
Unicon Language Reference

Clinton Jeffery, Shamim Mohamed, Jafar Al Gharaibeh

Unicon Technical Report: #8c

February 23, 2017

Abstract

Unicon is a very high level application programming language with particular strengths
in the areas of complex data structure and algorithm development, text processing,
graphics, network I/O, and concurrency. This language reference is adapted for online
documentation purposes from Appendix A of “Programming with Unicon”, by Jeffery,
Mohamed, Al Gharaibeh, Pereda, and Parlett.

Unicon Project
http://unicon.org

University of Idaho
Department of Computer Science

Moscow, ID, 83844, USA

1 Introduction

Unicon is expression-based. Nearly everything is an expression, including the common control
structures such as while loops. The only things that are not expressions are declarations for
procedures, methods, variables, records, classes, and linked libraries.

In the reference, types are listed for parameters and results. If an identifier is used, any type
is allowed. For results, generator expressions are further annotated with an asterisk (*) and non-
generators that can fail are annotated with a question mark (?). A question mark by itself (short
for null?) denotes a predicate whose success or failure is what matters; the predicate return value
(&null) is not significant.

A “Road Narrows” sign in either margin — like the sign reproduced here — indicates that the
function or operation is not thread-safe and should be protected from different threads executing it
at the same time (the sign is intended to suggest that only one thing should be allowed through at
any one time). In some cases, notably the augmented operations (+:= etc.) and the 3D operations,
the entire group is not thread-safe. In these cases the signs that would be beside the individual
functions or operations are replaced by a single cautionary sign at the head of the group. In a few
instances, the “Road Narrows” sign is also used to highlight a general comment about concurrency
(rather than a specific thread-safety issue).

2 Immutable Types: Numbers, Strings, Csets, Patterns

Unicon’s immutable types are integers, real numbers, strings, and csets. Values of these types
cannot change. Operators and functions on immutable types produce new values rather than
modify existing ones. The simplest expressions are literal values, which occur only for immutable
types. A literal value evaluates to itself.

Integer

Integers are of arbitrary precision. Decimal integer literals are contiguous sequences of the digits
0 through 9, optionally preceded by a + or - sign. Suffixes K, M, G, T, or P multiply a literal by
1024, 1024ˆ2, 1024ˆ3, 1024ˆ4, and 1024ˆ5, respectively.

Radix integer literals use the format radixRdigits, where radix is a base in the range 2 through
36, and digits consists of one or more numerals in the supplied radix. After values 0-9, the letters
A-Z are used for values 10-35. Radix literals are case insensitive, unlike the rest of the language,
so the R may be upper or lower case, as may the following alphabetic digits.

Real

Reals are double-precision floating-point values. Real decimal literals are contiguous sequences of
the digits 0 through 9, with a decimal point (a period) somewhere within or at either end of the
digits. Real exponent literals use the format numberEinteger ; E may be upper or lower case.

1

String

Strings are sequences of 0 or more characters, where a character is a value with a platform-
dependent size and symbolic representation. On platforms with multi-byte character sets, multiple
Icon characters represent a single symbol using a platform-dependent encoding. String literals
consist of 0 or more characters enclosed in double quotes. A string literal may include escape
sequences that use multiple characters to encode special characters. The escape sequences are
given in Table A-1. Incomplete string literals may be continued on the next line if the last
character on a line is an underscore (_). In that case, the underscore, the newline, and any
whitespace at the beginning of the next line are not part of the string literal.

Table A-1
Escape Codes and Characters

Code Character Code Character Code Character Code Character
\b backspace \d delete \e escape \f form feed
\l line feed \n newline \r carriage return \t tab
\v vertical tab \’ quote \" double quote \\ backslash
\ooo octal \xhh hexadecimal \ˆx Control-x

Cset

Csets are sets of 0 or more characters. Cset literals consist of 0 or more characters enclosed in single
quotes. As with strings, a cset literal may include escape sequences that use multiple characters
to encode special characters.

Pattern

Patterns are an immutable structure type used in matching, parsing or categorizing strings. Pat-
tern literals consist of regular expressions enclosed in less than (<) and greater than (>) symbols.
Within such marks, operators and reserved words do not have their normal meaning; instead
concatenation becomes the implicit operator and a few characters have special interpretations,
including asterisk, plus, question mark, curly braces, square brackets, and the period character.
In addition to pattern literals, patterns may be composed using a number of pattern constructor
operators and functions.

3 Mutable Types: Containers and Files

Mutable types’ values may be altered. Changes to a mutable value affect its allocated memory
or its associated OS resource. Mutable types include lists, tables, sets, records, objects, and files,
including windows, network connections and databases. These types are described in the entries
for constructors that create them. Structure types hold collections of elements that may be of
arbitrary, mixed type. Mutable types are not thread-safe. Mutual exclusion may be imposed for
mutable values accessed by multiple threads, at a cost in performance.

2

List

Lists are dynamically sized, ordered sequences of zero or more values. They are constructed by
function, by an explicit operator, or implicitly by a call to a variable argument procedure. They
change size by stack and queue functions.

Table

Tables are dynamically sized, unordered mappings from keys to elements. They are constructed
by function. The keys may be of arbitrary, mixed type.

Set

Sets are unordered collections. They are constructed by function.

Record

Records are ordered, fixed length sequences of elements accessed via named fields.

Object

Objects are ordered, fixed length sequences of elements that may be accessed via named fields and
methods. Accessing an object’s fields from outside its methods (using it as a record) is legal but
deprecated.

File

Files are system resources corresponding to data on secondary storage, areas on users’ displays,
network connections, or databases. Operations on files cause input or output side effects on the
system outside of the program execution.

4 Variables

Variables are names for locations in memory where values can be stored. Values are stored in
variables by assignment operators. A variable name begins with a letter or underscore, followed
by zero or more letters, underscores, or digits. Variable names are case-sensitive. A variable
name cannot be the same as one of Icon’s reserved words, nor can it be the same as one of Icon’s
keywords if it follows an adjacent ampersand character. Variables can hold values of any type,
and may hold different types of values at different times during program execution.

There are four kinds of variables: global, local, static, and class. Global, local, and static
variables are declared by introducing one of the reserved words (global, local, or static) followed by
a comma-separated list of variable names. Global variables are declared outside of any procedure
or method body, while local and static variables are declared at the beginning of procedure and
method bodies. Local and static variable names may be followed by an assignment operator and
an initial value; otherwise variables other than procedure and class names begin with the value
&null.

3

Aliasing occurs when two or more variables refer to the same value, such that operations on
one variable might affect the other. Aliasing is a common source of program bugs. Variables
holding integer, real, string, or cset values are never aliased, because those types are immutable.

Global

Global variables are visible everywhere in the program, and exist at the same location for the entire
program execution. Declaring a procedure declares a global variable initialized to the procedure
value that corresponds to the code for that procedure. Global variables are not thread-safe.

Local

Local variables exist and are visible within a single procedure or method only for the duration of a
single procedure invocation, including suspensions and resumptions, until the procedure returns,
fails, or is vanquished by the return or failure of an ancestor invocation while it is suspended.
Undeclared variables in any scope are implicitly local, but this dangerous practice should be
avoided in large programs.

Variables that are declared as parameters are local variables that are preinitialized to the values
of actual parameters at the time of a procedure or method invocation. The semantics of parameter
passing are the same as those of assignment.

Static

Static variables are visible only within a single procedure or method, but exist at the same location
for the entire program execution. The value stored in a static variable is preserved between multiple
calls to the procedure in which it is declared. Static variables are not thread-safe.

Class

Class variables are visible within the methods of a declared class. Class variables are created for
each instance (object) of the class. The lifespan of class variables is the life span of the instance
to which they belong. The value stored in a class variable is preserved between multiple calls to
the methods of the class in which it is declared. Class variables are not thread-safe.

5 Keywords

Keywords are names with global scope and special semantics within the language. They begin with
an ampersand character. Some keywords are names of common constant values, while others are
names of variables that play a special role in Icon’s control structures. The name of the keyword
is followed by a : if it is read-only, or a := if it is a variable, followed by the type of value the
keyword holds.

&allocated : integer* report memory use
&allocated generates the cumulative number of bytes allocated in heap, static, string, and block
regions during the entire program execution.

4

&ascii : cset ASCII character set
&ascii produces a cset corresponding to the ASCII characters.

&clock : string time of day
&clock produces a string consisting of the current time of day in hh:mm:ss format. See also
keyword &now.

&collections : integer* garbage collection activity
&collections generates the number of times memory has been reclaimed in heap, static, string,
and block regions.

&column : integer source code column
&column returns the source code column number of the current execution point. This is especially
useful for execution monitoring.

&cset : cset universal character set
&cset produces a cset constant corresponding to the universal set of all characters.

¤t :co-expression current co-expression
¤t produces the co-expression that is currently executing.

&date : string today’s date
&date produces the current date in yyyy/mm/dd format.

&dateline : string time stamp
&dateline produces a human-readable time stamp that includes the day of the week, the date, and
the current time, down to the minute.

&digits : cset digit characters
&digits produces a cset constant corresponding to the set of digit characters 0-9.

&dump := integer termination dump
&dump controls whether the program dumps information on program termination or not. If
&dump is nonzero when the program halts, a dump of local and global variables and their values
is produced.

&e : real natural log e
&e is the base of the natural logarithms, 2.7182818...

&error := integer fail on error
&error controls whether runtime errors are converted into expression failure. By assigning to this
keyword, error conversion can be enabled or disabled for specific sections of code. The integer
&error is decremented by one on each error, and if it reaches zero, a runtime error is generated.
Assigning a value of -1 effectively disables runtime errors indefinitely. There is not one &error
integer for each thread — the value applies to the whole program, not just the thread that sets
it.

5

&errornumber : integer? runtime error code
&errornumber is the error number of the last runtime error that was converted to failure, if there
was one.

&errortext : string? runtime error message
&errortext is the error message of the last error that was converted to failure.

&errorvalue : any? offending value
&errorvalue is the erroneous value of the last error that was converted to failure.

&errout : file standard error file
&errout is the standard error file. It is the default destination to which runtime errors and program
termination messages are written.

&eventcode := integer program execution event
&eventcode indicates the kind of behavior that occurred in a monitored program at the time of
the most recent call to EvGet(). This keyword is only supported under interpreters built with
execution monitoring support.

&eventsource := co-expression source of program execution events
&eventsource is the co-expression that transmitted the most recent event to the current program.
This keyword is null unless the program is an execution monitor. See also &source. Under a
monitor coordinator, &eventsource is the coordinator and global variable Monitored is the target
program.

&eventvalue := any program execution value
&eventvalue is a value from the monitored program that was being processed at the time of the
last program event returned by EvGet(). This keyword is only supported under interpreters built
with execution monitoring support.

&fail : none expression failure
&fail never produces a result. Evaluating it always fails.

&features : string* platform features
&features generates strings that indicate the non-portable features supported on the current plat-
form.

&file : string? current source file
&file is the name of the source file for the current execution point, if there is one. This is especially
useful for execution monitoring.

&host : string host machine name
&host is a string that identifies the host computer Icon is running on.

&input : file standard input file
&input is a standard input file. It is the default source for file input functions.

6

&lcase : cset lowercase letters
&lcase is a cset consisting of the lowercase letters from a to z.

&letters : cset letters
&letters is a cset consisting of the upper and lowercase letters A-Z and a-z.

&level : integer call depth
&level gives the nesting level of the currently active procedure call. This keyword is not supported
under the optimizing compiler, iconc.

&line : integer current source line number
&line is the line number in the source code that is currently executing.

&main : co-expression main task
&main is the co-expression in which program execution began.

&now : integer current time
&now produces the current time as the number of seconds since the epoch beginning 00:00:00
GMT, January 1, 1970. See also &clock

&null : null null value
&null produces the null value.

