile and run on any X11 platform.
Unicon programs implement their own look and feel, which may or may not be consistent
with the other applications on a given X workstation. The Unicon Program Library
includes routines that implement user interface components with an appearance that is
similar to Motif.

The X implementation employs the XPM X pixmap library if it is available; XPM is a
proposed extension to Xlib for storing color images in external files [LeHors91]. XPM
provides color facilities analogous to the built-in X black-and-white bitmap routines. In
addition to the image formats native to each platform, Unicon also supports GIF and
JPEG as portable image file formats.

Appendix B: The MS Windows Implementation

The Microsoft Windows implementation of Unicon is written using Win32, the lower-
level 32-bit Windows API. It does not use the Microsoft Foundation Classes. This
makes it easier to build with different C compilers, and easier to port to different
Windows implementations, such as Windows CE.

Installing, Configuring, and Compiling the Source Code

Building Unicon for Windows Version 11.0 requires Mingw32 GCC 2.95.2. Newer
versions of Windows GCC might be made to work, but thusfar have produced non-
working executables. We hope to add Cygwin GCC support in the future. The sources
may also build with modest revision under MS Visual C++ 2.0 or newer. I have built
earlier versions with MSVC versions 2, 5, and 6. I encourage you to try building using
other compilers, and send me your configuration files. You will need a robust Win32
platform to compile these sources; the build scripts and "make" process tend to fail on
older versions of Windows.

1. Unpack the sources.

Unpack uni.zip in such a way that it preserves its subdirectory structure. Unzip.exe is
recommended rather than WinZip. See Icon Project Document 243 [ipd243] for a picture

24

of the directory hierarchy. In particular, there should be a BIN directory along with the
SRC directory under the unicon/ directory.

2. Configure the sources.

Run "make W-Configure-GCC" (or "make W-Configure" under MSVC) to configure
your sources to build wiconx and wicont, the Unicon virtual machine interpreter, and the
Unicon bytecode compiler, with graphics facilities enabled.

3. Compile to make executables.

Run "make Unicon" to build the currently-configured binary set. It is worth discussing
why I provide makefiles instead of a project file for use in the Visual C++ IDE. The
reason is that the source files for the Unicon virtual machine interpreter (generically
called iconx; wiconx.exe in this case) are written in an extended dialect of ANSI C called
RTL [ipd261]. Files in this language have the extension .r instead of .c and .ri instead of
.h. During compilation, a program called rtt (the run time translator) translates .r* files
into .c files. If someone wants to show me how to insert this step into the Visual C++
IDE build process, I would be happy to use their IDE. You can write project files for the
other C programs that make up the Unicon system, but most modifications to the
language are changes to the interpreter.

Notes on the MS Windows internal functions

The functions documented here are those most likely to be involved in projects to add
features to Windows Unicon.

handle_child(w, UINT msg, WPARAM wp, LPARAM lp)

This procedure handles messages from child window controls such as buttons. In many
cases, this enqueues an event on the Unicon window.

int playmedia(w, char *s)

This crude function will call one of several multimedia functions depending on whether s
is the name of a multimedia file (.wav, .mid, .rmi are supported) or an MCI command
string.

int getselection(w, char *s)

Return the current contents of the clipboard text. The design of this and setselection()
need to be broadened a bit to support images.

int setselection(w, char *s)

Set the clipboard text to s.

25

References

[LeH91] Arnaud LeHors. The X PixMap Format. Groupe Bull, Koala Project, INRIA,
France, 1991.

[Nye88] Adrian Nye, editor. Xlib Reference Manual. O'Reilly & Associates, Inc.,
Sebastopol, California, 1988.

[TGJ96] Gregg M. Townsend, Ralph E. Griswold, and Clinton L. Jeffery. Configuring
the Source Code for Version 9 of Icon; Technical Report IPD238c, Department of
Computer Science, University of Arizona, April 1996.
http://www.cs.arizona.edu/icon/docs/ipd238.htm.

[TGJ98] Gregg M. Townsend, Ralph E. Griswold, and Clinton L. Jeffery. Installing
Version 9 of Icon on UNIX Platforms; Technical Report IPD243e, Department of
Computer Science, University of Arizona, February 1998.
http://www.cs.arizona.edu/icon/docs/ipd243.htm.

[Uhl88] StephenA. Uhler. MGR --- C Language Application Interface. Technical report,
Bell Communications Research, July 1988.

[Wal94] Kenneth Walker. The Run-Time Implementation Language for Icon;
http://www.cs.arizona.edu/icon/ftp/doc/ipd261.pdf. Technical Report IPD261,
Department of Computer Science, University of Arizona, June 1994.

[Foley82] Foley, J.D; and A.Van Dam. Fundamentals of Interactive Computer Graphics.
Reading, MA: Addison-Wesley Publishing Company, 1982.

[Griswold96] Griswold, Ralph E and Griswold, Madge T. The Icon Programming
Language, Third Edition. San Jose, CA: Peer-To-Peer Communications, 1996.

[Griswold98] Griswold, Ralph E.; Jeffery, Clinton L.; and Townsend, Gregg M. Graphics
Programming in Icon. San Jose, CA: Peer-To-Peer Communications, 1998.

[Jeffery00] Jeffery, Clinton; Mohamed, Shamim; Pereda, Ray; and Parlett, Robert.
Programming with Unicon. Draft manuscript from http://unicon.sourceforge.net

[OpenGL99] OpenGL Architecture Review Board; Woo, Mason; Neider, Jackie; Davis;
Tom; Shreiner, Dave. OpenGL Programming Guide: the Official Guide to Learning

OpenGL, Third Edition. Reading, MA: Addison-Wesley Publishing Company, 1999.

26

[OpenGL00] OpenGL Architecture Review Board; Shreiner, Dave. OpenGL
Programming Guide: the Official Reference Document to OpenGL, Third Edition.
Upper Saddle Reading, MA: Addison-Wesley Publishing Company, 2000.

[Walker94] Walker, Kenneth; The Run-Time Implementation Language for Icon.
Technical Report from http://www.cs.arizona.edu/icon/

27