&output : file standard output file
&output is the standard output file. It is the default destination for file output.

&phi : real golden ratio
&phi is the golden ratio, 1.618033988...

&pi : real pi
&pi is the value of pi, 3.141592653...

&pos := integer string scanning position
&pos is the position within the current subject of string scanning. It is assigned implicitly by
entering a string scanning environment, moving or tabbing within the environment, or assigning a
new value to &subject. &pos may not be assigned a value that is outside the range of legal indices
for the current &subject string. Each thread has its own instance of &pos; assigning a value to it
in one thread does not affect the string scanning environment of any another thread.

&progname := string program name
&progname is the name of the current executing program.

&random := integer random number seed
&random is the seed for random numbers produced by the random operator, unary ?. It is assigned
a different sequence for each execution but may be explicitly set for reproducible results. Each
thread has its own instance of &random; setting it in one thread does not affect the random
sequence produced by another thread.

7

®ions : integer* region sizes
®ions produces the sizes of the static region, the string region, and the block region. The first
result is zero; it is included for backward compatibility reasons.

&source : co-expression invoking co-expression
&source is the co-expression that activated the current co-expression.

&storage : integer* memory in use
&storage gives the amount of memory currently used within the static region, the string region,
and the block region. The first result is always zero and is included for backward compatibility
reasons.

&subject := string string scanning subject
&subject holds the default value used in string scanning and analysis functions. Assigning to
&subject implicitly assigns the value 1 to &pos. Each thread has its own instance of &subject;
assigning a value to it in one thread does not affect the string scanning environment of any another
thread.

&time : integer elapsed time
&time gives the number of milliseconds of CPU time that have elapsed since the program execution
began. For wall clock time see &now or &clock.

&trace := integer trace program
&trace gives the number of nesting levels to which program execution will be traced. 0 means no
tracing. A negative value traces to an infinite depth. &trace is set outside the program using the
TRACE environment variable or the -t compiler option.

&ucase : cset upper case letters
&ucase is a cset consisting of all the upper case letters from A to Z.

&version : string version
&version is a string that indicates which version of Unicon or Icon is executing.

Graphics keywords

Several of the graphics keywords are variables with assignment restricted to value of a particular
type or types. Graphics keywords are more fully described in [Griswold98].

&col : integer mouse location, text column
&col is the mouse location in text columns during the most recent Event(). If &col is assigned, &x
gets a corresponding pixel location in the current font on &window.

&control : integer control modifier flag
&control produces the null value if the control key was pressed at the time of the most recently
processed event, otherwise &control fails.

8

&interval : integer time since last event
&interval produces the time between the most recently processed event and the event that preceded
it, in milliseconds.

&ldrag : integer left mouse button drag
&ldrag produces the integer that indicates a left button drag event.

&lpress : integer left mouse button press
&lpress produces the integer that indicates a left button press event.

&lrelease : integer left mouse button release
&lrelease produces the integer that indicates a left button release event.

&mdrag : integer middle mouse button drag
&mdrag produces the integer that indicates a middle button drag event.

&meta : integer meta modifier flag
&meta produces the null value if the meta (Alt) key was pressed at the time of the most recently
processed event, otherwise &meta fails.

&mpress : integer middle mouse button press
&mpress produces the integer that indicates a middle button press event.

&mrelease : integer middle mouse button release
&mrelease produces the integer that indicates a middle button release event.

&pick : string* pick 3D objects
&pick generates the object IDs selected at point (&x,&y) at the most recent Event(), if the event
was read from a 3D window with the attribute pick=on.

&rdrag : integer right mouse button drag
&rdrag produces the integer that indicates a right button drag event.

&resize : integer window resize event
&resize produces the integer that indicates a window resize event.

&row : integer mouse location, text row
&row is the mouse location in text rows during the most recent Event(). If &row is assigned, &y
gets a corresponding pixel location in the current font on &window.

&rpress : integer right mouse button press
&rpress produces the integer that indicates a right button press event.

&rrelease : integer right mouse button release
&rrelease produces the integer that indicates a right button release event.

&shift : integer shift modifier flag

9

&shift produces the null value if the shift key was pressed at the time of the most recently processed
event, otherwise &shift fails.

&window : window default window
&window is the default window argument for all window functions. &window may be assigned any
value of type window.

&x : integer mouse location, horizontal
&x is the horizontal mouse location in pixels during the most recent Event(). If &x is assigned,
&col gets a corresponding text coordinate in the current font on &window.

&y : integer mouse location, vertical
&y is the vertical mouse location in pixels during the most recent Event(). If &y is assigned, &row
gets a corresponding text coordinate in the current font on &window.

6 Control Structures and Reserved Words

Unicon has many reserved words. Some are used in declarations, but most are used in control
structures. This section summarizes the syntax and semantics introduced by all the reserved words
of the language. The reserved word under discussion is written in a bold font. The surrounding
syntax uses square brackets for optional items and an asterisk for items that may repeat.

break expr exit loop
The break expression exits the nearest enclosing loop. expr is evaluated and treated as the result
of the entire loop expression. If expr is another break expression, multiple loops will be exited.

expr1 to expr2 by expr3 step increment
The by reserved word supplies a step increment to a to-expression (the default is 1).

case expr of { ? } select expression
The case expression selects one of several branches of code to be executed.

class name [: superclass]* (fields) methods [initially] end class declaration
The class declaration introduces a new object type into the program. The class declaration may
include lists of superclasses, fields, methods, and an initially section.

create expr create co-expression
The create expression produces a new co-expression to evaluate expr.

critical x : expr serialize on x
The critical expression serializes the execution of expr on value x . Value x must be a mutex or
protected object that has a mutex. The critical section causes x to be locked before evaluating
expr and unlocked afterward. Breaking, returning or failing out of expr does not automatically
unlock x .

default : expr default case branch

10

The default branch of a case expression is taken if no other case branch is taken.

do expr iteration expression
The do reserved word specifies an expression to be executed for each iteration of a preceding while,
every, or suspend loop (yes, suspend is a looping construct).

if expr1 then expr2 else expr3 else branch
The else expression is executed if expr1 fails to produce a result.

end end of declared body
The reserved word end signifies the end of a procedure, method, or class body.

every expr1 [do expr2] generate all results
The every expression always fails, causing expr1 to be resumed for all its results.

fail produce no results
The fail reserved word causes the enclosing procedure or method invocation to terminate imme-
diately and produce no results. The invocation may not be resumed. See also the keyword &fail,
which produces a less drastic expression failure. fail is equivalent to return &fail

global var [, var]* declare global variables
Reserved word global introduces one or more global variables.

if expr then expr2 [else expr3] conditional expression
The if expression evaluates expr2 only if expr1 produces a result.

import name [, name]* import package
The import declaration introduces the names from package name so that they may be used without
prefixing them with the package name.

initial expr execute on first invocation
The initial expression is executed the first time a procedure or method is invoked. Any subsequent
invocations (of the procedure or method) will not proceed until the initial expression has finished
execution. A recursive invocation of the procedure inside the initial expression causes a runtime
error.

initially [(parameters)] initialize object
The initially section defines a special method that is invoked automatically when an object is
created. If the initially section has declared parameters, they are used as the parameters of the
constructor for objects of that class.

invocable procedure [, procedure]* allow string invocation
invocable all allow string invocation
The invocable declaration indicates that procedures may be used in string invocation.

link filename [, filename]* link code module

11

The link declaration directs that the code in filename will be added to the executable when this
program is linked. filename may be an identifier or a string literal file path.

local var [:=initializer] [, var [:= initializer]]* declare local variables
The local declaration introduces local variables into the current procedure or method. Variable
declarations must be at the beginning of a procedure or method.

method name (params) body end declare method
The method declaration introduces a procedure that is invoked with respect to instances of a given
class. The params and body are as in procedures, described below.

next iterate loop
The next expression causes a loop to immediate skip to its next iteration.

not expr negate expression failure
The not expression fails if expr succeeds, and succeeds (producing null) if expr fails.

case expr of { ? } introduce case branches
The of reserved word precedes a special compound expression consisting of a sequence of case
branches of the form expr : expr. Case branches are evaluated in sequence until one matches the
expression given between the word case and the of.

package name declare package
The package declaration segregates the global names in the current source file. In order to refer to
them, client code must either import the package, or prepend name. (the package name followed
by a period) onto the front of a name in the package.

procedure name (params) body end declare procedure
The procedure declaration specifies a procedure with parameters and code body. The parameters
are a comma-separated list of zero or more variable names. The last parameter may be suffixed
by [] to indicate that following parameters will be supplied to the procedure in a list. The body
is an optional sequence of local and static variable declarations, followed by a sequence of zero or
more expressions.

record name (fields) declare record
The record declaration introduces a new record type into the program.

repeat expr infinite loop
The repeat expression introduces an infinite loop that will reevaluate expr forever. Of course, expr
may exit the loop or terminate the program in any number of ways.

return expr return from invocation
The return expression exits a procedure or method invocation, producing expr as its result. The
invocation may not be resumed.

static var [, var]* declare static variables

12

The static declaration introduces local variables that persist for the entire program execution
into the current procedure or method body. Variable declarations must be at the beginning of a
procedure or method.

suspend expr [do expr] produce result from invocation
The suspend expression produces one or more results from an invocation for use by the calling
expression. The procedure or method may be resumed for additional results if the calling expression
needs them. Execution in the suspended invocation resumes where it left off, in the suspend
expression. A single evaluation of a suspend expression may produce multiple results for the
caller if expr is a generator. An optional do expression is evaluated each time the suspend is
resumed.

if expr1 then expr2 conditional expression
The expr2 following a then is evaluated only if expr1 following an if succeeds. In that case, the
result of the whole expression is the result of expr2.

thread expr create thread
The thread expression creates and launches a concurrent thread to evaluate expr.

expr1 to expr2 generate arithmetic sequence
The to expression produces the integer sequence from expr1 to expr2.

until expr1 [do expr2] loop until success
The until expression loops as long as expr1 fails.

while expr1 [do expr2] loop until failure
The while expression loops as long as expr1 succeeds.

7 Operators and Built-in Functions

Icon’s built-ins operators and functions utilize automatic type conversion to provide flexibility and
ease of programming. Automatic type conversions are limited to integer, real, string, and cset data
types. Conversions to a "number" will convert to either an integer or a real, depending whether
the value to be converted has a decimal. Conversions between numeric types and csets go through
an intermediate conversion to a string value and are not generally useful.

Indexes start at 1. Index 0 is the position after the last element of a string or list. Negative
indexes are positions relative to the end. Subscripting operators and string analysis functions can
take two indices to specify a section of the string or list. When two indices are supplied, they
select the same string section whether they are in ascending or descending order.

Operators

The result types of operators are the same as the operand types except as noted.

13

Unary operators

! x : any* generate elements
The generate operator produces the elements of x. If x is a string variable or refers to a structure
value, the generated elements are variables that may be assigned. !i is equivalent to (1 to i)
for integer i. List, record, string, and file elements are generated in order, with string elements
consisting of one-letter substrings. Set and table elements are generated in an undefined order. If x
is a messaging connection to a POP server, !x produces complete messages as strings. Other types
of files, including network connections, produce elements consisting of text lines. Care should be
taken when generating the elements of a variable that might change during the generation.

/ x null test
\ x nonnull test
The null and nonnull tests succeed and produce their operand if it satisfies the test.

- number negate
+ number numeric identity
Negation reverses the sign of its operand. Numeric identity does not change its operand’s value
other than to convert to a required numeric type.

= string tab/match
= pattern anchored pattern match
The unary equals operator performs a pattern match on its operand in the current string scanning
environment and advances the position beyond the matched string if successful. When the operand
is a string, this is equivalent to calling tab(match(s)) on its operand.

* x : integer size
The size operator returns the number of elements in string, cset, thread message queue or structure
x.

. x : x dereference
The dereference operator returns the value x.

? x : any random element
The random operator produces a random element from x. If x is a string, ?x produces a random
one-letter substring. The result is a variable that may be assigned. If x is a positive integer, ?x
produces a random integer between 1 and x. ?0 returns a real in the range from 0.0-1.0.

| x : x* repeated alternation
The repeated alternation operator generates results from evaluating its operand over and over
again in an infinite loop.

˜ cset cset complement
The complement operator returns a cset consisting of all characters not in its operand.

ˆ co-expression refresh co-expression
The refresh operator restarts a co-expression so the next time it is activated it will begin with its
first result.

14

Binary operators

Most binary operators may be augmented with an assignment. If such an operator is followed by
a := the left operand must be a variable, and the expression x op:= y is equivalent to x := x op y.
For example, x +:= 5 is equivalent but faster than the expression x := x+5. In general, augmented
operators are not thread-safe. They are only safe if applied to a local (non static) variable that
has an atomic type. For example, sets are mutable (not safe anywhere) whereas csets are atomic
(unsafe if global or static; safe if local).

number1 ˆ number2 power
number1 * number2 multiply
number1 / number2 divide
number1 % number2 modulo
number1 + number2 add
number1 - number2 subtract
The arithmetic operators may be augmented.

set1 ** set2 intersection
set1 ++ set2 union
set1 -- set2 difference
The set operators work on sets or csets. They may be augmented.

x . name field
object . name (params) method invocation
object $ superclass .name (params) superclass method invocation
The field operator selects field name out of a record, object, or package. For objects, name may be
a method, in which case the field operator is being used as part of a method invocation. Superclass
method invocation consists of a dollar sign and superclass name prior to the field operator.

number1 = number2 equal
number1 ˜= number2 not equal
number1 < number2 less than
number1 <= number2 less or equal
number1 > number2 greater than
number1 >= number2 greater or equal
string1 == string2 string equal
string1 ˜== string2 string not equal
string1 << string2 string less than
string1 <<= string2 string less or equal
string1 >> string2 string greater than
string1 >>= string2 string greater or equal
x1 === x2 equivalence
x1 ˜=== x2 non equivalence
Relational operators produce their right operand if they succeed. They may be augmented.

15

var := expr assign
var1 :=: var2 swap
var <- expr reversible assignment
var1 <-> var2 reversible swap
The several assignment operators all require variables for their left operands, and swap operators
also require variables for their right operands.

Assignment operators are usually thread safe but there are some situations where they are not.
See the discussion of thread safe assignment without a mutex (in Chapter 8 of the Unicon book)
for details. If in doubt, protect the global variable with a mutex.

string ? expr scan string
String scanning evaluates expr with &subject equal to string and &pos starting at 1. It may be
augmented.

string ?? pattern pattern match
Pattern matching produces the substring(s) where pattern occurs within a string. It is conducted
within a new string scanning environment as per string scanning above. It may be augmented.

x ! y apply
The binary bang (exclamation) operator calls x, using y as its parameters. x may be a procedure,
or the string name of a procedure. y is a list or record.

[x] @ co-expression activate co-expression
The activate operator transfers execution control from the current co-expression to its right
operand co-expression. The transmitted value is x, or &null if no left operand is supplied. Activa-
tion may be augmented.

[x] @> [y] send message
[x] @>> [y] blocking send message
The send operator places a message in another thread’s public inbox, or in the current thread’s
public outbox. The normal version fails if the box is full; the blocking version waits for space to
become available.

[x] <@ [y] receive message
[x] <<@ [y] blocking receive message
The receive operator obtains a message from another thread’s public outbox, or the current thread’s
public inbox. The normal version fails if the box is empty; the blocking version waits for a message
to become available.

string1 || string2 concatenation
pattern1 || pattern2 pattern concatenation
list1 ||| list2 list concatenation
The concatenation operators produce new values (or patterns that will match values) consisting
of the left operand followed by the right operand. They may be augmented.

x1 & x2 conjunction

16

expr1 | expr2 alternation
pattern1 .| pattern2 pattern alternation
The conjunction operator produces x2 if x1 succeeds. Conjunction may be augmented. The
alternation operator produces the results of expr1 followed by the results of expr2; it is a genera-
tor. The pattern alternation operator produces a pattern that will match the results of pattern1
followed by the results of pattern2.

p -> v conditional assignment
p => v immediate assignment
.> v cursor position assignment
The conditional assignment operator assigns the substring matched by its left operand (a pattern)
to a variable (its right operand) at the end of matching, if the whole pattern match succeeds.
The immediate assignment operator assigns the substring matched by its left operand (a pattern)
to a variable (its right operand) at the point during the match that the pattern match of the
left operand occurs, whether or not the whole match succeeds. The cursor position assignment
operator assigns the cursor position at a point during a pattern match to a variable (its operand).

x1 \ integer limitation
The limitation operator fails if it is resumed after its left operand has produced a number of results
equal to its right operand.

(expr [, expr]*) mutual evaluation
p (expr [, expr]*) invocation
By themselves, parentheses are used to override operator precedence in surrounding expressions.
A comma-separated list of expressions is evaluated left to right, and fails if any operand fails. Its
value is the right of the rightmost operand.

When preceded by an operand, parentheses form an invocation. The operand may be a pro-
cedure, a method, a string that is converted to a procedure name, or an integer that selects the
parameter to use as the result of the entire expression.

[] empty list creation
[expr [, expr]*] list creation
[: expr :] list comprehension
expr1 [expr2 [, expr]*] subscript
expr1 [expr2 : expr3] subsection
expr1 [expr2 +: expr3] forward relative subsection
expr1 [expr2 -: expr3] backward relative subsection
With no preceding operand, square brackets create and initialize lists. Initializer values are comma-
separated, except in list comprehension where the expression’s values (obtained as if by every)
are used to provide the initial list elements. When preceded by an operand, square brackets form a
subscript or subsection. Multiple comma-separated subscript operands are equivalent to separate
subscript operations with repeating square brackets, so x[y,z] is equivalent to x[y][z].

Subscripting selects an element from a structure and allows that element to be assigned or for
its value to be used. Lists and strings are subscripted using 1-based integer indices, tables are

17

subscripted using arbitrary keys, and records may be subscripted by either string fieldname or
1-based integer index. Message connections may be subscripted by string header to obtain server
responses; POP connections may also be subscripted by 1-based integer message numbers.

Subsectioning works on strings and lists. For strings, the subsection is a variable if the string
was a variable, and assignment to the subsection makes the variable hold the new, modified string
constructed by replacing the subsection. For lists, a subsection is a new list that contains a copy
of the elements from the original list.

expr1 ; expr2 bound expression
A semicolon bounds expr1. Once expr2 is entered, expr1 cannot be resumed for more results. The
result of expr2 is the result of the entire expression. Semicolons are automatically inserted at ends
of lines wherever it is syntactically allowable to do so. This results in many implicitly bounded
expressions.

{ expr [; expr]* } compound expression
p { expr [; expr]* } programmer defined control structure
Curly brackets typically cause a sequence of bounded expressions to be treated as a single ex-
pression. Preceded by a procedure value, curly brackets introduce a programmer defined control
structure in which a co-expression is created for each argument; the procedure is called with these
co-expressions as its parameters, and can determine for itself whether, and in what order, to
activate its parameters to obtain values.

Built-in functions

Unicon’s built-in functions are a key element of its ease of learning and use. They provide sub-
stantial functionality in a consistent and easily memorized manner.

In addition to automatic type conversion, built-in functions make extensive use of optional
parameters with default values. Default values are indicated in the function descriptions, with
the exception of string scanning functions. String scanning functions end with three parameters
that default to the string &subject, the integer &pos, and the end of string (0) respectively. The
position argument defaults to 1 when the string argument is supplied rather than defaulted.

abs(N) : number absolute value
abs(N) produces the maximum of N or -N.

acos(r) : real arc cosine
acos(r) produces the arc cosine of r. The argument is given in radians.

any(c, s, i, i) : integer? cset membership
String scanning function any(c,s,i1,i2) produces min(i1,i2)+1 if s[min(i1,i2)] is in cset c, but fails
otherwise.

args(x,i) : any number of arguments
args(p) produces the number of arguments expected by procedure p. If p takes a variable number
of arguments, args(p) returns a negative number to indicate that the final argument is a list
conversion of an arbitrary number of arguments. For example, args(p) for a procedure p with

18

formal parameters (x, y, z[]) returns a -3. args(C) produces the number of arguments in the current
operation in co-expression C, and args(C,i) produces argument number i within co-expression C.

asin(real) : real arc sine
asin(r1) produces the arc sine of r1. The argument is given in radians.

atan(r, r:1.0) : real arc tangent
atan(r1) produces the arc tangent of r1. atan(r1,r2) produces the arc tangent of r1 and r2.
Arguments are given in radians.

atanh(r) : real inverse hyperbolic tangent
atanh(r) produces the inverse hyperbolic tangent of r. Arguments are given in radians.

bal(cs:&cset, cs:’(’, cs:’)’, s, i, i) : integer* balance string
String scanning function bal(c1,c2,c3,s,i1,i2) generates the integer positions in s at which a mem-
ber of c1 in s[i1:i2] is balanced with respect to characters in c2 and c3.

center(s, i:1, s:" ") : string center string
center(s1,i,s2) produces a string of i characters. If i > *s1 then s1 is padded equally on the left
and right with s2 to length i. If i < *s1 then the center i characters of s1 are produced.

channel(TH) : list communications channel
channel(TH) creates a communications channel between the current thread and thread TH.

char(i) : string encode character
char(i) produces a string consisting of the character encoded by integer i.

chdir(s) : string change directory
chdir(s) changes the current working directory to s. chdir() returns the current working directory,
which is shared between threads.

chmod(f, m) : ? file permissions
chmod(f, m) sets the access permissions ("mode") of a string filename (or on UNIX systems, an
open file) f to a string or integer mode m. The mode indicates the change to be performed. The
string is of the form

[ugoa]*[+-=][rwxRWXstugo]*

The first group describes the set of mode bits to be changed: u is the owner set, g is the
group and o is the set of all others. The character a designates all the fields. The operator (+-=)
describes the operation to be performed: + adds a permission, - removes a permission, and = sets
a permission. The permissions themselves are:

r read
w write
x execute
R read if any other set already has r

19

W write if any other set already has w
X execute if any other set already has x
s setuid (if the first part contains u and/or setgid if the first part contains g
t sticky if the first part has o
u the u bits on the same file
g the g bits on the same file
o the o bits on the same file

If the first group is missing, then it is treated as "all" except that any bits in the user’s umask
will not be modified in the mode. Not all platforms make use of all mode bits described here; the
mode bits that are used is a property of the filesystem on which the file resides.

classname(r) : string class name
classname(r) produces the name of r’s class.

close(f) : file | integer close file
close(f) closes file, pipe, window, network or message connection, or database f and returns any
resources associated with it to the operating system. If f was a window, close(f) causes it to
disappear, but the window can still be written to and copied from until all open bindings are closed.
If f was a pipe or network connection, close() returns the integer exit status of the connection,
otherwise it returns the closed file.

cofail(CE) : any transmit co-expression failure
cofail(ce) activates co-expression ce, transmitting failure instead of a result.

collect(i:0, i:0) : null collect garbage
collect(i1,i2) calls the garbage collector to ensure that i2 bytes are free in region i1. i1 can be 0
(no region in particular) 1 (static region) 2 (string region) or 3 (block region).

condvar() : condition variable create condition variable
condvar() creates a new condition variable.

constructor(s, ...) : procedure record constructor
constructor(label, field, field, ...) creates a new record type named label with fields named by its
subsequent arguments, and returns a constructor procedure for this record type.

copy(any) : any copy value
copy(x) produces a copy of x. For immutable types (numbers, strings, csets, procedures) this is a
no-op. For mutable types (lists, tables, sets, records, objects) a one-level deep copy of the object
is made.

cos(r) : real cosine
cos(r) produces the cosine of r. The argument is given in radians.

cset(any) : cset? convert to cset
cset(x) converts x to a cset, or fails if the conversion cannot be performed.

20

ctime(i) : string format a time value into local time
ctime(i) converts an integer time given in seconds since the epoch, Jan 1, 1970 00:00:00 into a
string in the local timezone. See also keywords &clock and &dateline.

dbcolumns(D,s) : list ODBC column information
dbcolumns(db, tablename) produces a list of record (catalog, schema, tablename, colname,
datatype, typename, colsize, buflen, decdigits, numprecradix, nullable, remarks) entries. Fields
datatype and typename are SQL-dependent and data source dependent, respectively. Field colsize
gives the maximum length in characters for SQL_CHAR or SQL_VARCHAR columns.. Field
decdigits gives the number of significant digits right of the decimal. Field numprecradix specifies
whether colsize and decdigits are specified in bits or decimal digits. Field nullable is 0 if the
column does not accept null values, 1 if it does accept null values, and 2 if it is not known whether
the column accepts null values.

dbdriver(D) : record ODBC driver information
dbdriver(db) produces a record driver(name, ver, odbcver, connections, statements, dsn) that
describes the details of the ODBC driver used to connect to database db. Connections and
statements are the maximums the driver can support. Fields ver and odbcver are the driver and
ODBC version numbers. Fields name and dsn are the driver filename and Windows Data Source
Name associated with the connection.

dbkeys(D,string) : list ODBC key information
dbkeys(db,tablename) produces a list of record (columnname, sequencenumber) pairs containing
information about the primary keys in tablename.

dblimits(D) : record ODBC operation limits
dblimits(db) produces a record with fields maxbinlitlen, maxcharlitlen, maxcolnamelen, maxgroup-
bycols, maxorderbycols, maxindexcols, maxselectcols, maxtblcols, maxcursnamelen, maxin-
dexsize, maxrownamelen, maxprocnamelen, maxqualnamelen, maxrowsize, maxrowsizelong,
maxstmtlen, maxtblnamelen, maxselecttbls, and maxusernamelen that contains the upper
bounds of the database for many parameters.

dbproduct(D) : record database name
dbproduct(db) produces a record (name, ver) that gives the name and the version of the DBMS
product containing db.

dbtables(D) : list ODBC table information
dbtables(db) returns a list of record (qualifier, owner, name, type, remarks) entries that describe
all of the tables in the database associated with db.

delay(i) : null delay for i milliseconds
delay(i) pauses the program for at least i milliseconds.

delete(x1, x2, ...) : x1 delete element
delete(x1, x2) deletes elements denoted by the 2nd and following parameters from set, table, list,
DBM database, or POP connection x1 if it is there. In any case, it returns x1. If x1 is a table or

21

set, elements xi denote keys of arbitrary type. If x1 is a DBM database, indices must be strings.
If x1 is a list or a POP messaging connection, elements xi are integer indices of the element to be
deleted. POP messages are actually deleted when the close() operation closes that connection.

detab(string, integer:9,...) : string replace tabs
detab(s,i,...) replaces tabs with spaces, with stops at columns indicated by the second and following
parameters, which must all be integers. Tab stops are extended infinitely using the interval between
the last two specified tab stops.

display(i:&level, f:&errout, CE:¤t) : null write variables
display(i,f) writes the local variables of i most recent procedure activations, plus global variables,
to file f.

dtor(r) : real convert degrees to radians
dtor(r) produces the equivalent of r degrees, expressed in radians.

entab(s, i:9,...) : string replace spaces
entab(s,i,...) replaces spaces with tabs, with stops at columns indicated. Tab stops are extended
infinitely using the interval between the last two specified tab stops.

errorclear() : null clear error condition
errorclear() resets keywords &errornumber, &errortext, and &errorvalue to indicate that no error
is present.

eventmask(CE, cset) : cset | null get/set event mask
eventmask(ce) returns the event mask associated with the program that created ce, or &null if
there is no event mask. eventmask(ce,cs) sets that program’s event mask to cs.

EvGet(c, flag) : string get event from monitored program
EvGet(c,flag) activates a program being monitored until an event in cset mask c occurs. Under
normal circumstances this is a one-character string event code.

EvSend(i, x, CE) : any transmit event
EvSend(x, y, C) transmits an event with event code x and event value y to a monitoring co-
expression C.

exit(i:normalexit) exit process
exit(i) terminates the current program execution, returning status code i. The default is the
platform-dependent exit code that indicates normal termination (0 on most systems).

exp(r) : real exponential
exp(r) produces the result of &e ˆ r.

fetch(D, s?) : string | row? fetch database value
fetch(d, k) fetches the value corresponding to key k from a DBM or SQL database d. The result is
a string (for DBM databases) or a row (for SQL databases). For SQL databases, when the string k

22

is omitted, fetch(d) produces the next row in the current selection, and advances the cursor to the
next row. A row is a record whose field names and types are determined by the columns specified
in the current query. fetch(d) fails if there are no more rows to return from the current query.
Typically a call to dbselect() will be followed by a while-loop that calls fetch() repeatedly until it
fails.

fieldnames(R) : string* get field names
fieldnames(r) produces the names of the fields in record r.

find(s, s, i, i) : integer* find string
String scanning function find(s1,s2,i1,i2) generates the positions in s2 at which s1 occurs as a
substring in s2[i1:i2].

flock(f, s) : ? apply or remove file lock
flock(f,s) applies an advisory lock to the file. Advisory locks enable processes to cooperate when
accessing a shared file, but do not enforce exclusive access. The following characters can be used
to make up the operation string:

s shared lock
x exclusive lock
b don’t block when locking
u unlock

Locks cannot be applied to windows, directories or database files. A file may not simultaneously
have shared and exclusive locks.

flush(f) : file flush file
flush(f) flushes all pending or buffered output to file f.

function() : string* name the functions
function() generates the names of the built-in functions.

get(L,i:1) : any? get element from queue
get(L) returns an element which is removed from the head of the queue L. get(L, i) removes i
elements, returning the last one removed.

getch() : string? get character from console
getch() waits for (if necessary) and returns a character typed at the keyboard, even if standard
input was redirected. The character is not displayed.

getche() : string? get and echo character from console
getche() waits for (if necessary) and returns a character typed at the console keyboard, even if
standard input was redirected. The character is echoed to the screen.

getenv(s) : string? get environment variable
getenv(s) returns the value of environment variable s from the operating system.

gettimeofday() : record time of day

23

Returns the current time in seconds and microseconds since the epoch, Jan 1, 1970 00:00:00. The
sec value may be converted to a date string with ctime or gtime. See also keywords &now, &clock,
and &dateline. Return value: record posix_timeval(sec, usec)

globalnames(CE) : string* name the global variables
globalnames(ce) generates the names of the global variables in the program that created co-
expression ce.

gtime(i) : string format a time value into UTC
Converts an integer time in seconds since the epoch, Jan 1, 1970 00:00:00 into a string in Coordi-
nated Universal Time (UTC).

iand(i, i) : integer bitwise and
iand(i1, i2) produces the bitwise AND of i1 and i2.

icom(i) : integer bitwise complement
icom(i) produces the bitwise complement (one’s complement) of i.

image(any) : string string image
image(x) returns the string image of the value x.

insert(x1, x2, x3:&null) : x1 insert element
insert(x1, x2, x3) inserts element x2 into set, table, or list or DBM database x1 if not already
there. Unless x1 is a set, the assigned value for element x2 is x3. For lists, x2 is an integer index;
for other types, it is a key. insert() always succeeds and returns x1.

integer(any) : integer? convert to integer
integer(x) converts value x to an integer, or fails if the conversion cannot be performed.

ior(i, i) : integer bitwise or
ior(i1, i2) produces the bitwise OR of i1 and i2.

ishift(i, i) : integer bitwise shift
ishift(i, j) produces the value obtained by shifting i by j bit positions. Shifting is to the left if j>0,
or to the right if j<0. j zero bits are introduced at the end opposite the shift direction.

istate(CE, s) : integer interpreter state
istate(ce, attrib) reports selected virtual machine interpreter state information. attrib must be one
of: “count”, “ilevel”, “ipc”, “ipc_offset”, “sp”, “efp”, “gfp”. Used by monitors.

ixor(i, i) : integer bitwise xor
ixor(i1, i2) produces the bitwise exclusive or of i1 and i2.

kbhit() : ? check for console input
kbhit() checks to see if there is a keyboard character waiting to be read.

key(x) : any* table keys

24

key(T) generates the key (entry) values from table T. key(L) generates the indices from 1 to *L in
list L. key(R) generates the string field names of record R.

keyword(s,CE:¤t,i:0) : any* produce keyword value
keyword(s,ce,i) produces the value of keyword s in the context of ce’s execution, i levels up in the
stack from the current point of execution. Used in execution monitors.

left(s, i:1, s:" ") : string left format string
left(s1,i,s2) formats s1 to be a string of length i. If s1 is more than i characters, it is truncated.
If s1 is fewer than i characters it is padded on the right with as many copies of s2 as needed to
increase it to length i.

list(integer:0, any:&null) : list create list
list(i, x) creates a list of size i, in which all elements have the initial value x. If x is a mutable
value such as a list, all elements refer to the same value, not a separate copy of the value for each
element.

load(s,L,f:&input,f:&output,f:&errout,i,i,i) : co-expression load Unicon program
load(s,arglist,input,output,error,blocksize,stringsize,stacksize) loads the icode file named s and
returns that program’s execution as a co-expression ready to start its main() procedure with
parameter arglist as its command line arguments. The three file parameters are used as that
program’s &input, &output, and &errout. The three integers are used as its initial memory region
sizes.

loadfunc(s, s) : procedure load C function
loadfunc(filename,funcname) dynamically loads a compiled C function from the object library
file given by filename. funcname must be a specially written interface function that handles Icon
data representations and calling conventions.

localnames(CE, i:0) : string* local variable names
localnames(ce,i) generates the names of local variables in co-expression ce, i levels up from the
current procedure invocation. The default i of 0 generates names in the currently active procedure
in ce.

lock(x) : x lock mutex
lock(x) locks the mutex x or the mutex associated with thread-safe object x . Mutexes are recursive
(i.e. they may be locked again by the same co-expression or thread without blocking) but must
be unlocked as many times as they are locked. It is an error to unlock a mutex more times than
it has been locked.

log(r, r:&e) : real logarithm
log(r1,r2) produces the logarithm of r1 to base r2.

many(c, s, i, i) : integer? many characters
String scanning function many(c,s,i1,i2) produces the position in s after the longest initial sequence
of members of c within s[i1:i2].

25

map(s, s:&ucase, s:&lcase) : string map string
map(s1,s2,s3) maps s1, using s2 and s3. The resulting string will be a copy of s1, with the
exception that any of s1’s characters that appear in s2 are replaced by characters at the same
position in s3.

match(s, s:&subject, i:&pos, i:0) : integer match string
String scanning function match(s1,s2,i1,i2) produces i1+*s1 if s1==s2[i1+:*s1], but fails otherwise.

max(n, ...) : number largest value
max(x, ...) returns the largest value among its arguments, which must be numeric.

member(x, ...) : x? test membership
member(x, ...) returns x if its second and subsequent arguments are all members of set, cset, list
or table x but fails otherwise. If x is a cset, all of the characters in subsequent string arguments
must be present in x in order to succeed.

membernames(x) : list class member names
membernames(x) produces a list containing the string names of the fields of x, where x is either
an object or a string name of a class.

methodnames(x) : list class method names
methodnames(x) produces a list containing the string names of the methods defined in class x,
where x is either an object or a string name of a class.

methods(x) : list class method list
methods(x) produces a list containing the procedure values of the methods of x, where x is either
an object or a string name of a class.

min(n, ...) : number smallest value
min(x, ...) returns the smallest value among its arguments, which must be numeric.

mkdir(s, s?) : ? create directory
mkdir(path,mode) creates a new directory named path with mode mode. The optional mode
parameter can be numeric or a string of the form accepted by chmod(). The function succeeds if
a new directory is created.

move(i:1) : string move scanning position
move(i) moves &pos i characters from the current position and returns the substring of &subject
between the old and new positions. This function reverses its effects by resetting the position to
its old value if it is resumed.

mutex(x,y) : x create a mutex
mutex() creates a new mutex. For mutex(x) associates the new mutex with structure x . The call
mutex(x,y) associates an existing mutex y (or mutex associated with protected object y) with
structure x .

26

name(v, CE:¤t) : string variable name
name(v) returns the name of variable v within the program that created co-expression c. Keyword
variables are recognized and named correctly. name() returns the base type and subscript or field
information for variables that are elements within other values, but does not produce the source
code variable name for such variables.

numeric(any) : number convert to number
numeric(x) produces an integer or real number resulting from the type conversion of x, but fails
if the conversion is not possible.

open(s, s:"rt", ...) : file? open file
open(s1, s2, ...) opens a file named s1 with mode s2 and attributes given in trailing arguments.
The modes recognized by open() are:

"a" append; write after current contents
"b" open for both reading and writing (b does not mean binary mode!)
"c" create a new file and open it
"d" open a [NG]DBM database
"g" create a 2D graphics window
"gl" create a 3D graphics window
"n" connect to a remote TCP network socket
"na" accept a connection from a TCP network socket
"nau" accept a connection from a UDP network socket
"nl" listen on a TCP network socket
"nu" connect to a UDP network socket
"m" connect to a messaging server (HTTP, HTTPS, SMTP, POP, ...)
"o" open an ODBC connection to a (typically SQL) database
"p" execute a program given by command line s1 and open a pipe to it
"r" read
"t" use text mode, with newlines translated
"u" use a binary untranslated mode
"w" write

Directories may only be opened for reading, and produce the names of all files, one per line.
Pipes may be opened for reading or writing, but not both.

When opening a network socket: the first argument s1 is the name of the socket to connect.
If s1 is of the form "s:i", it is an Internet domain socket on host s and port i; otherwise, it is the
name of a Unix domain socket. If the host name is null, it represents the current host. Mode "n"
allows an optional third parameter, an integer timeout (in milliseconds) after which open() fails
if no connection has been established by that time.

For a UDP socket, there is not really a connection, but any writes to that file will send a
datagram to that address, so that the address doesn’t have to be specified each time. Also, read()
or reads() cannot be performed on a UDP socket; use receive. UDP sockets must be in the INET
domain; the address must have a colon.

For a DBM database, only one modifier character may be used: if s1 is "dr" it indicates that
the database should be opened in read-only mode. For an ODBC database, following the mode

27

letter "o" comes an optional string default table name used by functions such as dbcolumns(),
followed by two generally required strings giving the username and password authentication for
the connection.

The filename argument is a Uniform Resource Indicator (URI) when opening a messaging
connection. Mode "m-" may be given to skip the validation of an encryption certificate for HTTPS
connections. Arguments after the mode "m" are sent as headers. The HTTP User-Agent header
defaults to "Unicon Messaging/10.0" and Host defaults to the host and port indicated in the URI.
The SMTP From: header obtains its default from a UNICON_USERADDRESS environment
variable if it is present.

For 2D and 3D windows, attribute values may be specified in the following arguments to
open(). open() fails if a window cannot be opened or an attribute cannot be set to a requested
value.

opmask(CE, c) : cset opcode mask
opmask(ce) gets ce’s program’s opcode mask. The function returns &null if there is no opcode
mask. opmask(ce,cs) sets ce’s program’s opcode mask to cs. This function is part of the execution
monitoring facilities.

oprec(x) : record get methods vector
oprec(r) produces a variable reference for r’s class’ methods vector.

ord(s) : integer ordinal value
ord(s) produces the integer ordinal (value) of s, which must be of size 1.

paramnames(CE, i:0) : string* parameter names
paramnames(ce,i) produces the names of the parameters in the procedure activation i levels above
the current activation in ce.

parent(CE) : co-expression parent program
parent(ce) returns &main for ce’s parent program. This is interesting only when programs are
dynamically loaded using the load() function.

pipe() : list create pipe
pipe() creates a pipe and returns a list of two file objects. The first is for reading, the second is
for writing. See also function filepair().

pop(L | Message) : any? pop from stack
pop(L) removes an element from the top of the stack (L[1]) and returns it. pop(M) removes and
returns the first message in POP mailbox connection M; the actual deletion occurs when the
messaging connection is closed.

pos(i) : integer? test scanning position
pos(i) tests whether &pos is at position i in &subject.

proc(any, i:1, C) : procedure? convert to procedure

28

proc(s,i) converts s to a procedure if that is possible. Parameter i is used to resolve ambiguous
string names; it must be either 0, 1, 2, or 3. If i is 0, a built-in function is returned if it is
available, even if the global identifier by that name has been assigned differently. If i is 1, 2,
or 3, the procedure for an operator with that number of operands is produced. For example,
proc("-",2) produces the procedure for subtraction, while proc("-") produces the procedure for
unary negation. proc(C,i) returns the procedure activated i levels up with C. proc(p, i, C) returns
procedure p if it belongs to the program which created co-expression C.

pull(L,i:1) : any? remove from list end
pull(L) removes and produces an element from the end of a nonempty list L. pull(L, i) removes i
elements, producing the last one removed.

push(L, any, ...) : list push on to stack
push(L, x1, ..., xN) pushes elements onto the beginning of list L. The order of the elements added
to the list is the reverse of the order they are supplied as parameters to the call to push(). push()
returns the list that is passed as its first parameter, with the new elements added.
put(L, x1, ..., xN) : list add to list end
put(L, x1, ..., xN) puts elements onto the end of list L.

read(f:&input) : string? read line
read(f) reads a line from file f. The end of line marker is discarded.

reads(f:&input, i:1) : string? read characters
reads(f,i) reads up to i characters from file f. It fails on end of file. If f is a network connection,
reads() returns as soon as it has input available, even if fewer than i characters were delivered. If
i is -1, reads() reads and produces the entire file as a string. Care should be exercised when using
this feature to read very large files.

ready(f:&input, i:0) : string? non-blocking read
ready(f,i) reads up to i characters from file f. It returns immediately with available data and fails
if no data is available. If i is 0, ready() returns all available input. It is not currently implemented
for window values.

real(any) : real? convert to real
real(x) converts x to a real, or fails if the conversion cannot be performed.

receive(f) : record receive datagram
receive(f) reads a datagram addressed to the port associated with f, waiting if necessary. The
returned value is a record of type posix_message(addr, msg), containing the address of the
sender and the contents of the message respectively.

remove(s) : ? remove file
remove(s) removes the file named s.

rename(s, s) : ? rename file
rename(s1,s2) renames the file named s1 to have the name s2.

29

repl(x, i) : x replicate
repl(x, i) concatenates and returns i copies of string or list x.

reverse(x) : x reverse sequence
reverse(x) returns a value that is the reverse of string or list x.

right(s, i:1, s:" ") : string right format string
right(s1,i,s2) produces a string of length i. If i<*s1, s1 is truncated. Otherwise, the function pads
s1 on left with s2 to length i.

rmdir(s) : ? remove directory
rmdir(d) removes the directory named d. rmdir() fails if d is not empty or does not exist.

rtod(r) : real convert radians to degrees
rtod(r) produces the equivalent of r radians, expressed in degrees.

runerr(i, any) runtime error
runerr(i,x) produces runtime error i with value x. Program execution is terminated.

seek(f, any) : file? seek to file offset
seek(f,i) seeks to offset i in file f, if it is possible. If f is a regular file, i must be an integer. If f
is a database, i seeks a position within the current set of selected rows. The position is selected
numerically if i is convertible to an integer; otherwise i must be convertible to a string and the
position is selected associatively by the primary key.

select(x1, x2, ?) : list files with available input
select(files?, timeout) waits for a input to become available on any of several files, typically network
connections or windows. Its arguments may be files or lists of files, ending with an optional integer
timeout value in milliseconds. It returns a list of those files among its arguments that have input
waiting.

If the final argument to select() is an integer, it is an upper bound on the time elapsed before
select returns. A timeout of 0 causes select() to return immediately with a list of files on which
input is currently pending. If no files are given, select() waits for its timeout to expire. If no
timeout is given, select() waits forever for available input on one of its file arguments. Directories
and databases cannot be arguments to select().

send(s, s) : ? send datagram
send(s1, s2) sends a UDP datagram to the address s1 (in host:port format) with the contents s2.

seq(i:1, i:1) : integer* generate sequence
seq(i, j) generates the infinite sequence i, i+j, i+2*j, j may not be 0.

serial(x) : integer? structure serial number
serial(x) returns the serial number for structure x, if it has one. Serial numbers uniquely identify
structure values.

30

set(x, ...) : set create set
set() creates a set. Arguments are inserted into the new set, with the exception of lists. set(L)
creates a set whose members are the elements of list L.

setenv(s) : ? set environment variable
setenv() sets an environment variable s in the operating system.

signal(cv, i:1) : ?? signal a conditional variable
signal(x, y) signals the condition variable x . If y is supplied, the condition variable is signaled
y times. If y is 0, a “broadcast” signal is sent waking up all threads waiting on x . Condition
variables have no memory: signalling a condition variable that has no threads waiting on it has
no effect.

sin(r) : real sine
sin(r) produces the sine of r. The argument is given in radians.

sort(x, i:1) : list sort structure
sort(x, i) sorts structure x in ascending order. If x is a table, parameter i is the sort method. If
i is 1 or 2, the table is sorted into a list of lists of the form [key, value]. If i is 3 or 4, the table
is sorted into a list of alternating keys and values. Sorting is by keys for odd-values of i, and by
table element values for even-values of i.

sortf(x, i:1) : list sort by field
sortf(x,i) sorts a list, record, or set x using field i of each element that has one. Elements that
don’t have an i’th field are sorted in standard order and come before those that do have an i’th
field.

spawn(CE, i, i) : thread launch asynchronous thread
spawn(ce) launches co-expression ce as an asynchronous thread that will execute concurrently
with the current co-expression. The two optional integers specify the memory in bytes allocated
for the thread’s block and string regions. The defaults are 10% of the main thread heap size.

sql(D, s) : integer execute SQL statement
sql(db, query) executes arbitrary SQL code on db. This function allows the program to do vendor-
specific SQL and many SQL statements that cannot be expressed otherwise using the Unicon
database facilities. sql() can leave the database in an arbitrary state and should be used with care.

sqrt(r) : real square root
sqrt(r) produces the square root of r.

stat(f) : record? get file information
stat(f) returns a record with information about the file f which may be a path or a file object.
The return value is of type: record posix_stat(dev, ino, mode, nlink, uid, gid, rdev, size, atime,
mtime, ctime, blksize, blocks, symlink). Many of these fields are POSIX specific, but a number
are supported across platforms, such as the file size in bytes (the size field), access permissions
(the mode field), and the last modified time (the mtime field).

31

The atime, mtime, and ctime fields are integers that may be formatted with the ctime() and
gtime() functions. The mode is a string similar to the long listing option of the UNIX ls(1)
command. For example, "-rwxrwsr-x" represents a plain file with a mode of 2775 (octal). stat(f)
fails if filename or path f does not exist.

staticnames(CE:¤t, i:0) : string* static variable names
staticnames(ce,i) generates the names of static variables in the procedure i levels above the current
activation in ce.

stop(s|f, ...) : stop execution
stop(args) halts execution after writing out its string arguments, followed by a newline, to &errout.
If any argument is a file, subsequent string arguments are written to that file instead of &errout.
The program exit status indicates that an error has occurred.

string(x) : string? convert to string
string(x) converts x to a string and returns the result, or fails if the value cannot be converted.

system(x, f:&input, f:&output, f:&errout, s) : integer execute system command
system(x, f1, f2, f3, waitflag) launches execution of a program in a separate process. x can be either
a string or a list of strings. In the former case, whitespace is used to separate the arguments and the
command is processed by the platform’s command interpreter. In the second case, each member
of the list is an argument and the second and subsequent list elements are passed unmodified to
the program named in the first element of the list.

The three file arguments are files that will be used for the new process’ standard input, standard
output and standard error. The return value is the exit status from the process. If the waitflag
argument is "nowait", system() returns immediately after spasyswning the new process, and the
return value is then the process id of the new process.

sys_errstr(i) : string? system error string
sys_errstr(i) produces the error string corresponding to i, a value obtained from &errno.

tab(i:0) : string? set scanning position
tab(i) sets &pos to i and returns the substring of &subject spanned by the former and new positions.
tab(0) moves the position to the end of the string. This function reverses its effects by resetting
the position to its old value if it is resumed.

table(k,v, ..., x) : table create table
table(x) creates a table with default value x. If x is a mutable value such as a list, all references
to the default value refer to the same value, not a separate copy for each key. Given more than
one argument, table(k,v,...x) takes alternating keys and values and populates the table with these
initial contents.

tan(r) : real tangent
tan(r) produces the tangent of r in radians.

trap(s, p) : procedure trap or untrap signal

32

trap(s, proc) sets up a signal handler for the signal s (the name of the signal). The old handler
(if any) is returned. If proc is null, the signal is reset to its default value. Procedure proc will
be called with a single parameter, which is the string name of the signal received. Unicon knows
about 40 names; most folks will care mainly about "SIGINT" and "SIGPIPE".

Caveat: This is not supported by the optimizing compiler (the -C command line option, which
invokes iconc).

trim(s, c:’ ’, i:-1) : string trim string
trim(s,c,i) removes characters in c from s at the back (i=-1, the default), at the front (i=1), or at
both ends (i=0).

truncate(f, i) : ? truncate file
truncate(f, len) changes the file f (which may be a string filename, or an open file) to be no longer
than length len. truncate() does not work on windows, network connections, pipes, or databases.

trylock(x) : x? try locking mutex
trylock(x) attempts to lock the mutex x or the mutex associated with thread-safe object x. trylock
fails if x is locked by a different thread or co-expression. If x is already locked by the calling thread
or co-expression, trylock will lock it again.

type(x) : string type of value
type(x) returns a string that indicates the type of x.

unlock(x) : x unlock mutex
unlock(x) unlocks the mutex x or the mutex associated with thread-safe object x .

upto(c, s, i, i) : integer* find characters in set
String scanning function upto(c,s,i1,i2) generates the sequence of integer positions in s up to a
character in c in s[i2:i2], but fails if there is no such position.

utime(s, i, i) : null file access/modification times
utime(f, atime, mtime) sets the access time for a file named f to atime and the modification time
to mtime. The ctime is set to the current time. The effects of this function are platform specific.
Some file systems support only a subset of these times.

variable(s, CE:¤t, i:0) : any? get variable
variable(s, c, i) finds the variable with name s and returns a variable descriptor that refers to its
value. The name s is searched for within co-expression c, starting with local variables i levels above
the current procedure frame, and then among the global variables in the program that created c.

wait(x) : ? wait for thread or condition variable
wait(x) waits for x . If x is a thread, wait() waits for it to finish. If x is is a condition variable
wait() waits until that variable is subsequently signaled by another thread.

where(f) : integer? file position

33

where(f) returns the current offset position in file f. It fails on windows and networks. The
beginning of the file is offset 1.

write(s|f, ...) : string|file write text line
write(args) outputs strings, followed by a newline, to a file or files. Strings are written in order to
their nearest preceding file, defaulting to &output. A newline is output to the preceding file after
the last argument, as well as whenever a non-initial file argument directs output to a different file.
write() returns its last argument.

writes(s|f, ...) : string|file write strings
writes(args) outputs strings to one or more files. Each string argument is written to the nearest
preceding file argument, defaulting to &output. writes() returns its last argument.

Graphics functions

The names of built-in graphics functions begin with upper case. The built-in graphics functions are
listed here. These functions are more thoroughly described in [Griswold98]. Extensive procedure
and class libraries for graphics are described in [Griswold98] and in Appendix B. In 2D, arguments
named x and y are pixel locations in zero-based integer coordinates. In 3D windows coordinates
are given using real numbers, and functions by default take three coordinates (x,y,z) per vertex.
Attribute dim can be set to 2 or 4, changing most 3D functions to take vertices in a (x,y) or (x,y,z,w)
format. Arguments named row and col are cursor locations in one-based integer text coordinates.
Most functions’ first parameter named w defaults to &window and the window argument can be
omitted in the default case. Most 3D functions are not thread-safe.

Active() : window produce active window
Active() returns a window that has one or more events pending. If no window has an event pending,
Active() blocks and waits for an event to occur. Active() starts with a different window on each
call in order to avoid window "starvation". Active() fails if no windows are open.

Alert() : window alert the user
Alert() produces a visual flash or audible beep that signifies to the user the occurrence of some
notable event in the application.

Bg(w,s) : string background color
Bg(w) retrieves the background color. Bg(w,s) sets the background color by name, rgb, or mutable
color value. Bg() fails if the background cannot be set to the requested color.

Clip(w,x:0,y:0,width:0,height:0) : window clip to rectangle
Clip(w,x,y,width,height) clips output to a rectangular area within the window. If width is 0, the
clip region extends from x to the right side of the window. If height is 0, the clip region extends
from y to the bottom of the window.

Clone(w,s,...) : window clone context
Clone(w) produces a new window binding in which a new graphics context is copied from w and
bound to w’s canvas. Additional string arguments specify attributes of the new binding, as in

34

WAttrib(). If the first string argument is “g” or “gl”, Clone() binds the new context to a subwindow
with separate canvas and input queue inside of and relative to w. Clone() fails if an attribute
cannot be set to a requested value.

Color(w, i, s,...) : window set mutable color
Color(w,i) produces the current setting of mutable color i. Color(w,i,s,...) sets the color map entries
identified by i[j] to the corresponding colors s[j]. See [Griswold98].

ColorValue(w, s) : string convert color name to rgb
ColorValue(w,s) converts the string color s into a string with three comma-separated 16-bit integer
values denoting the color’s RGB components. ColorValue() fails if string s is not a valid name or
recognized decimal or hex encoding of a color.

CopyArea(w1, w2,x:0,y:0,width:0,height:0,x2:0,y2:0) : window copy area
CopyArea(w1,w2,x,y,width,height,x2,y2) copies a rectangular region within w1 defined by x,y,width,height
to window w2 at offset x2,y2. CopyArea() returns w1. &window is not a default for this function.
The default copies all of w1.

Couple(w1, w2) : window couple window to context
Couple(w1,w2) produces a new value that binds the window associated with w1 to the graphics
context associated with w2.

DrawArc(w, x, y, width, height:width, a1:0.0, a2:2*&pi, ...) : window draw arc
DrawArc(w,x,y,width,height,a1,a2,...) draws arcs or ellipses. Each is defined by six integer coor-
dinates. x, y, width and height define a bounding rectangle around the arc; the center of the arc is
the point (x+(width)/2,y+(height)/2). Angles are specified in radians. Angle a1 is the starting po-
sition of the arc, where 0.0 is the 3 o’clock position and the positive direction is counter-clockwise.
Angle a2 is not the end position, but rather specifies the direction and extent of the arc.

DrawCircle(w, x, y, radius, a1:0.0, a2:2*&pi, ...) : window draw circle
DrawCircle() draws a circle or arc, centered at (x,y) and otherwise similar to DrawArc() with
width=height.

DrawCube(w, x, y, z, len ...) : record draw cube
DrawCube(w, x, y, z, len. . .) draws a cube with sides of length len at the position (x, y, z) on the
3D window w. The display list element is returned. This procedure fails if the context attribute
dim is set to 2.

DrawCurve(w, x1, y1, ...) : window draw curve
DrawCurve(w,x1,y1,...,xn,yn) draws a smooth curve connecting each x,y pair in the argument list.
If the first and last point are the same, the curve is smooth and closed through that point.

DrawCylinder(w, x, y, z, h, r1, r2, ...) : record draw cylinder
DrawCylinder(w, x, y, z, h, r1, r2, . . .) draws a cylinder with a top of radius r1, a bottom with
radius r2, and a height h on 3D window w. The disk is centered at the point (x, y, z). The display
list element is returned. This procedure fails if the context attribute dim is set to 2.

35

DrawDisk(w, x, y, z, r1, r2, a1, a2, ...) : record draw disk
DrawDisk(W, x, y, z, r1, r2, a1, a2, . . .) draws a disk or partial disk centered at (x, y, z) on 3D
window w. The inner circle has radius r1 and the outer circle has radius r2. The parameters a1
and a2 are optional. If they are specified, a partial disk is drawn with a starting angle a1 and
sweeping angle a2. The display list element is returned.

DrawImage(w, x, y, s) : window draw bitmapped figure
DrawImage(w,x,y, s) draws an image specified in string s at location x,y.

DrawLine(w, x1, y1, z1 ...) : window [list] draw line
DrawLine(w,x1,y1,...,xn,yn) draws lines between each adjacent x,y pair of arguments. In 3D,
DrawLine() takes from 2-4 coordinates per vertex and returns the list that represents the lines on
the display list for refresh purposes.

DrawPoint(w, x1, y1, ...) : window [list] draw point
DrawPoint(w,x1,y1,...,xn,yn) draws points. In 3D, DrawPoint() takes from 2-4 coordinates per
vertex and returns the list that represents the points on the display list for refresh purposes.

DrawPolygon(w, x1, y1, [z1,] ...) : window [list] draw polygon
DrawPolygon(w,x1,y1,...,xn,yn) draws a polygon. In 3D, DrawPolygon() takes from 2-4 coordinates
per vertex and returns the list that represents the polygon on the display list for refresh purposes.

DrawRectangle(w, x1, y1, width1, height1 ...) : window draw rectangle
DrawRectangle(w,x1,y1,width1,height1,...) draws rectangles. Arguments width and height define
the perceived size of the rectangle; the actual rectangle drawn is width+1 pixels wide and height+1
pixels high.

DrawSegment(w, x1, y1, [z1,] ...) : window [list] draw line segment
DrawSegment(w,x1,y1,...,xn,yn) draws lines between alternating x,y pairs in the argument list.
In 3D, DrawSegment() takes from 2-4 coordinates per vertex and returns the list that represents
the segments on the display list for refresh purposes.

DrawSphere(w, x, y, z, r, ...) : record draw sphere
DrawSphere(w, x, y, z, r,. . .) draws a sphere with radius r centered at (x, y, z) on 3D window w.
The display list element is returned. This procedure fails if the context attribute dim is set to 2.

DrawString(w, x1, y1, s1, ...) : window draw text
DrawString(w,x,y,s) draws text s at coordinates (x, y). This function does not draw any back-
ground; only the characters’ actual pixels are drawn. It is possible to use "drawop=reverse" with
this function to draw erasable text. DrawString() does not affect the text cursor position. Newlines
present in s cause subsequent characters to be drawn starting at (x, current_y + leading), where x
is the x supplied to the function, current_y is the y coordinate the newline would have been drawn
on, and leading is the current leading associated with the binding.

DrawTorus(w, x, y, z, r1, r2, ...) : record draw torus

36

DrawTorus(w, x, y, z, r1, r2,. . .) draws a torus with inner radius r1, outside radius r2, and centered
at (x,y,z) on 3D window w. The display list element is returned. This procedure fails if the context
attribute dim is set to 2.

EraseArea(w, x:0, y:0, width:0, height:0. ...) : window erase rectangular area
EraseArea(w,x,y,width,height,...) erases rectangular areas within the window to the background
color. If width is 0, the region cleared extends from x to the right side of the window. If height
is 0, the region erased extends from y to the bottom of the window. In 3D, EraseArea(W) clears
the contents of the entire window.

Event(w, i:infinity) : string|integer read event on window
Event(w, i) retrieves the next event available for window w. If no events are available, Event()
waits for i milliseconds. Keystrokes are encoded as strings, while mouse events are encoded as
integers. The retrieval of an event is accompanied by assignments to the keywords &x, &y, &row,
&col, &interval, &control, &shift, &meta, and if 3D attribute “pick=on”, &pick. Event() fails if the
timeout expires before an event occurs.

Fg(w, s) : string foreground color
Fg(w) retrieves the current foreground color. Fg(w,s) sets the foreground by name or value. Fg()
fails if the foreground cannot be set to the requested color. In 3D, Fg(w, s) changes the material
properties of subsequently drawn objects to the material properties specified by s. The string s
must be one or more semi-colon separated material properties. A material property is of the form

[diffuse | ambient | specular | emission] color name or “shininess n”, 0 <= n <= 128.
If string s is omitted, the current values of the material properties will be returned.

FillArc(w, x, y, width, height, a1, a2, ...) : window draw filled arc
FillArc(w,x,y,width,height,a1,a2,...) draws filled arcs, ellipses, and/or circles. Coordinates are as
in DrawArc().

FillCircle(w, x, y, radius, a1, a2, ...) : window draw filled circle
FillCircle(w,x,y, radius,a1,a2,...) draws filled circles. Coordinates are as in DrawCircle().

FillPolygon(w, x1, y1, [z1,] ...) : window draw filled polygon
FillPolygon(w,x1,y1,...,xn,yn) draws a filled polygon. The beginning and ending points are con-
nected if they are not the same. In 3D, FillPolygon() takes from 2-4 coordinates per vertex and
returns the list that represents the polygon on the display list for refresh purposes.

FillRectangle(w, x:0, y:0, width:0, height:0, ...) : window draw filled rectangle
FillRectangle(w,x,y,width,height,...) draws filled rectangles.

Font(w, s) : string font
Font(w) produces the name of the current font. Font(w,s) sets the window context’s font to s and
produces its name or fails if the font name is invalid. The valid font names are largely system-
dependent but follow the format family[,styles],size, where styles optionally add bold or italic or
both. Four font names are portable: serif (Times or similar), sans (Helvetica or similar), mono

37

(a mono spaced sans serif font) and typewriter (Courier or similar). Font() fails if the requested
font name does not exist.

FreeColor(w, s, ...) : window release colors
FreeColor(w,s1,...,sn) allows the window system to re-use the corresponding color map entries.
Whether this call has an effect is dependent upon the particular implementation. If a freed color
is still in use at the time it is freed, unpredictable results will occur.

GotoRC(w, row:1, col:1) : window go to row,column
GotoRC(w,row,col) moves the text cursor to a particular row and column, given in numbers of
characters; the upper-left corner is coordinate (1,1). The column calculation used by GotoRC()
assigns to each column the pixel width of the widest character in the current font. If the current
font is of fixed width, this yields the usual interpretation.

GotoXY(w, x:0, y:0) : window go to pixel
GotoXY(w,x,y) moves the text cursor to a specific cursor location in pixels.

IdentityMatrix(w) : record load the identity matrix
IdentityMatrix(w) changes the current matrix to the identity matrix on 3D window w. The display
list element is returned.

Lower(w) : window lower window
Lower(w) moves window w to the bottom of the window stack.

MatrixMode(w, s) : record set matrix mode
MatrixMode(w, s) changes the matrix mode to s on 3D window w. The string s must be either
“projection” or “modelview”; otherwise this procedure fails. The display list element is returned.

MultMatrix(w, L) : record multiply transformation matrix
MultMatrix(w, L) multiplies the current transformation matrix used in 3D window w by the 4x4
matrix represented as a list of 16 values L.

NewColor(w, s) : integer allocate mutable color
NewColor(w,s) allocates an entry in the color map and returns a small negative integer for this
entry, usable in calls to routines that take a color specification, such as Fg(). If s is specified, the
entry is initialized to the given color. NewColor() fails if it cannot allocate an entry.

PaletteChars(w, s) : string pallete characters
PaletteChars(w,s) produces a string containing each of the letters in palette s. The palletes “c1”
through “c6” define different color encodings of images represented as string data; see [Griswold98].

PaletteColor(w, p, s) : string pallete color
PaletteColor(w,s) returns the color of key s in palette p in “r ,g,b” format.

PaletteKey(w, p, s) : integer pallete key
PaletteKey(w,s) returns the key of closest color to s in palette p.

38

Pattern(w, s) : w define stipple pattern
Pattern(w,s) selects stipple pattern s for use during draw and fill operations. s may be either the
name of a system-dependent pattern or a literal of the form width,bits. Patterns are only used
when the fillstyle attribute is stippled or opaquestippled. Pattern() fails if a named pattern is not
defined. An error occurs if Pattern() is given a malformed literal.

Pending(w, x, ...) : L produce event queue
Pending(w) produces the list of events waiting to be read from window w. If no events are available,
the list is empty (its size is 0). Pending(w,x1,...,xn) adds x1 through xn to the end of w’s pending
list in guaranteed consecutive order.

Pixel(w, x:0, y:0, width:0, height:0) : i1...in generate window pixels
Pixel(w,x,y,width,height) generates pixel contents from a rectangular area within window w. width
* height results are generated starting from the upper-left corner and advancing down to the
bottom of each column before the next one is visited. Pixels are returned in integer values;
ordinary colors are encoded nonnegative integers, while mutable colors are negative integers that
were previously returned by NewColor(). Ordinary colors are encoded with the most significant
eight bits all zero, the next eight bits contain the red component, the next eight bits the green
component, and the least significant eight bits contain the blue component. Pixel() fails if part of
the requested rectangle extends beyond the canvas.

PopMatrix(w) : record pop the matrix stack
PopMatrix(w) pops the top matrix from either the projection or modelview matrix stack on 3D
window w, depending on the current matrix mode. This procedure fails if there is only one matrix
on the matrix stack. The display list element is returned.

PushMatrix(w) : record push the matrix stack
PushMatrix(w) pushes a copy of the current matrix onto the matrix stack on 3D window w. The
current matrix mode determines on what stack is pushed. This procedure fails if the stack is full.
The “projection” stack is of size two; the “modelview” stack is of size thirty two. The display list
element is returned.

PushRotate(w, a, x, y, z) : record push and rotate
PushRotate() is equivalent to PushMatrix() followed by Rotate().

PushScale(w, x, y, z) : record push and scale
PushScale() is equivalent to PushMatrix() followed by Scale().

PushTranslate(w, x, y, z) : record push and translate
PushTranslate() is equivalent to PushMatrix() followed by Translate().

QueryPointer(w) : x, y produce mouse position
QueryPointer(w) generates the x and y coordinates of the mouse relative to window w. If w is
omitted, QueryPointer() generates the coordinates relative to the upper-left corner of the entire
screen.

39

Raise(w) : window raise window
Raise(w) moves window w to the top of the window stack, making it entirely visible and possibly
obscuring other windows.

ReadImage(w, s, x:0, y:0) : integer load image file
ReadImage(w,s,x,y) loads an image from the file named by s into window (or texture) w at offset
x,y. x and y are optional and default to 0,0. GIF, JPG, PNG, and BMP formats are supported,
along with platform-specific formats. If ReadImage() reads the image into w, it returns either
an integer 0 indicating no errors occurred or a nonzero integer indicating that one or more colors
required by the image could not be obtained from the window system. ReadImage() fails if file
s cannot be opened for reading or is an invalid file format.

Refresh(w) : window redraw the window
Refresh(w) redraws the contents of window w. It is used mainly when objects have been moved
in a 3D scene. The window w is returned.

Rotate(w, a, x, y, z) : record rotate objects
Rotate(w, a, x, y, z,. . .) rotates subsequent objects drawn on 3D window w by angle a degrees, in
the direction (x,y,z). The display list element is returned.

Scale(w, x, y, z) : record scale objects
Scale(w, x, y, z,. . .) scales subsequent objects drawn on 3D window w according to the given
coordinates. The display list element is returned.

Texcoord(w, x, y, ...) : list define texture coordinates
Texcoord(W, x1,y1, . . . , xn, yn) sets the texture coordinates to x1, y1, . . . , xn, yn in 3D window
w. Each x, y, pair forms one texture coordinate. Texcoord(W, L) sets the texture coordinates to
those specified in the list L. Texcoord(W, s) sets the texture coordinates to those specified by s.
The string s must be “auto” otherwise the procedure will fail. In all cases the display list element
is returned.

TextWidth(w, s) : integer pixel width of text
TextWidth(w,s) computes the pixel width of string s in the font currently defined for window w.

Texture(w, s) : record apply texture
Texture(w, s) specifies a texture image that is applied to subsequent objects drawn on 3D window
w. The string s specifies the texture image as a filename, a string of the form width,pallet,data
or width,#,data, where pallet is a pallet from the Unicon 2D graphics facilities and data is the
hexadecimal representation of an image. Texture(w1, w2) specifies that the contents of 2D or 3D
window w2 be used as a texture image that is applied to subsequent objects on the window w1.
The display list element is returned.

Translate(w, x, y, z, ...) : record translate object positions
Translate(w, x, y, z,. . .) moves objects drawn subsequently on 3D window w in the direction
(x,y,z). The display list element is returned.

40

Uncouple(w) : window release binding
Uncouple(w) releases the binding associated with file w. Uncouple() closes the window only if all
other bindings associated with that window are also closed.

WAttrib(w, s1, ...) : x, ... generate or set attributes
WAttrib(w, s1, ...) retrieves and/or sets window and context attributes. If called with exactly one
attribute, integers are produced for integer-value attributes; all other values are represented by
strings. If called with more than one attribute argument, WAttrib() produces one string result per
argument, prefixing each value by the attribute name and an equals sign (=). If xi is a window,
subsequent attributes apply to xi. WAttrib() fails if an attempt is made to set the attribute font,
fg, bg, or pattern to a value that is not supported. A run-time error occurs for an invalid attribute
name or invalid value.

WDefault(w, program, option) : string query user preference
WDefault(w,program,option) returns the value of option for program as registered with the X
resource manager. In typical use this supplies the program with a default value for window
attribute option from a program.option entry in an .XDefaults file. WDefault() fails if no user
preference for the specified option is available.

WFlush(w) : window flush window output
WFlush(w) flushes window output on window systems that buffer text and graphics output. Win-
dow output is automatically flushed whenever the program blocks on window input. When this
behavior is not adequate, a call to WFlush() sends all window output immediately, but does not
wait for all commands to be received and acted upon. WFlush() is a no-op on window systems
that do not buffer output.

WindowContents(w) : list window display list
WindowContents(w) returns a list of display elements, which are records or lists. Each element
has a function name followed by the parameters of the function, or an attribute followed by its
value.

WriteImage(w, s, x:0, y:0, width:0, height:0) : window save image file
WriteImage(w,s,x,y,width,height) saves an image of dimensions width, height from window w at
offset x,y to a file named s. The default is to write the entire window. The file is written according
to the filename extension, in either GIF, JPG, BMP, PNG, or a platform specific format such as
XBM or XPM. WriteImage() fails if s cannot be opened for writing.

WSection(w, s) : record define window section
WSection(w,s) starts a new window section named s on 3D window w and returns a display list
section marker record. During window refreshes if the section marker’s skip field is 1, the section
is skipped. The section name s is produced by &pick if a primitive in the block is clicked on while
attribute “pick=on”. WSection(w) marks the end of a preceding section. WSection() blocks may
be nested.

WSync(w, s) : w synchronize with window system server

41

WSync(w,s) synchronizes the program with the server attached to window w on those window
systems that employ a client-server model. Output to the window is flushed, and WSync() waits
for a reply from the server indicating all output has been processed. If s is "yes", all events pending
on w are discarded. WSync() is a no-op on window systems that do not use a client-server model.

Pattern functions

Abort() pattern cancel
Abort() causes an immediate failure of the entire pattern match.

Any(c) match any
Any(c) matches any single character contained in c appearing in the subject string.

Arb() arbitrary pattern
Arb() matches zero or more characters in the subject string.

Arbno(p) repetitive arbitrary pattern
Arbno(p) matches repetitive sequences of p in the subject string.

Bal() balanced parentheses
Bal() matches the shortest non-null string which parentheses are balanced in the subject string.

Break(c) pattern break
Break(c) matches any characters in the subject string up to but not including any of the characters
in cset c.

Breakx(c) extended pattern break
Breakx(c) matches any characters up to any of the subject characters in c, and will search beyond
the break position for a possible larger match.

Fail() pattern back
Fail() signals a failure in the current portion of the pattern match and sends an instruction to go
back and try a different alternative.

Fence() pattern fence
Fence() signals a failure in the current portion of the pattern match if it is trying to backing up
to try other alternatives.

Len(i) match fixed-length string
Len(i) matches a string of a length of i characters in the subject string. It fails if i is greater than
the number of characters remaining in the subject string.

NotAny(c) match anything but
NotAny(c) matches any single character not contained in character set c appearing in the subject
string.

42

Nspan(c) optional pattern span
Nspan() matches the longest available sequence of zero or more characters from the subject string
that are contained in c.

Pos(i) cursor position
Pos(i) sets the cursor or index position of the subject string to the position i according the Unicon
index system shown below:

-6 -5 -4 -3 -2 -1 0
| U | n | i | c | o | n |
1 2 3 4 5 6 7

Rem() remainder pattern
Rem() matches the remainder of the subject string.

Span(c) pattern span
Span(c) matches one or more characters from the subject string that are contained in c. It must
match at least one character.

Succeed() pattern succeeds
Succeed() produces a pattern that, when matched, will cause the surrounding pattern match to
succeed without further scrutiny.

Tab(n) pattern tab
Tab(n) matches any characters from the current cursor or index position up to the specified position
of the subject string. Tab() uses the Unicon index system shown in Pos() and position n must be
to the right of the current position.

Rpos(n) reverse cursor position
Rpos(n) sets the cursor or index position of the subject string to the position n back from the end
of the string, equivalent to using Unicon’s negative indices in Pos().

6 5 4 3 2 1 0
| S | N | O | B | O | L |

Rtab(i) pattern reverse tab
Rtab(i) matches any characters from the current cursor or index position up to the specified position
(back from the end) of the subject string, equivalent to using a negative index in Tab(). Position
n must be to the right of the current position.

8 Preprocessor

Unicon features a simple preprocessor that supports file inclusion and symbolic constants. It is a
subset of the capabilities found in the C preprocessor, and is used primarily to support platform-
specific code sections and large collections of symbols.

43

Preprocessor commands

Preprocessor directives are lines beginning with a dollar sign. The available preprocessor com-
mands are:

$define symbol text symbolic substitution
All subsequent occurrences of symbol are replaced by the text within the current file. Note that
$define does not support arguments, unlike C.

$include filename insert source file
The named file is inserted into the compilation in place of the $include line.

$ifdef symbol conditional compilation
$ifndef symbol conditional compilation
$else conditional alternative
$endif end of conditional code

The subsequent lines of code, up to an $else or $endif, are discarded unless symbol is defined
by some $define directive. $ifndef reverses this logic.

$error text compile error
The compiler will emit an error with the supplied text as a message.

$line number [filename] source code line #line number [filename] source code line
The subsequent lines of code are treated by the compiler as commencing from line number in the
file filename or the current file if no filename is given.

$undef symbol remove symbol definition
Subsequent occurrences of symbol are no longer replaced by any substitute text.

EBCDIC transliterations alternative bracket characters
These character combinations were introduced for legacy keyboards that were missing certain
bracket characters.

$ for {
$) for }
$< for [
$> for]

These character combinations are substitutes for curly and square brackets on keyboards that
do not have these characters.

Predefined symbols

Predefined symbols are provided for each platform and each feature that is optionally compiled in
on some platforms. These symbols include:

Preprocessor Symbol Feature
_V9 Version 9

44

_AMIGA Amiga
_ACORN Acorn Archimedes
_CMS CMS
_MACINTOSH Macintosh
_MSDOS_386 MS-DOS/386
_MS_WINDOWS_NT MS Windows NT
_MSDOS MS-DOS
_MVS MVS
_OS2 OS/2
_PORT PORT
_UNIX UNIX
_POSIX POSIX
_DBM DBM
_VMS VMS
_ASCII ASCII
_EBCDIC EBCDIC
_CO_EXPRESSIONS co-expressions
_CONSOLE_WINDOW console window
_DYNAMIC_LOADING dynamic loading
_EVENT_MONITOR event monitoring
_EXTERNAL_FUNCTIONS external functions
_KEYBOARD_FUNCTIONS keyboard functions
_LARGE_INTEGERS large integers
_MULTITASKING multiple programs
_PIPES pipes
_RECORD_IO record I/O
_SYSTEM_FUNCTION system function
_MESSAGING messaging
_GRAPHICS graphics
_X_WINDOW_SYSTEM X Windows
_MS_WINDOWS MS Windows
_WIN32 Win32
_PRESENTATION_MGR Presentation Manager
_ARM_FUNCTIONS Archimedes extensions
_DOS_FUNCTIONS MS-DOS extensions

9 Execution Errors

There are two kinds of errors that can occur during the execution of an Icon program: runtime
errors and system errors. Runtime errors occur when a semantic or logic error in a program results
in a computation that cannot perform as instructed. System errors occur when an operating system
call fails to perform a required service.

45

Runtime errors

By default, a runtime error causes program execution to abort. Runtime errors are reported by
name as well as by number. They are accompanied by an error traceback that shows the procedure
call stack and value that caused the error, if there is one. The errors are listed below to illustrate
the kinds of situations that can cause execution to terminate.

The keyword &error turns runtime errors into expression failure. When an expression fails due
to a converted runtime error, the keywords &errornumber, &errortext, and &errorvalue provide
information about the nature of the error.

101 integer expected or out of range
102 numeric expected
103 string expected
104 cset expected
105 file expected
106 procedure or integer expected
107 record expected
108 list expected
109 string or file expected
110 string or list expected
111 variable expected
112 invalid type to size operation
113 invalid type to random operation
114 invalid type to subscript operation
115 structure expected
116 invalid type to element generator
117 missing main procedure
118 co-expression expected
119 set expected
120 two csets or two sets expected
121 function not supported
122 set or table expected
123 invalid type
124 table expected
125 list, record, or set expected
126 list or record expected
127 invalid type to pattern operation
128 unevaluated variable or function call expected
129 unable to convert unevaluated variable to pattern
130 incorrect number of arguments
131 string is not a class name
140 window expected
141 program terminated by window manager
142 attempt to read/write on closed window

46

143 malformed event queue
144 window system error
145 bad window attribute
146 incorrect number of arguments to drawing function
147 window attribute cannot be read or written as requested
150 drawing a 3D object while in 2D mode
151 pushed/popped too many matrices
152 modelview or projection expected
153 texture not in correct format
154 must have an even number of texture coordinates
155 3D graphics is not enabled in this virtual machine
160 nonexistent variable name
161 cannot convert unevaluated variable to pattern
162 uninitialized pattern
163 object, method, or method parameter problem in unevaluated expression
164 unsupported unevaluated expression
165 null pattern argument where name was expected
170 string or integer expected
171 UDP socket expected
172 signal handler procedure must take one argument
173 cannot open directory for writing
174 invalid file operation on directory or database
175 network connection expected
180 invalid mutex
181 invalid condition variable
182 illegal recursion in initial clause
183 concurrent threads are not enabled in this virtual machine
184 structure cannot have more than one mutex at the same time
185 converting an active co-expression to a thread is not yet supported
190 dbm database expected
201 division by zero
202 remaindering by zero
203 integer overflow
204 real overflow, underflow, or division by zero
205 invalid value
206 negative first argument to real exponentiation
207 invalid field name
208 second and third arguments to map of unequal length
209 invalid second argument to open
210 non-ascending arguments to detab/entab
211 by value equal to zero
212 attempt to read file not open for reading
213 attempt to write file not open for writing

47

214 input/output error
215 attempt to refresh &main
216 external function not found
217 unsafe inter-program variable assignment
301 evaluation stack overflow
302 memory violation
303 inadequate space for evaluation stack
304 inadequate space in qualifier list
305 inadequate space for static allocation
306 inadequate space in string region
307 inadequate space in block region
308 system stack overflow in co-expression
309 pattern stack overflow
316 interpreter stack too large
318 co-expression stack too large
401 co-expressions not implemented
402 program not compiled with debugging option
500 program malfunction
600 vidget usage error

System errors

If an error occurs during the execution of a system function, the program terminates. Unlike
runtime errors, there is no way to convert the error to a failure (and continue execution).

The complete set of system errors is by definition platform specific. Error numbers above the
value 1000 are used for system errors. Many of the POSIX standard system errors are supported
across platforms, and error numbers between 1001 and 1040 are reserved for the system errors
listed below. Platforms may report other system error codes so long as they do not conflict with
existing runtime or system error codes.

1001 Operation not permitted
1002 No such file or directory
1003 No such process
1004 Interrupted system call
1005 I/O error
1006 No such device or address
1007 Arg list too long
1008 Exec format error
1009 Bad file number
1010 No child processes
1011 Try again
1012 Out of memory
1013 Permission denied
1014 Bad address

48

1016 Device or resource busy
1017 File exists
1018 Cross-device link
1019 No such device
1020 Not a directory
1021 Is a directory
1022 Invalid argument
1023 File table overflow
1024 Too many open files
1025 Not a typewriter
1027 File too large
1028 No space left on device
1029 Illegal seek
1030 Read-only file system
1031 Too many links
1032 Broken pipe
1033 Math argument out of domain of func
1034 Math result not representable
1035 Resource deadlock would occur
1036 File name too long
1037 No record locks available
1038 Function not implemented
1039 Directory not empty
1040 socket error

1041 cannot initialize network library
1042 fdup of closed file
1043 invalid signal
1044 invalid operation to flock/fcntl
1045 invalid mode string
1046 invalid permission string for umask
1047 invalid protocol name
1048 low-level read or select mixed with buffered read
1100 ODBC connection expected
1200 system error (see errno)
1201 malformed URL
1202 missing username in URL
1203 unknown scheme in URL
1204 cannot parse URL
1205 cannot connect
1206 unknown host
1207 invalid field in header
1208 messaging file expected
1209 cannot determine smtpserver (set UNICON_SMTPSERVER)

49

1210 cannot determine user return address (set UNICON_USERADDRESS)
1211 invalid email address
1212 server error
1213 POP messaging file expected
1214 cannot find certificate store
1215 cannot verify peer’s certificate

50

	Introduction
	Immutable Types: Numbers, Strings, Csets, Patterns
	Mutable Types: Containers and Files
	Variables
	Keywords
	Control Structures and Reserved Words
	Operators and Built-in Functions
	Preprocessor
	Execution Errors

